
Automata Theory based Approach to the Join Ordering
Problem in Relational Database Systems

Miguel Rodríguez1, Daladier Jabba1, Elias Niño1, Carlos Ardila1 and Yi-Cheng Tu2
1Department of Systems Engineering, Universidad del Norte, KM5 via Puerto Colombia, Barranquilla, Colombia

2Department of Computer Science and Engineering, University of South Florida, Tampa, U.S.A.

Keywords: Automata Theory, Query Optimization, Join Ordering Problem.

Abstract: The join query optimization problem has been widely addressed in relational database management systems
(RDBMS). The problem consists of finding a join order that minimizes the time required to execute a query.
Many strategies have been implemented to solve this problem including deterministic algorithms,
randomized algorithms, meta-heuristic algorithms and hybrid approaches. Such methodologies deeply
depend on the correct configuration of various input parameters. In this paper, a meta-heuristic approach
based on the automata theory will be adapted to solve the join-ordering problem. The proposed method
requires a single input parameter that facilitates its usage respect to those previously described in the
literature. The algorithm was embedded into PostgreSQL and compared with the genetic competitor using
the most resent TPC-DS benchmark. The proposed method is supported by experimental results achieving
up to 30% faster response time than GEQO in different queries.

1 INTRODUCTION

Since the early days of RDBMS the problem of
finding a join order to minimize the execution time
of a query has been approached. (Chaudhuri, 1998)
defined large join queries as relational algebra
queries with N join operations involving N+1
relations when N is greater or equals to 10.
Consecutively the Large Join Query Optimization
Problem (LJQOP) was formally addressed as finding
a Query Execution Plan (QEP) with a minimum cost
for a large join query.

The LJQOP have been widely addressed and
many methods have been developed to solve it.
Randomized algorithms such as iterative
improvement and simulated annealing, evolutionary
algorithms such as genetic algorithms and Meta
heuristics such as ant colony optimization are some
common strategies used in the solution of the
problem.

The solution space of a LJQOP consists of all
query trees that answers the query. There are three
types of query trees that can result from the solution
space: left deep, bushy and right deep. An extended
discussion about types of query trees is given in
(Ioannidis and Kang, 1991).

The construction of a LJQOP solution space is

 theoretically possible for a small number of
relations. When N increases substantially, finding
the optimal join order is considered an NP-hard
problem and thus deterministic algorithms cannot
find a solution easily.

Systems holding workloads from applications
such as decision support systems and business
intelligence require the ability of joining more than
10 relations easily. In this paper, a Meta heuristic
approach based on the automata theory that has been
effectively used in the solution of the Traveling
Salesman Problem (TSP) will be presented and its
application in the solution of the join ordering
problem will be discussed. Finally the automata
based query optimizer proposed in this work will be
tested using the most recent decision support
benchmark TPC-DS.

The remaining parts of this work will be
distributed as follows. Previous work on solving the
LJQOP is discussed in section two. The proposed
methodology will be explained in section three. The
experimental design and setup used to test the
algorithm is going to be exposed in section four. A
discussion about the results obtained by the
algorithm and a comparison analysis between the
proposed method and the PostgreSQL genetic
optimizer module is showed in section five. Finally

257Rodríguez M., Jabba D., Niño E., Ardila C. and Tu Y..
Automata Theory based Approach to the Join Ordering Problem in Relational Database Systems.
DOI: 10.5220/0004433802570265
In Proceedings of the 2nd International Conference on Data Technologies and Applications (DATA-2013), pages 257-265
ISBN: 978-989-8565-67-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

 conclusions and future work are presented.

2 RELATED WORK

The join ordering problem has been approached in
different ways among the years. A literature review
presented in (Steinbrunn et al., 1997) provides
detailed information on different approaches to the
solution of the problem and classifies them in four
groups. The first one corresponds to deterministic
algorithms such as dynamic programming and
minimum selectivity algorithm. The second group,
randomized algorithms, includes simulated
annealing, iterative improvement, two-phase
optimization and random sampling. The third group
consists of genetic algorithms, which encode the
solutions and then uses selection, crossover and
mutation algorithms. Finally the fourth group is
compound of hybrid methods.

Three of the most popular approximate solutions
to the join-ordering problem are simulated
annealing, genetic algorithms and ant colony
optimization.

2.1 Simulated Annealing

The annealing process in physics consists of
obtaining low energy states of a solid element being
heated. Simulated Annealing takes advantage of the
Metropolis algorithm used to study equilibrium
properties in the microscopically analysis of solids.
Specifically the Metropolis algorithm generates a
sequence of states for a solid object. Given an
element in state i with energy E୧ a new element in
state j is produced, if the difference between
energies is below cero, the new state is automatically
accepted; otherwise its acceptance will depend on
certain probability based on the temperature the
system is exposed to and a physic constant known as
Boltzmann constant kୠ. Similarly, the simulated
annealing algorithm constructs solutions to
combinatorial problems linking solution-generation
alternatives and an acceptance criterion. The states
of the system can be matched to solutions of the
combinatorial problem, and in the same way the cost
function of the optimization problem can be seen as
the energy cost of the annealing system. Therefore
the simulated annealing algorithm starts exposing
the system to high temperatures and thus accepting
solutions that do not improve previous solutions. By
terms of a cooling factor, the temperature starts
lowering until it reaches zero where solutions that do
not improve its parents are not accepted.

The calculation of the acceptance probability of the
simulated annealing algorithm is adopted from the
Metropolis algorithm and corresponds to the
following equation.

்ܲ ൌ ቊ
1, ݂݅ ݂ሺ݅ሻ 	൑ ݂ሺ݆ሻ	

݁
௙ሺ௜ሻି௙ሺ௝ሻ

் , ݂݅	݂ሺ݆ሻ ൐ ݂ሺ݅ሻ
 (2.1)

Different implementations of the simulated
annealing algorithm have been used to solve the join
ordering problem using different cooling schemas,
initial solutions, and solution generation
mechanisms.

The implementation in (Ioannidis and Wong,
1987) proposed the use of simulated annealing to
solve the recursive query optimization problem. The
initial state ܵ଴ was chosen using semi-naïve
evaluation methods and the initial temperature ଴ܶ
was chosen as twice the cost of the initial state. The
termination criterion of the algorithm is composed of
two parts: the temperature must be below 1 and the
final state must remain the same for four consecutive
stages. The generation mechanism is based on a
transition probability matrix ܴ: ஺ܵ 	ൈ 	 ஺ܵ → ሾ0,1ሿ
where each neighbor of the current state has the
same probability to be chosen as the next state.

ܴሺݏ, ሻ′ݏ ൌ ൞

1
| ஺ܰሺݏሻ|

ᇱݏ	݂݅ ∈ ஺ܰሺݏሻ

0 ݁ݏ݅ݓݎ݄݁ݐ݋
	

 (2.2)

Finally authors suggest the use of two different
cooling schedules in their implementation. They
propose the use of the following equation to control
the temperature of the system.

௡ܶ௘௪ ൌ ሺߙ ௢ܶ௟ௗሻ ௢ܶ௟ௗ (2.3)

The function ߙ returns values between 0 and 1.
The first strategy proposed consists of keeping ߙ a
constant value of 0.95 and the second one consists of
modifying the value of ߙ according to Table 1.

Table 1: Factor to reduce temperature.

଴ܶ/ܶ ൑ ߙ
2 0.80
4 0.85
8 0.90
∞ 0.95

A second approach to query optimization by
simulated annealing is proposed in (Swami and
Gupta, 1988) where two implementations of
simulated annealing are compared to several other
algorithms including perturbation walk, Quasi-
random sampling, local optimization and iterative
improvement. The proposed simulated annealing

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

258

implementation uses an interesting generation
mechanism that combines two different strategies.
The first strategy is swapping which consists of
selecting two positions in the vector and
interchanges its values and the second strategy is 3-
cycle, which consists of randomly selecting 3
elements of the actual state and shift them one
position to the right in a circle. In order to select
which strategy is used to generate the new solution
at a given iteration, variable ߙ ∈ ሾ0,1ሿ that
represents the frequency of swap selection and thus
1 െ .that represents 3-cycle selection is used ߙ

2.2 Genetic Algorithms

The author of (Holland, 1992) explains that “Most
organisms evolve by means of two primary process:
natural selection and sexual reproduction. The first
determines which members of the population survive
to reproduce, and the second ensures mixing and
recombination among the genes of their offspring”.
Genetic algorithms use the same procedure to seek
an optimal solution to an optimization problem by
selecting the most fitted solutions of the problem
and combining them to create new generations.

A genetic algorithm heavily depends on the
performance of its three basic operations: selection,
recombination and mutation.

In general the selection scheme describes how to
extract individuals from the current generation to
create new elements to be evaluated in the next
generation by creating a mating pool. Consequently
the elements selected in the present generation must
be “good” enough to be the parents of the new
generation.

The crossover operation is what makes genetic
algorithms different from other randomized
methods. Based on the natural reproduction process
where parts of the genes of both parents are
combined to form new individuals, the crossover
function uses two individuals selected from the
mating pool and combines them to create new
individuals. Several methods to crossover have been
designed and some of the most popular are one-point
crossover, two-point crossover, cycle crossover and
uniform crossover.

The mutation operation adds an additional
change to the new individuals of the population to
prevent the generation of uniform populations and
getting trapped in local optima. The mutation
operation in binary encoded genetic algorithms can
be easily implemented by selecting a random bit
from the encoded string and change its value by
using the negation operation. Even though the

mutation operation is essential for the genetic
algorithm to work properly, it must be used
carefully.

Genetic algorithms have also been used to solve
the query optimization problem as alternative to
randomized algorithms. The genetic algorithm
implemented by the authors of (Bennett et al., 1991)
is the first known genetic algorithm used to
approach the query optimization problem. The
authors adapted a genetic algorithm used to solve the
assembly line balancing problem focusing on
finding an appropriate encoding schema and
crossover operation to solve the query optimization
problem. The author of (Muntes-Mulero et al., 2006)
proposed the Carquinyoli Genetic Optimizer (CGO)
which uses a tree fashioned codification for the
algorithm to represent solutions, the crossover
operation randomly selects two members of the
current population and examines each tree’s
operations and stores them in a list, then a sub tree
from each parent is selected and an offspring is
generated by combining a sub tree from one parent
and the ordered list of operations from the other, the
same procedure is applied to the other sub tree and
operation list. Five different mutation strategies were
used, swap, change scan, change join, join
reordering and random sub tree. The selection
strategy used by GCO is a simple elitist algorithm.

Finally the commercial database system
PostgreSQL is equipped with GEQO, a genetic
optimizer that activates when the number of tables
involved in a query exceeds 10. GEQO is based on
the steady state genetic algorithm GENITOR that
presents two main differences compared to
traditional genetic algorithms, the explicit use of
ranking and the genotype reproduction in an
individual basis.

2.3 Ant Colony Optimization

The optimization method based on ant colonies
consists of three procedures: ConstructAntsSolution,
UpdatePheromones and DeamonActions. The first
method manages the construction of solutions by
single ants using pheromone trails and heuristic
information. The second method uses the solution
constructed by the ant and update pheromone trail
accordingly increasing the amount of pheromones or
reducing the amount of pheromones due
evaporation. The third method includes actions that
cannot be performed by single ants like local
optimization procedures or additional pheromone
increases.

Lately new algorithms to solve the query

Automata�Theory�based�Approach�to�the�Join�Ordering�Problem�in�Relational�Database�Systems

259

 optimization problem have been proposed based on
the ACO theory. Different approaches to query
optimization using ant algorithms have been
developed and also combined with genetic
algorithms to increase the accuracy of the solutions
found. In this section different approaches to query
optimization assembled on ant colony optimization
algorithms are studied. Specifically three different
approaches will me mentioned: the first known ACO
algorithm to be applied to the query optimization
problem (LI et al., 2008), a best-worst ACO
combined with a genetic algorithm to solve the
query optimization problem (Zhou et al., 2009) and
finally another type of combination between ACO
and GA to approach the join ordering problem is
presented in (Kadkhodaei and Mahmoudi, 2011).

3 DSQO: DETERMINISTIC
SWAPPING QUERY
OPTIMIZATION

The method proposed as a novel algorithm to solve
the traveling sales man problem in (Niño et al.,
2010) takes advantage of the automata theory to
construct a path to find a global optimal solution to
the problem. Specifically, a special type of
deterministic finite automaton is constructed to
model the solution space of the combinatorial
problem and a transition function is designed to
allow the navigation around neighbor answers. The
exchange deterministic algorithm (EDA) was used
to browse the structure to rapidly converge to an
optimal solution.

3.1 Query Optimization based
on the Automata Theory

A deterministic finite automaton of swapping,
DFAS, is a kind of DFA that allows the modeling of
the set of feasible solutions of combinatorial
problems where the order of the elements is relevant
and no repetitions are permitted. A DFAS is
formally defined in (NIÑO and ARDILA, 2009) as a
7-tuple.

ܯ ൌ ሺܳ, Σ, ,ߜ ,଴ݍ ,ܨ ܺ଴, ݂ሻ (3.1)

Where ܳ represents the set of all feasible
solutions to the problem, Σ is the input alphabet and
represents the set of all possible exchanges between
two elements of the answer. The author proved that
the number of elements of Σ is given by the
following equation

|Σ| ൌ
݊ ∗ ሺ݊ െ 1ሻ

2
 (3.2)

:ߜ ܳ	 ൈ 	Σ	 → Q, is the transition function and
takes the node ݍ௜ 	∈ ܳ and swap the elements in the
positions indicated by the element of the alphabet,
 ଴ is the initial state and is given by an initialݍ
solution to the problem, ܨ is the set of final states,
ܺ଴ is the input vector containing the initial order of
elements corresponding to the state ݍ଴, ݂ is the
objective function of the combinatorial problem that
evaluates the given order ܺ௞ in the node ݍ௞.

For instance the following example is given to
understand the construction of a DFAS. Given the
objective function of a combinatorial optimization
problem and an input vector.

݂ሺ തܺሻ ൌ ଵݔ0.3 ൅ ଶݔ0.2 ൅ ଷ (3.3)ݔ0.1	
തܺ଴ ൌ ሺ1,2,3ሻ (3.4)

The alphabet contains six elements,
consecutively by the application of the definition.

Σ ൌ ሼሺ1,2ሻ, ሺ1,3ሻ, ሺ2,3ሻሽ (3.5)

The transition function is constructed by labeling
the state ݍ଴ after the input vector തܺ଴; the swap
operation is applied to ݍ଴ for every element of the
alphabet and every new vector തܺ௜ constitutes a new
state ݍ௜ that is included in the DFAS; the process is
repeated until every node ݍ௜	has been evaluated.
Table 2 shows the transition function for the given
example

Table 2: DFAS transition function example.

,଴ݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ2,1,3ሻ

ଵܺ ൌ ଵݍ

,଴ݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ3,2,1ሻ
ܺଶ ൌ ଶݍ

,଴ݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ1,3,2ሻ
	ܺଷ ൌ ଷݍ

,ଵݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ1,2,3ሻ
ܺ଴ ൌ ଴ݍ

,ଵݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ3,1,2ሻ
ܺସ ൌ ସݍ

,ଵݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ2,3,1ሻ
	ܺହ ൌ ହݍ

,ଶݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ2,3,1ሻ
ܺହ ൌ ହݍ

,ଶݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ1,2,3ሻ
ܺ଴ ൌ ଴ݍ

,ଶݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ3,1,2ሻ
	ܺସ ൌ ସݍ

,ଷݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ3,1,2ሻ
ܺସ ൌ ସݍ

,ଷݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ2,3,1ሻ
ܺହ ൌ ହݍ

,ଷݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ1,2,3ሻ
	ܺ଴ ൌ ଴ݍ

,ସݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ1,2,3ሻ
ܺଷ ൌ ଷݍ

,ସݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ2,1,3ሻ

ଵܺ ൌ ଵݍ

,ସݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ3,1,2ሻ
	ܺଶ ൌ ଶݍ

,ହݍ൫ߜ ሺ1,2ሻ൯
ൌ ሺ1,2,3ሻ
ܺଷ ൌ ଷݍ

,ହݍ൫ߜ ሺ1,3ሻ൯
ൌ ሺ2,1,3ሻ

ଵܺ ൌ ଵݍ

,ହݍ൫ߜ ሺ2,3ሻ൯
ൌ ሺ3,1,2ሻ
	ܺଶ ൌ ଶݍ

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

260

3.2 The Exchange Deterministic
Algorithm (EDA)

EDA is a simple algorithm proposed in (Niño et al.,
2010) that describes a strategy to browse a DFAS
structure to find global optimal solutions to
combinatorial problems that allows finding the state
 ௜ that contains the global optimal solution of theݍ
problem in polynomial time by only exploring the
necessary states minimizing the use of computer
memory.

Taking into consideration the characteristics
mentioned above the following algorithm was
proposed. Where ߪ is the current state, തܺఙ is the
vector associated to the current state and ݂ሺ തܺఙሻ is
the value of evaluating the current state´s vector in
the objective function.

Step 1. ߪ ൌ ଴ݍ	
Step 2. ߮ ൌ 	݂ሺ തܺఙሻ and θ ൌ ݕݐ݌݉݁
Step 3. ∀ܽ௜ ∈ Σ, evaluate ߛ௜ ൌ ݂ሺߜሺߪ, ܽ௜ሻሻ and if

௜ߛ ൏ 	߮, let ߮ ൌ ݂ሺߜሺߪ, ܽ௜ሻሻ and make
θ ൌ 	ܽ௜

Step 4. If θ ൌ .is a global optimum ߪ ,ݕݐ݌݉݁
Otherwise ߪ ൌ ,ߪሺߜ	 and loop back to	ሻߠ
step 2.

It is easy to observe that the proposed search
strategy does not require the construction of the
complete DFAS structure at once. Instead, it only
constructs the required areas of the solution space as
the neighbors are chosen following the objective
function improvement. This strategy is expected to
save computer memory because it compares states
one by one and rapidly discards portions of the
solution space that do not improve the objective
function.

3.3 DSQO: Deterministic Swapping
Query Optimization

A DFAS structure can be constructed to represent
the solution space of the join ordering problem
because in fact, it is a combinatorial problem where
the order of the elements is relevant and no
repetitions are allowed.

Following the definition, a DFAS to solve the
query optimization problem is the following 7-tuple.

ܯ ൌ ሺܳ, Σ, ,ߜ ,଴ݍ ,ܨ ܺ଴, ݂ሺ ௜ܺሻሻ (3.6)

Where ܳ represents the set of all possible join
orders, Σ represents all possible exchanges between
two tables in the left deep join query three, ߜ is the
transition function from one query plan to another
with a symbol of Σ, ݍ଴, is a random element of ܳ

selected as the initial state of the automaton, ܨ, is the
same set as ܳ because every plan in ܳ represents a
solution, ܺ଴, is the vector that contains the order in
଴ and ݂ሺݍ ௜ܺሻ, is the objective function that estimates
the cost of executing a given ௜ܺ plan.

The solution space that a DFAS can represent is
reduced to all possible left deep trees and thus no
bushy tree strategy can be directly explored by this
method. To illustrate how to construct a DFAS
modeling the join-ordering problem, Figure 1 shows
the transition diagram of the DFAS corresponding to
the following query with three tables to join.

SELECT *
FROM tab1, tab2, tab3
WHERE tab1.fkt2 = tab2.pk AND

tab2.fkt3 = tab3.pk

Figure 1: DFAS transition diagram from the example
query.

The transition diagram shows how the solution
space of the join ordering problem is represented.
Each node of the graph contains a vector with a join
ordering in the left deep strategy of the following
form:

ሾ1ݐ, ,2ݐ 3ሿݐ → ሺሺ1ݐ ⋈ 2ሻݐ ⋈ 3ሻ (3.7)ݐ

Where the first two elements from left to right
are joined first, and then the intermediate table is
joined with the next element in the vector, creating
another intermediate table. The process is repeated
until there are no more elements to join and the last
intermediate table contains the expected result.

EDA was proposed as a method to navigate the
DFAS structure without building the complete
solution space, by the exploration of the
neighborhood of a given state and an objective
function improvement rule. Even though EDA is
capable of finding global optimal solutions to
combinatorial problems effectively, it was mainly
designed to find optimal solutions to the traveling
salesman problem. Despite the similarities between
the TSP and the join-ordering problem, it is
necessary to adjust the algorithm to perform as well

Automata�Theory�based�Approach�to�the�Join�Ordering�Problem�in�Relational�Database�Systems

261

in the solution of the query optimization problem,
which is the targeted problem of this work.

The main reason EDA is not efficient in the
solution of the join-ordering problem is that the
objective function used in the optimization
procedure is yet an estimate of the real cost of using
a specific join order. Therefore, minimal
improvements towards a better solution may not be
worth the effort of a new iteration of the algorithm.
Another important reason EDA is not effective when
applied to the query optimization problem is the lack
of representation of the wider solution space, which
includes bushy query trees. A slower convergence of
the algorithm is caused because it encounters a
reasonable number of solutions with Cartesian
products in the optimization process of the left-deep
only solution space.

In order to improve the convergence speed of the
query optimization based on automata theory
module, the DSQO algorithm was designed. There
were two main improvements made to the original
EDA algorithm: an objective function improvement
criterion was added in order to avoid unnecessary
optimization efforts and a heuristic was included to
transform Cartesian product left-deep plans into
feasible bushy tree query plans. The heuristic used
was taken from the genetic implementation in
PostgreSQL.

The objective function improvement criterion
added to the algorithm is used to stop the
optimization process when the significance of the
new optimum found is not relevant in the solution of
the problem. An input parameter ߬ ∈ ሾ0,1ሿ, which
can be seen as a threshold value, is required by
DSQO to evaluate if the new solution found in the
iteration improves the current solution by a certain
percentage given by ߬ using the following equation.

߮ െ	ߛ௜
߮

൏ ߬ (3.8)

Where ߛ௜ is the new solution and ߮ is the current
best solution found. The ߬ parameter can be
considered as an attempt to provide the DBA with a
tool to adjust the accuracy of the optimization
process based on how deep to look into the search
space.

The second strategy included in DSQO is the use
of a heuristic to avoid Cartesian products in the left-
deep solution space and thus expanding it. The
heuristic is taken from the PostgreSQL genetic
algorithm implementation and works as follows. The
given order ௜ܺ is evaluated from left to right. At first
every relation is seen as a new branch in the query
tree and at the beginning, the first relation

constitutes the only branch of the tree. Then, every
new branch is tried to merge with an existing one or
otherwise it is added as a single relation branch to
the query tree. Finally, any existing branch in the
tree is forced merge to construct a complete query
tree.

Comparing DSQO with other meta-heuristic
methods applied in query optimization such as
simulated annealing, genetic algorithms and ant
colony optimization, the proposed method presents a
notorious advantage: it only requires a single input
parameter. As mentioned before, even though well
known meta-heuristics have been successfully
applied to the query optimization problem,
configuring the right input parameters is a delicate
task. With only one parameter to configure the
DSQO takes an enormous advantage against its
competitors.

4 EXPERIMENTAL SETUP
 AND DESIGN

The implementation of the DSQO module was built
and tested on a Mac mini server running Mac OS X
10.6 operating system. It was equipped with a 2.66
GHz Intel 2 Duo processor, 4GB of DDR3 memory
@1067 MHz and a 500GB − 7200 SATA hard disk.

During the execution of tests the machine was
not connected to a network to avoid sharing
resources with network related tasks, also all queries
were run locally in the machine to avoid network-
related delay times while measuring response times.

Finally, the machine was setup to stop any other
resource demanding service with the purpose of
allowing the higher amount of resources to the
database system.

The query optimization module based on the
automata theory proposed in this work was
implemented using the C programming language
and compiled using GCC for Mac OSX. It was
integrated into the code of the PostgreSQL 9.1
database system within its query optimization
module along with GEQO.

The test scenarios were planned based on TPC-
DS (POESS, NAMBIAR and WALRATH, 2007), a
decision support benchmark that supports a retail
product supplier system. The benchmark consists of
a database schema with 25 tables, a data population
tool, test queries, and a data maintenance model.

The data population tool provided was used to
produce a database instance using a 1GB scale factor
and 100 test queries were produced as the

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

262

specification of the benchmark indicates. However,
the proposed queries included in the benchmark
usually evaluate less than 10 joins with few
exceptions.

With the intention of testing the DSQO module
with large join queries two scenarios were designed.
The first scenario consists of four queries, one for
each fact table in the schema, that joins each
referenced dimension resulting in queries with 8, 9,
13 and 15 joins, which result still small to test the
module but are particularly interesting because they
retrieve high amounts of data. The following 8-join
query was constructed using the Store Sales fact
table.

SELECT
 date_dim.d_date,
 time_dim.t_time,
 customer.c_first_name,
 customer.c_last_name,
 item.i_product_name,
 cd.cd_gender,
 store.s_store_name,
 customer_address.ca_county,
 hd.hd_dep_count
FROM
 public.store_sales,
 public.date_dim,
 public.time_dim,
 public.item,
 public.customer,
 public.customer_demographics cd,
 public.household_demographics hd,
 public.customer_address,
 public.store
WHERE
 store_sales.ss_sold_date_sk =
 date_dim.d_date_sk AND
 store_sales.ss_sold_time_sk =
 time_dim.t_time_sk AND
 store_sales.ss_item_sk =
 item.i_item_sk AND
 store_sales.ss_customer_sk =
 customer.c_customer_sk AND
 store_sales.ss_cdemo_sk =
 cd.cd_demo_sk AND
 store_sales.ss_hdemo_sk =
 hd.hd_demo_sk AND
 store_sales.ss_addr_sk =
 customer_address.ca_address_sk AND
 store_sales.ss_store_sk =
 store.s_store_sk;

To overcome the absence of large join queries, 5
more queries were designed taking advantage of the
snowflake design of the database schema. The Web
Returns fact table was used and its different
dimension tables where joined to obtain queries with
15, 20, 25 and 30 join operations.

Finally, each query was run 10 times to obtain an

 average of the execution time and optimization
time. The PostgreSQL GEQO module, the only
commercial generic query optimizer, was setup with
its standard parameters and the DSQO module was
tested using different values for ߬ specifically 0.02,
0.05, 0.10 and 0.15.

5 COMPARATIVE ANALYSIS

This section will be divided into two subsections
comparing the results obtained for each scenario
independently. The first subsection shows the results
of the star schema experiments and the second
subsection displays the results of the snowflake
schema experiments. Figures present the average
response time and optimization time of each query
using the GEQO implementation, included in the
PostgreSQL 9.1.2 distribution, and the optimization
strategy proposed in this work. The quality of the
solution found by each algorithm was measured in
terms of plan cost and is also showed using figures
that facilitate the analysis.

5.1 Snowflake Scenario

Query execution time results of the tests under the
snowflake scenario are shown and also compared to
the results obtained by GEQO in figure 2. The graph
shows that with small number of join operations
both optimizers perform similarly, but when the
number of join operations increases DSQO tend to
perform better.

A maximum improvement of 13.72% was
achieved by DSQO over GEQO solving the 30-join
query. Also, the DSQO presented almost a 20%
improvement in the plan cost for the same query
while, smaller queries obtained similar plan costs
with GEQO presenting minimal differences not
exceeding 0.5%.

Figure 2: Snowflake query execution time comparison.

Automata�Theory�based�Approach�to�the�Join�Ordering�Problem�in�Relational�Database�Systems

263

In general, optimization time was considerably
smaller for DSQO for up to 25 joins. On the other
hand, in the 30 join case the optimization time was
larger, taking almost 50% more time. The overall
query execution time for the 30-join query was
smaller due to the quality of the plan that was found,
specifically 17.45% better. Figure 3 shows a
comparison graph between DSQO with different
values of ߬ and GEQO.

Figure 3: Snowflake query optimization time comparison.

5.2 Star Scenario

The star scenario tests results are shown in figure 4.
Query execution times of the proposed algorithm
and GEQO are shown for each query in this
workload. As the results obtained by DSQO with
values of ߬ of 0.05, 0.10 and 0.15 presented minimal
differences, only results with ߬ values of 0.02 and
0.05 are shown.

The graph indicates that the Store_sales fact
table presented the least improvement, which is
explained by the fact that it is the smallest table. On
the other hand, the highest improvement was
obtained optimizing the Web_returns fact table
where a 30% improvement was achieved. The
improvement obtained by DSQO in the quality of
the plan was not substantial and the highest
improvement obtained was 15%.

Similarly as in the query execution time test,
results with minimal differences were found
between values of ߬ of 0.10 and 0.15, thus the results
presented will omit tests with 	߬ ൌ 0.15.

In general, optimization time spent by DSQO
was smaller than GEQO, which is explained by the
fact that the maximum amount of joins included in
the workload was 15. Figure 5 shows the
convergence speed of both algorithms. Even though
the proposed algorithm is faster, the quality of the
answer found by GEQO is slightly better.

Figure 4: Star query execution time comparison.

Figure 5: Star query optimization time comparison.

6 CONCLUSIONS AND FUTURE
WORK

A new algorithm based on the automata theory was
introduced in this work to find global optimal
solutions to the join ordering problem in relational
database systems. Internal analyses were performed
to the EDA algorithm to understand its performance
in the solution of the query optimization problem,
which derived in the design of the DSQO algorithm.
Different types of metrics such as query execution
time, optimization time and plan cost were measured
to evaluate the efficiency of the proposed query
optimizer. DSQO was tested and empirically
compared to the genetic algorithm implementation
GEQO in PostgreSQL, which is the only
commercial Meta heuristic optimizer available.
Results show that the utilization of the proposed
methodology to solve queries in star and snowflake
environments decreases up to 30% the response time
of the database system.

Even thought the proposed methodology
outperformed the only existing commercial Meta

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

264

heuristic optimizer, the proposed methodology can
be further improved by combining it with other
heuristics to obtain better initial solutions. Another
future implementation should experiment with
different operations other than swapping that may
offer the reduction of the exploration of the solution
space. Finally, the optimization methodology should
be tested under different databases and types of
queries, such as those supporting scientific data.

ACKNOWLEDGEMENTS

The research described in this paper was funded by
Colciencias and Universidad del Norte, Barranquilla,
through research grant approved in the Joven
Investigador Proposal 2011.

Yi-Cheng Tu is supported by Grant IIS-1117699
from the US National Science Foundation (NSF).

REFERENCES

Bennett, K., Ferris, M. C. and Ioannidis, Y. E., 1991. A
genetic algorithm for database query optimization.
Computer Sciences Department, University of
Wisconsin, Center for Parallel Optimization.

Chaudhuri, S., 1998. An overview of query optimization
in relational systems, Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems 1998, ACM, pp. 34-43.

Holland, J. H., 1992. Genetic algorithms. Scientific
American, 267(1), pp. 66-72.

Ioannidis, Y. E. and Wong, E., 1987. Query optimization
by simulated annealing. ACM.

Ioannidis, Y. E. and Kang, Y. C., 1991. Left-deep vs.
bushy trees: an analysis of strategy spaces and its
implications for query optimization, Proceedings of
the 1991 ACM SIGMOD international conference on
Management of data 1991, ACM, pp. 168-177.

Kadkhodaei, H. and Mahmoudi, F., 2011. A combination
method for join ordering problem in relational
databases using genetic algorithm and ant colony,
Granular Computing (GrC), 2011 IEEE International
Conference on 2011, IEEE, pp. 312-317.

Li, N., Liu, Y., Dong, Y. and Gu, J., 2008. Application of
Ant Colony Optimization Algorithm to Multi-Join
Query Optimization. Advances in Computation and
Intelligence, pp. 189-197.

Muntes-Mulero, V., Zuzarte, C. and Markl, V., 2006. An
inside analysis of a genetic-programming based
optimizer, Database Engineering and Applications
Symposium, 2006. IDEAS'06. 10th International 2006,
IEEE, pp. 249-255.

Niño, E. D. and Ardila, C. J., 2009. Algorithm based on
finite automata for obtaining global optimum

combinatorial problems. Ingeniería y Desarrollo, (25),
pp. 99-114.

Niño, E. D., Ardila, C. J., Jabba, D. and Donoso, Y., 2010.
A novel Algorithm based on Deterministic Finite
Automaton for solving the mono-objective Symmetric
Traveling Salesman Problem. International Journal of
Artificial Intelligence, 5(A10), pp. 101-108.

Poess, M., Nambiar, R. O. and Walrath, D., 2007. Why
you should run TPC-DS: a workload analysis,
Proceedings of the 33rd international conference on
Very large data bases 2007, VLDB Endowment, pp.
1138-1149.

Steinbrunn, M., Moerkotte, G. and Kemper, A., 1997.
Heuristic and randomized optimization for the join
ordering problem. the VLDB Journal, 6(3), pp. 191-
208.

Swami, A. and Gupta, A., 1988. Optimization of large join
queries. ACM.

Zhou, Y., Wan, W. and Liu, J., 2009. Multi-joint query
optimization of database based on the integration of
best-worst Ant Algorithm and Genetic Algorithm,
Wireless Mobile and Computing (CCWMC 2009), IET
International Communication Conference on 2009,
IET, pp. 543-546.

Automata�Theory�based�Approach�to�the�Join�Ordering�Problem�in�Relational�Database�Systems

265

