
Performance Testing of New Enterprise Applications using Legacy
Load Data

A HIS Case Study

Marek Miłosz
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Keywords: Performance Testing, Operational Profile, Legacy System Reengineering, Hospital Information System.

Abstract: Legacy information systems are increasingly a subject to reengineering with the progress of ICT. There are
developed systems with similar features to replace those which operate. Developed software needs testing.
This paper focuses on the importance of performance testing in the early stages of software development.
To performance tests be credible, the appropriate load profile of the system must be used. The paper
presents a method of using legacy system load of real transaction data to design performance tests for newly
developed systems. The example of the hospital information system (HIS) shows the use of this method in
the software development using agile methods. Presented approach allowed the early detection of
performance problems of the new software.

1 INTRODUCTION

Each methodology of software development has
a phase of software testing. Tests can be generally
divided into functional and non-functional testing.
Normally non-functional tests concern the
performance of the system, their usability,
interoperability, portability and reliability
(Hutcheson, 2003); (Naik and Tripathy, 2008);
(Romano et al., 2009). Many authors have indicated
the importance of performance testing and the need
for appropriate methodologies for their
implementation (du Plessis, 2008); (Yao et al.,
2006); (Myers, 2004). Unfortunately, during
software development, functional and non-
functional, especially performance tests, are often
split (Perry, 2009). This split is shown in the Figure
1. This situation causes big problems when
Configuration Tuning (Figure 1) does not lead to the
achievement of the required system performance. In
such cases, the return to the Development phase is
required (see System Redesign in Figure 1), which
usually is related to serious consequences in the
aspect of increased costs and delays of the project.

In iterative processes of software development it
is possible to include performance testing to the
software development process (Figure 2). This
allows permanent (in tight cycles) control of created
software performance parameters.

There is a need for defining two main groups of
data used for the performance tests. The first is the
performance requirements. These are the
performance acceptance criteria of software which
are expected or desired by the customer. They define

Figure 1: Traditional approach to performance testing.

Figure 2: Early performance testing in iterative
development (Perry, 2009).

151Miłosz M..
Performance Testing of New Enterprise Applications using Legacy Load Data - A HIS Case Study.
DOI: 10.5220/0004433501510156
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 151-156
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

the goals and constrains of performance testing
(Meier et al., 2007). They must be measurable and
have specific values (Weyuker and Vokolos, 2000).
The problem is that the customer is not always able
to identify accurately those requirements (Parnas,
1994). It is associated with a lack of understanding
of the objectives and metrics of performance
parameters measures (e.g. the customer does not
fully understand the concepts: end-user response
time, processor utilization, the number of
transactions per unit of time or the bottleneck), and
the importance of their specific values (Hutcheson,
2003). It is also difficult to translate business
requirements (such as: "This application will support
up to 2,500 concurrent users ") for performance
criteria and specific values of parameters (Meier et
al., 2007).

The second group of data used for the
performance tests is the load parameters of the
system used for planning tests. These parameters
should be set in the client requirements and be a part
of the performance testing constrains. In large
systems, the load is very diverse (many different
actions are performed by different users) and
changes over time. This leads to difficulties in their
determination. It is reduced to identifying and
defining so-called "Operational Profile" (Perry,
2009) with it random variation in time. Operational
Profiles can be obtained from empirical research on
existing applications using statistical methods
(Zaman et al., 2012). For non-existing application
and the lack of analogues, developing the
Operational Profiles is difficult. Some researchers
suggest creating mathematical models of
applications, and try to analyse them, using
computer simulation, in terms of performance (Hao
and Mendes, 2006); (Avritzer and Weyuker, 2004).
Operational Profiles are used to design test scenarios
in a manner corresponding to client requirements
(Hao and Mendes, 2006); (Perry, 2009); (Xiao-yang
et al., 2010).

Performance tests can be carried out using the
real end-users experiment on application installed on
production platforms. Such approach is
organizationally difficult and very costly. Therefore,
in practice, there are used special software tools for
performance testing running on special testing
platforms (Poston and Sexton, 1992); (Sakamoto et
al., 2002); (Zhen et al., 2009); (Romano et al.,
2009). These tools enable planning, load generation,
execution and analysis of tests’ results (Netto et al.,
2011); (Myers, 2004). The security aspect should be
carefully considered during tests. To ensure security
all software should be installed on the test platform

and checked before implementing in the production
system (Kozieł, 2011). Transferring of the
applications from the test platform into production
should also be tested.

Another problem is the analysis of the results of
performance tests (Zhen et al., 2009) and presenting
the results in terms of business requirements,
necessary to report the results of the testing process
(Perry, 2009).

2 PERFORMANCE TESTS
IN AGILE PROJECTS

According to Figure 2 in agile projects (as iterative
and incremental styles of software development),
performance tests can thus be performed in parallel
with the functional tests, immediately after the
appearance of first application builds (du Plessis,
2008); (Meier et al., 2007).

Immediately after the functional testing of the
first application build, the performance test can be
started and provides its results to the developing
team. Developers gain in this way up-to-date
feedback on performance parameters of software.
This also applies to other non-functional tests such
as usability tests (Luján-Mora and Masri, 2012).
Performance tests are also included in the Test
Driven Development as a test first-performance
technique to ensure the performance of the system
development (Johnson and Maximilien, 2007);
(Borys and Skublewska-Paszkowska, 2011).

Effective use of performance testing in agile
development processes is conditioned by the
possibility of using special software tools to
automate it. Without it, repeated testing of
applications is too costly. Selection of software tools
to automate performance testing usually strongly
associated with a type of an application development
environment.

Agile methods are used not only for developing
of completely new applications, but they are also
useful in modernization and reengineering projects
(Bin Xu, 2005).

3 TYPICAL PROCEDURE
FOR PERFORMANCE
TESTING OF ENTERPRISE
APPLICATIONS

Methodology of performance testing usually consists

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

152

of the following seven core phases (Meier et al.,
2007):
1. Identity Test Environment.
2. Identity Performance Acceptance Criteria.
3. Plan and Design Tests.
4. Configure Test Environment.
5. Implement Test Design.
6. Execute Tests.
7. Analyze, Report, and Retest.

Test Environment and Acceptance Criteria
should be defined by the client as non-functional
requirements.

During the third phase (Plan and Design Tests),
it is necessary to determine (Meier et al., 2007) key
tests scenarios, representative users (the most
demanding in the performance area) and its
activities, and to define test data. All these aspects
result from the Operational Profile assumed or
discovered during researches.

4 DISCOVERY OPERATIONAL
PROFILE USING LEGACY
DATA

Data from a functioning and operating application
log file (if it contains the appropriate records) can be
used to find the Operational Profiles. They must be a
subjected to various transformations (Figure 3) as
follows:
 Removing Unnecessary Data - log files can

contain data unnecessary for analysis (for example
IP of users executing operations in applications or
ID of users), which should be removed.
 Data Conversion - log files usually contain text

records, and therefore they need to be converted
into other, appropriate for data analyses software
formats (numeric, dates, etc.).

 Additional Classification - log files usually contain
very detailed data such as the user who performed
the operation, and did not include his or her
classification (e.g. type of an employee, the
department where he or she is employed, etc.).
Therefore, there is a need to add additional data
that would later allow performing statistical
calculations and generalizations.
 Statistical Analyse - acquisition of load data of

different types of users and their activities in the
system are used to calculate parameters of short-
and long-term time series.

Figure 3: Legacy application log data processing.

5 PERFORMANCE TESTING
OF NEW HIS – A CASE STUDY

Legacy Hospital Information System (HIS) is
a large, web application with data base, which
registers events related to patients’s service - from
their registration in the hospital to their release, with
recording parameters of all the procedures and
results. HIS also supports the activities of doctors,
nurses and other personnel in the area of patient’s
service. It also has extensive reporting functions,
which are necessary to manage hospital and the
settlements with the Polish National Health Fund
(PNHF), which pays for medical treatments.

An ICT company has taken actions to develop
the new HIS, which would implement the
functionality of the used system (with small
extensions) with the change of implementation
technology. The legacy system was built using old
client-server technology. The new system is built as
a web application using Java EE technology and an
Oracle database server. Reengineering project is
implemented using agile methods. The methodology
of the creation of new software contained a built-in
process performance testing using legacy data of the
system load. The legacy data were obtained from log
files of HIS, which operated in a large hospital
(Ziarno and Zyga, 2012). Source data covers the
whole 2011 year. It allowed building end-users
Operational Profiles used in performing tests.

HIS systems belong to the class of reliable
systems. Therefore, during their operation, all of the

Performance�Testing�of�New�Enterprise�Applications�using�Legacy�Load�Data�-�A�HIS�Case�Study

153

critical hospital actions are recorded. The log file of
HIS for 2011 consists of more than 500 thousand
records (Ziarno and Zyga, 2012). This data provides
important information (from the point of view of the
performance tests creation) and unnecessary data.
Unnecessary data is the data of session parameters,
end-user IP address, etc.

Data from the log files has been processed as it is
shown in Figure 3. The primary objective of this
data analyse was to determine:
 types of the system users;
 the structure of the actions carried out in the HIS;
 load actions parameters.

Analysis of the data showed that there are two
main users (in terms of application load) of HIS:
doctors and nurses. Other groups insignificantly load
the system. Therefore they were combined into a
group “others”.

Total HIS load, as it was expected, is variable in
time. 24-hours variability (Figure 4) is the result of
the hospital schedule, and contains the daily peak
(period from 8am to 2pm) and the decrease in
activity during the night. From 1 to 5 am HIS load
comes down to zero.

System load is characterized by the weekly
periodicity with the falling down in weekends
(Figure 5). Over the year, there has been an
increased of the system load in January (Figure 6).
This is related to the settlements with PNHF.

The analysis of legacy HIS usage data also
allowed determining what actions were performed
by each type of users. Depending on the particular
department, distribution of particular actions was
variable (Figure 7).

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

e
r

o
f

A
c

ti
o

n
s

Hour

Doctors

Nurses

Others

Figure 4: Daily HIS load (work day).

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N
u

m
b

e
ro

f
A

c
ti

o
n

s

Day of Month

Doctors

Nurses

Figure 5: Monthly HIS load made by doctors and nurses.

10000

15000

20000

25000

30000

35000

40000

I II III IV V VI VII VIII IX X XI XII

N
u

m
b

e
r

o
f

A
c

ti
o

n
s

Month

Doctors

Nurses

Figure 6: Yearly HIS load.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cabinets

I Clinic of Lung Diseases

II Clinic of Lung Diseases

Others

I Department of Anesthesiology

II Department of Anesthesiology

Department of Thoracic Surgery

Department of Internal Medicine

Daily Department

X Department

Pulmonology

XII Department

XIV Department

Figure 7: Distribution of doctor actions in different
hospital departments (an example).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700

E
xe

cu
tio

n
T

im
e

 [
m

s]

Test Number

1 2

4

8

10
12

14

16

Figure 8: Test results for scenario: adding new item to the
patient drugs list for different number of concurrent users
(for 1, 2, 4,…, 16 users).

Obtained data was used to carry out the performance
tests of the new system. The tests were performed
for the most common actions and for different
numbers of concurrent users, realizing typical OFAT
(one-factor-at-a-time) approach (Perry, 2009). An
example of the results is shown in Figure 8.
Execution time increases with the number of drugs
in the list (Figure 8). Unfortunately, this increase is
not linear but exponential, and can cause big
performance problems, which must be fixed as soon
as possible. It was one of cases proving usefulness
of early performance testing in iterative
development. After this, there was completed Load

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

154

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

E
x
ec

u
ti

o
n

T
im

e
[m

s
]

DrugSearch NewOrder AuthorizedOrder AuthorizeOrder CheckOrderDetails DeleteNewOrder

Figure 9: Load Test for doctor’s Operational Profile (scenario: daily order operations).

Test, using a one-day system load parameters
(Figure 9). All tests were performed using Apache
JMeter.

In addition to the charts, the results of the tests
were averages, minimum and maximum execution
times of individual actions. They have allowed
indicating operations that the new system performs
significantly slower. For example, in the first release
of the new software, download operation of a
disease history record performed almost 10 times
slower than in the legacy application. Results of
testing has been used to improve of performance
during the second release development.

6 CONCLUSIONS

Nowadays, old legacy information systems are
gradually replaced with new ones. In the process of
creating new systems it is possible to use data and
knowledge acquired from the operation of the old
systems. This mainly concerns the functionality of
the software, but also it is possible to use the
system’s operation data to create the test procedures
including the load tests. Load data of the old system,
collected for years, is a source of knowledge that
allows for precise determination of the parameters of
load testing. Analysis of log files allow specifying
who, when and how significantly load the old
system. It results in the Operational Profiles, which
can be used to test plan accurately and fully
dimensioned.

Including the performance tests in an iterative
process of developing software enables early
detection of performance problems and correction
them in subsequent iterations. This approach is
reasonable because it discharges developers from the

work on improving the software part that meets the
performance requirements. This allows them to
focus on the most important fragments (in terms of
performance) of the code.

The case study presented in this paper uses this
approach and shows the success of simultaneous use
of legacy load data and early performance testing in
the big information system developing. This tests
reflected the load of old system and allowed check
the performance of each module in more realistic
conditions. This is the primary advantage of the
proposed method.

The major problem in the use of legacy data load
is the need for labour-intensive, manual processing
of the data. Due to a big diversity of log files
structure acquire the necessary data becomes
nontrivial problem. During the building of the
Operational Profiles it is necessary to clean and
remove unnecessary data, partition and classification
it and statistical analyse. It increases the cost of
construction the Operational Profiles. This is the
primary disadvantage of the proposed method and
the area of a major challenge to solve it in the future.

ACKNOWLEDGEMENTS

All practical data presented in this paper have been
obtained by my Master students during work on
their master's diploma (Ziarno and Zyga, 2012).
Thank them for their contribution to this paper.

REFERENCES

Avritzer, A., Weyuker, E. J. 2004. The role of modeling in

Performance�Testing�of�New�Enterprise�Applications�using�Legacy�Load�Data�-�A�HIS�Case�Study

155

the performance testing of e-commerce applications.
IEEE Transactions on Software Engineering, vol. 30,
no. 12, pp. 1072- 1083.

Bertolino, A., 2007. Software Testing Research:
Achievements, Challenges, Dreams. In IEEE
Computer Society Conference Future of Software
Engineering (FOSE '07), pp. 85-103.

Bin Xu, 2005. Extreme programming for distributed
legacy system reengineering. In 29th Annual
International Computer Software and Applications
Conference, COMPSAC 2005, 26-28 July 2005,
vol. 2, pp. 160- 165.

Borys, M., Skublewska-Paszkowska, M., 2011. Experience
of Test-Driven Development adoption in software
industry, Applied Methods of Computer Science, Polish
Academy of Science, vol. 4/2011, pp. 5-13.

du Plessis, J., 2008. Performance Testing Methodology.
White Paper, Micro to Mainframe (www.mtom.co.za,
[20.01.2013]).

Hao, J., Mendes, E., 2006. Usage-based statistical testing
of web applications. In Proceedings of the 6th
international conference on Web engineering (ICWE
'06), ACM, New York, pp. 17-24.

Hutcheson, M., 2003. Software Testing Fundamentals -
Methods and Metrics, Wiley Publishing Inc.,
Indianapolis, Indiana.

Johnson, M. J., Maximilien, E. M., 2007. Incorporating
Performance Testing in Test-Driven Development,
IEEE Software, vol. 24, no. 3, pp. 67-73.

Kozieł, G., 2011. Information security policy creating.
Actual Problems of Economics, vol. 126, no. 12, pp.
367-380.

Luján-Mora, S., Masri, F., 2012. Integration of Web
Accessibility into Agile Methods. In Proceedings of
ICEIS 2012 Conference, pp. 123-127.

Meier, J. D., Farre, C., Bansode, P., 2007. Performance
Testing Guidance for Web Applications. Patterns &
Practices, Microsoft Corporation.

Meyers, G., 2004. The Art of Software Testing, John Wiley
& Sons Inc., Hoboken, New Jersey, 2nd edition.

Naik, K., Tripathy, P., 2008. Software Testing and Quality
Assurance. Theory and Practice, John Wiley & Sons
Inc., Hoboken, New Jersey.

Netto, M. A. S., Menon, S., Vieira, H.V., Costa, L. T., de
Oliveira, F. M., Saad, R., Zorzo, A., 2011. Evaluating
Load Generation in Virtualized Environments for
Software Performance Testing. In 2011 IEEE
International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW),
16-20 May 2011, pp. 993-1000.

Parnas, D. L., 1994. Software Aging. In Proceedings of
the 16th international conference on Software
engineering, ICSE ’94, Los Alamitos, CA, pp. 280-287.

Perry, D., 2009. Understanding Software Performance
Testing, Better Software Magazine, April 2009
(http://www.stickyminds.com/BetterSoftware/magazin
e.asp?fn=cifea&id=118, [20.01.2013])

Poston, R. M., Sexton, M. P., 1992. Evaluating and
selecting testing tools, IEEE Software, vol. 9, no. 3, pp.
33-42.

Romano, B. L., Braga e Silva, G., de Campos, H. F.,
Vieira, R. G., da Cunha, A. M., Silveira, F. F., Ramos,
A., 2009. Software Testing for Web-Applications
Non-Functional Requirements. In Sixth International
Conference on Information Technology: New
Generations, ITNG '09, 27-29 April 2009, pp. 1674-
1675.

Sakamoto, M., Brisson, L., Katsuno, A., Inoue, A.,
Kimura, Y., 2002. Reverse Tracer: a software tool for
generating realistic performance test programs. In
Eighth International Symposium on High-
Performance Computer Architecture, 2-6 Feb. 2002,
pp. 81- 91.

Weyuker, E. J., Vokolos, F. I., 2000. Experience with
performance testing of software systems: issues, an
approach, and case study, IEEE Transactions on
Software Engineering, vol. 26, no. 12, pp. 1147-1156.

Xiao-yang Guo, Xue-song Qiu, Ying-hui Chen. Fan Tang,
2010. Design and implementation of performance
testing model for Web Services. In 2nd International
Asia Conference on Informatics in Control,
Automation and Robotics (CAR), vol. 1, 6-7 March
2010, pp. 353-356.

Yao Jun-Feng, Ying Shi, Luo Ju-Bo, Xie Dan, Jia Xiang-
Yang, 2006. Reflective Architecture Based Software
Testing Management Model. In IEEE International
Conference on Management of Innovation and
Technology, 21-23 June 2006, vol. 2, pp.821-825.

Zaman, S., Adams, B., Hassan, A. E., 2012. A Large Scale
Empirical Study on User-Centric Performance
Analysis. In IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST),
17-21 April 2012, pp. 410.419,

Zhen Ming Jiang, Hassan, A. E., Hamann, G., Flora, P.,
2009. Automated performance analysis of load tests.
In IEEE International Conference on Software
Maintenance, ICSM 2009, 20-26 Sept., pp. 125-134.

Ziarno, A., Zyga, E., 2012. Performance testing of
corporate applications, M.Sc. thesis under M. Miłosz
supervising, Lublin Technical University, 120 p.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

156

