
Intentional Modeling for Problem Solving in Enterprise Architecture

Sagar Sunkle, Vinay Kulkarni and Suman Roychoudhury
Tata Research Development and Design Center, Tata Consultancy Services,

54B, Industrial Estate, Hadapsar, 411013, Pune, India

Keywords: Enterprise Architecture, Intentional Modeling, Problem Solving.

Abstract: Taking and executing correct decisions is critical in enterprise systems which are characterized by rapid
changes along interconnected dimensions. Enterprise architecture (EA) frameworks offer holistic treatment
of enterprise systems but constitute only one part of the solution to problems arising due to organizational
changes. The other, less explored part is the ability to explicate and analyze the intentions behind major de-
cisions. We investigate a step-by-step approach where intentional modeling is treated as a problem solving
technique. In our approach, an intentional model devoid of goals is obtained from the existing EA model via
mapping. It is expanded by representing the problems due to organizational changes as goals and soft goals
and alternative solutions to them. The final intentional model is transformed back to an actionable EA model
via the same mapping. In the case study, we re-imagine the evolution of our model-driven software develop-
ment unit as an enterprise where two stages in its evolution are treated as as-is and to-be states and the journey
is captured in terms of intentional models. Initial explorations suggest that the mapping enables a clear path
from as-is to to-be states of an EA model while preserving the reasoning behind every alternative chosen.

1 INTRODUCTION

In our experience in delivering 70+ large business-
critical enterprise applications, we have found that
the cost of incorrect decisions in building these sys-
tems and evolving them in the face of organiza-
tional changes is becoming prohibitively high (Kulka-
rni et al., 2010). One key reason that we witnessed as
to why decisions are so hard to see through in enter-
prises is that a holistic view is missed. The second
reason is that even if such a view is taken, the reasons
behind decisions are scarcely captured or utilized to
direct the change.

For an enterprise, the holistic view may be pro-
vided by enterprise architecture (EA). A number of
EA frameworks and modeling languages are now rou-
tinely used by enterprises to improve business effi-
ciency. Yet, reasons behind EA construction are hard
to trace or examine and so is responding to change (Yu
et al., 2006). To circumvent this, some EA methods
and independent standards such as business motiva-
tion model (BMM) (OMG, 2010) provide additional
modeling constructs in the form of motivation exten-
sion(s). These are good for highly abstracted views
at the management level, but when it comes down
to ground level implementations these constructs act
only as blueprints rather than techniques to capture

and use whys in constructing and evolving whats and
hows of enterprises.

We approach this situation from the perspective of
problem solving. We posit that while EAs capture de-
tails of a given change context, a mapping from EA
concepts to intentional modeling concepts (Yu et al.,
2006) can be used so that eminent problems are repre-
sented as (soft) goals to be reached. What-if analyses
provided by intentional modeling (Horkoff and Yu,
2009) can then be used solve these problems which
includes exploring alternatives from the point-of-view
of involved actors/roles.

As a running case study example, we re-imagine
our model-driven software development unit as an en-
terprise. We capture in retrospect the organizational
changes that we observed over the years as problems
to be solved and model-based solutions as the an-
swers. Our specific contribution is the mapping of
core elements of EA and intentional metamodels used
to translate goals from and to EA models. Once var-
ious questions pertaining to the problems have been
answered, the results of these analyses, in terms of
addition of new actors/roles, change of responsibili-
ties of existing actors/roles, and so on, are transferred
back to EA models via the same mapping preserving
traceability from whys to whats and hows.

The rest of the paper is organized as follows. Sec-

267Sunkle S., Kulkarni V. and Roychoudhury S..
Intentional Modeling for Problem Solving in Enterprise Architecture.
DOI: 10.5220/0004435502670274
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 267-274
ISBN: 978-989-8565-61-7
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Alternatives

Strategic Dependencies [SD]

and Rationale [SR] models in i*
Enterprise (Architecture)

Model
Via

EA-

Intentional

Metamodel

Mapping

 As-is -> To-be[SD]` + [SR]`

Organizational

Impact

Analysis

Revise Enterprise

(Architecture)

Model via

Mapping

Figure 1: Solving problems in enterprise architecture with
i* intentional modeling.

tion 2 describes the mapping between generic EA and
intentional metamodels and introduces the case study.
Section 3 captures in terms of intentional models, the
problems faced by our model-driven software devel-
opment unit and presents alternative solutions. Sec-
tion 4 describes how the results of analyses over the
intentional models are transferred back to EA models
with which to take action. Section 5 reviews related
work and Section 6 concludes the paper.

2 USING INTENTIONAL
MODELS

While EA frameworks capture the working of the en-
terprise or the whats and the hows, the treatment of
whys, even with the extended constructs for motiva-
tion in them, is of blueprint nature (Wagter et al.,
2012). We believe that in order to capture the reasons
behind enterprise’s workings on ground, techniques
for modeling and analyzing goals need to be applied
in an actionable way. This means that whys are not
just documented in a blueprint manner but rather used
to direct the change by analyzing various alternative
courses of action and choosing from available alterna-
tives and reflecting the choices in affected dimensions
of an enterprise.

It is our belief that is better to treat EA models as
the version of truth and use intentional/goal models
only as a technique to solve specific problems, aris-
ing particularly due to profoundly important business
strategy change drivers (Buchanan and Soley, 2002),
preserving the reasoning by translating analysis re-
sults back to EA models. This is the basis of our ap-
proach which is illustrated in Figure 1.

The EA model is presumed to be in ArchiMate
while the intentional model is considered to be in
i*. We choose ArchiMate for its economy of con-
cepts and coverage of concepts pertaining to various
aspects of enterprise (Sunkle et al., 2013). The next
section details ArchiMate and i* metamodel mapping

and how i* is applied as a problem solving technique
to EA model expressed in ArchiMate. We choose
i* intentional modeling among several goal-oriented
requirement techniques because, first, i* has already
been applied in the context of EA (Yu et al., 2006) and
second, considerable literature discussing meaning
and application of i* concepts is available along with
several metamodels (de Castro et al., 2011) which is
helpful in deciding how to map specific concepts from
EA metamodel to i* metamodel. The i* metamodel
used in the present mapping is adapted from (López
et al., 2011).

2.1 EA and i* Metamodel Mapping

The ArchiMate generic metamodel defines active
structure elements (ASEs) as the entities that are ca-
pable of performing behavior. These are assigned to
behavior elements (BEs), which indicate units of ac-
tivity. The passive structure elements (PSEs) are the
objects on which behavior is performed (Haren and
Publishing, 2012). Each of these three types and the
relationships shown in Figure 2 occur in three lay-
ers of ArchiMate metamodel namely, business, ap-
plication, and technology layers. A service is the
externally visible behavior of the providing system,
from the perspective of systems that use that ser-
vice. Services are made accessible through interfaces,
which constitute the external view on the active struc-
tural aspect. Thus, the business layer offers products
and services to external customers, which are real-
ized in the organization by business processes (BE)
performed by business actors (ASE). The application
layer supports the business layer with application ser-
vices (BE) which are realized by (software) applica-
tions (ASE). The technology layer offers infrastruc-
ture services (BE) like storage and networking needed
to run applications, realized by computer and commu-
nication hardware and system software (ASE) (Haren
and Publishing, 2012).

The i* metamodel as illustrated in Figure 2, con-
siders actors performing tasks as means to an end that
is captured as (soft) goals (López et al., 2011). Re-
sources may be used or created by actor while per-
forming tasks. Actors may depend on each other to
perform a task and/or to use or create a resource to
achieve a goal or soft goal. Two kinds of models
are used in i* namely, strategic dependency (SD) and
strategic rationale (SR) models, to capture dependen-
cies between actors and to model the intentions of ac-
tor in performing their appointed tasks respectively.
In the context of an enterprise, the SD model would
describe an enterprise in terms of dependencies that
enterprise actors have on each other in accomplishing

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

268

Service
Behavior

Element

Interface
Active

Structure

Element

Passive

Structure

Element

a
c
c
e
ss

e
s

a
c
c
e
ss

e
s

uses

realises

a
ss

ig
n
e
d
T

o

composedOf

us
es

uses

a
ss

ig
n
e
d
T

o

triggers/

flowsTo

Actor
Dependency

Participant
Dependency

Dependum
Internal

Element[SR]

External

Element[SD]
Intentional

Element

Task

Resource

Goal

Softgoal

Core Elements of Enterprise Architecture Core Elements of Intentional Modeling

dependee

depender

boundary

GOALS and SOFTGOALS

mapsTo

mapsTo

mapsTo

Figure 2: Mapping between generic EA metamodel and i* intentional metamodel.

their work. The SR model would describe reasoning
that actors employ in determining the merit in orga-
nizing their tasks one way or the other.

As shown in Figure 2, we map the ASEs such
as business actors, application components, hardware
and system software, as well as interfaces to actors in
i*. The BEs such as business processes, and business,
application, and infrastructure services are mapped to
tasks in i*. The PSEs are mapped to resources in i*,
which are essentially informational or physical enti-
ties used or created by actors. Via this mapping, it is
possible to say that ASEs use or create PSEs while
performing BEs as means to an end that is goal(s)
and/or soft goal(s).

As the general structure of models within the
different layers is similar, with differing granularity
and nature that is dependent on the given layer, the
mappings provided between generic metamodels of
ArchiMate and i* make it possible to extract an ini-
tial intentional model from the ArchiMate models of
business, application, and technology layers of an en-
terprise. Note that cardinalities are absent in the EA
metamodel due to its generic nature and thus we do
not show cardinalities in the i* metamodel as well as
the mapping.

In the next section, we introduce the case study
that is used to elaborate EA problem solving with in-
tentional modeling in later sections.

Case Study
In this section, we re-imagine our MDE-based soft-
ware development unit as an enterprise and present
two distinct stages in its evolution as current and fu-
ture states in retrospect.

The first stage in our MDE-based software devel-
opment unit is characterized by the use of a unified
metamodel for specifying application, database, and
GUI layers of an application, model-aware Q++ lan-
guage for the developers to write business logic, and

Figure 3: As-Is Enterprise Architecture Model of a Model-
driven Software Development Unit.

separation of concerns in model-driven development
for design strategies, architectural specifics, and tech-
nology platforms using aspects (Kulkarni and Reddy,
2003). The second stage is characterized by the use
of multi-user multi-site repositories for models and
code with versioning and configuration management
support, component abstraction and workspaces for
geographically distributed development, and change-
driven development for quick turnaround of model-
code operations (Kulkarni et al., 2010).

The organizational change which prompted tran-
sition from the first stage to second stage was the de-
mand for onsite development of very large business
applications. This necessitated many teams perform-
ing traditional roles of software development such as
solution architecting, modeling, and developing. Fur-
thermore, the development was carried out at geo-
graphically distributed locations with operations on
same set of models and code for a given application.

We begin in the next section, by first showing a
simplified EA model of the first stage of MDE-based
software development unit. To restrict the scope
of this case study, we capture the network of three
roles in i* model namely, a solution architect (SA),

Intentional�Modeling�for�Problem�Solving�in�Enterprise�Architecture

269

an MDE specialist (MDESp), and a developer (D)
in a given team. The impact of the organizational
change which is large geographically distributed de-
velopment is captured by asking questions of the cur-
rent practices.

3 PROBLEM SOLVING WITH
INTENTIONAL MODELS

The current state of the enterprise is captured in the
EA model of Figure 3. Once functional specifications
of given application are available, the business pro-
cess of implementation architecture generation begins
to which SA is assigned. SA conveys the choices of
design strategies hDi, architectural specifics hAi, and
technology platforms hTi to MDESp. hDi could be
audit, persistence, caching, attribute value handling
etc., hAi could be patterns of distributed architec-
ture, middleware choices, message queuing mecha-
nism etc., and hTi could be combinations of various
technologies and frameworks that are specific to plat-
forms as well as customer preferred technologies.

MDESp’s job is to accommodate these choices
in the code generators using unified metamodel.
MDESp sends templates in model-aware language
Q++ to D who needs to write business logic and
send the templates back to MDESp for full applica-
tion generation. Both MDESp and D use reflexive
metamodel framework (Adex) and model processing
software (Mastercraft) for carrying out their respec-
tive tasks.

Using the mapping explained in Section 2.1 and
illustrated in Figure 2, we obtain an i* model of the
current state of enterprise explained above. This is
shown in Figure 4. Note here, that roles and appli-
cation components (ASEs) from the EA model are
mapped to roles and actors in i* respectively. Since
Adex and Mastercraft from EA model collaborate to
provide modeling service, we capture them as a sin-
gle actor in i*. The business processes and application
interactions (BEs) are captured as tasks and put into
roles who were assigned to them in the EA model.

As more and larger application requirements came
to us, we had to change the nature of teams work-
ing initially on small applications to number of sub-
teams performing several specialized tasks. These
sub-teams needed to share a single main version of
models and code in order to ensure that different mod-
els are consistent with each other and business logic
is consistent with the models. This prompted the need
for a central repository. The first problem that we
attempt to solve therefore is how to enable secure
and synchronized access to models and code for large

teams?

Problem 1 - Access by Large Teams

MDESp, D, as well as SA teams need to make use
of models and code; MDESp needs access to models
and metamodels, D needs to access code, and SA can
search models and metamodels to make informed de-
cision about choices of hDi, hAi, and hTi for current
application. Evidently we need to introduce a sys-
tem whose main task is to provide access to models
and code for all these roles. Further requirement of
this access are that concurrent multi-user operations
should be enabled. In Figure 5, this is represented as
a goal with two alternatives namely, using an indus-
trial strength database for storing models and code or
developing a proprietary storage system ourselves.

Of the two alternatives to achieve concurrent
multi-user operations, industrial database immedi-
ately makes it possible to apply storage of models and
code, whereas creating our own proprietary database
tailored for storage of models and code could have
taken substantial time. These contribute highly posi-
tively (make) and slightly negatively (hurt) to the soft
goal of quick storage enablement. Both the alterna-
tives would contribute slightly positively to the soft
goal of secure and synchronized access differing only
in how quickly the storage can be applied to our ex-
isting models and code.

Choosing either alternative leads to adding an ac-
tor in the form of a system, which we have referred to
as X. In reality, this was the (multi-user) model repos-
itory system (Kulkarni et al., 2010). It can also be
seen that the responsibility of performing tasks that
assure secure and synchronized access to models and
code is assigned to the actor X.

We observed that without explicitly stated depen-
dencies such partitioning led to integration problems
and dependencies not only between models or code
but also between models and code. Additionally, we
were increasingly required to develop some modules
of application onsite, i.e., an application may be de-
veloped in geographically distributed manner. Here
too, proper partitioning was an important issue. The
second problem we attempt to solve is how to best
partition model-driven development so as to manage
dependencies between models and code correctly as
well as to enable geographically distributed develop-
ment with this new partitioning scheme?

Problem 2 - Distributed Development

The complete analysis of this problem is shown in
Figure 6. Reader is referred to (Kulkarni et al., 2010)
for a detailed overview of the development of such a

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

270

Figure 4: i* Model of current enterprise derived from Figure 3.

partitioning scheme. Here we make remarks pertinent
to the problem solving aspect of intentional modeling.

As shown in Figure 5 and now in Figure 6, the
core problem without qualitative judgment is repre-
sented as a key task of the involved role/actor. This
task provides a more generic description of the activ-
ity to be performed for addressing a specific problem.
The specific problem or problems are represented as
decomposition elements of the main task.

In the solution to the current problem, MDESp
is responsible to manage model-code development to
achieve partitioning of development effort and to pro-
vide support for geographically distributed develop-
ment. The qualitative aspects of the desired solution
are represented as soft goals, for instance in Figure
6, that dependency management be efficient and geo-
graphically distributed development be fine.

The problem of enabling geographically dis-
tributed development has hierarchy of soft goals, es-
sentially capturing goals of goals. For instance,
for the alternative of replicating model repositories
for distributed development, efficient synchroniza-
tion soft goal helps efficient implementation of per-
formance intensive model operations which in turn
helps fine overall support for distributed development.
While on the right of Figure 6 is a (soft) goal hierar-
chy, immediately to the left of it, is the task hierar-
chy represented in the form of successive alternatives
that would contribute to the (soft) goals. The result
of component and workspace development (shown
on the extreme left of Figure 6) is that another role
(not shown here) called development manager (DM)
gets the information about component and workspace
from MDESp. DM uses this information to assign D
to specific components and workspaces.

As solutions of multi-user multi-site repository

and component-workspace abstraction were applied
to problem 1 and 2, we found that teams merrily used
model-code access as details of secure and synchro-
nized access were no longer the issues. Another prob-
lem surfaced at the time. As the number of classes
ranged to a few hundreds and source lines of code
to a few million (Kulkarni et al., 2010), performance
of various model processing operations plummeted,
particularly originating in model changes. The third
problem at this point that we would attempt to solve
is how to enable quick turnaround of model changes
done by geographically distributed teams?

Problem 3 - Quick Turnaround with Models

Figure 7 shows that the responsibility of the solution
to this problem is given to the actor that we added
in the solution of first problem, i.e., model repository
system. The main task of this actor remains the same
and now this actor also tries to achieve the goal of
providing support for change management for large
models. Alternative tasks contribute to soft goal of
quick model processing operations done after a model
change which in turn helps the soft goal of quick
turnaround of model changes. For the details of delta
modeling, reader is referred to (Kulkarni et al., 2010).

In the next section, we describe preliminary anal-
ysis on altered i* model and then transform these
changes back to the original EA model.

4 FROM INTENTIONAL
MODELS TO EA MODEL

Whereas the original model shown in Figure 4 has 5
dependencies, the new combined model has 11 depen-

Intentional�Modeling�for�Problem�Solving�in�Enterprise�Architecture

271

Figure 5: Enabling secure and synchronized access to
models-code for large teams.

Figure 6: Partitioning for correct dependencies and dis-
tributed development.

dencies. The combined intentional model contains 22
leaves out of which 11 represent what-if alternatives
specified. We used OpenOME (Horkoff et al., 2011)
to carry out intentional modeling and to evaluate var-
ious alternatives.

Having chosen the better alternatives and further
better sub-alternatives, with reasoning behind these
choices explicit, and responsibilities of tasks to be
performed clearly assigned, we can now use meta-
model mapping in Figure 2 to get to EA model which
captures the state that employs the solutions to the
main problem of being able to support large devel-
opment teams.

The EA model shown in Figure 8 builds on the
model illustrated in Figure 3. Solution to first prob-

Figure 7: Change management for large models.

lem adds an actor, multi-user repository system. This
is represented as an application component in Figure
8 via actor-ASE mapping. This application compo-
nent is assigned to the application function that car-
ries out model-code storage and model manipulation
and realizes the application service which is used by
SA, D, and MDESp via repository interface.

Solution to second problem is implemented by
MDESp in terms of partitioning of development in
components and workspace, the information about
which flows to DM (additional role added in the so-
lution of second problem) who uses it in assigning
D to specific components (not shown here). MDESp
also carries out replication of model repositories at re-
quired multiple sites. Note that both partitioning tasks
and replication tasks are represented as business pro-
cess via task-BE mapping.

Solution to third problem involves implementing
required delta model as synchronization protocol in-
frastructure function in the technology layer. This
function realizes the infrastructure service of actual
model storage and manipulation used by application
service via onsite repository interface. The model
synchronization protocol accesses actual infrastruc-
ture objects of models and code, which realize appli-
cation objects of model repository data. These in turn
realize replicated model repository instances which
are accessed in business processes of all the actors.

The newly constructed EA model is actionable in
the sense that it can be used for clarifying the focus

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

272

Figure 8: To-be EA Model of a Model-driven software development unit (For legends other than technology layer, please
refer to Figure 3).

with regards the reaction to organizational change, for
instance, which ASEs are responsible to implement
the solutions to problem(s) caused by the change,
in what ways the solution impacts how ASEs inter-
act and how BEs to which they are assigned get af-
fected. Both target architectures of business and ap-
plication layers are captured along with technology
(hardware infrastructure) necessary to support these
architectures.

5 RELATED WORK

Other researchers have proposed using intentional (Yu
et al., 2006) and goal modeling (Quartel et al., 2009;
Engelsman et al., 2011) concepts in conjunction with
EA frameworks. Although the general approach in
(Yu et al., 2006) is similar to ours, it is presumed
that BMM is used on the top of existing EA (created
with any EA framework) and i* is used for analysis
of goals specified in BMM. Unfortunately, no map-
ping of any kind is given either from EA framework
to BMM or BMM to i* in (Yu et al., 2006). This
means that no help is provided for the modelers to
make sense of EA entities in the context of intentional
modeling. On the other hand, it was found that the
sheer number of concepts in the language proposed in
the goal modeling approach over ArchiMate (Quartel

et al., 2009) made simultaneous construction of EA
and goal models quite confusing (Engelsman et al.,
2011) and lost the advantage of goal modeling.

We have deliberately considered generic meta-
models instead of more concrete metamodels of
ArchiMate1 and i*2. Since the generic EA metamodel
(of ArchiMate) is based on natural language concepts,
it may be possible to use this mapping even when pri-
mary EA framework or modeling language is other
than ArchiMate. This is out of the scope of this paper
and first steps toward this have been taken by others
as in (Berrisford and Lankhorst, 2009).

Motivation extensions in ArchiMate (Haren and
Publishing, 2012) and BMM by OMG (OMG, 2010)
both provide blueprint treatment of whys of an enter-
prise with a taxonomy of concepts related to moti-
vation or reasons behind decisions. The taxonomical
nature of these extensions is often not useful enough
to use the extension as a problem solving technique
but might be useful when explaining reasoning behind
decisions to management.

Apart from forward and backward evaluation of

1Business, application, and technology layer metamod-
els are available in Sections 3, 4, and 5 of ArchiMate speci-
fication (Haren and Publishing, 2012) respectively.

2A number of i* metamodels are available (Ayala et al.,
2005); we have adapted the i* core language metamodel
from (López et al., 2011).

Intentional�Modeling�for�Problem�Solving�in�Enterprise�Architecture

273

alternatives in i*, a number of other analyses are pro-
posed such as analysis of opportunity and vulnerabil-
ity, criticality and commitment (Yu and Mylopoulos,
1994), and so on, in the context of business process
reengineering. In our ongoing work on analyzable en-
terprise models, we plan to implement such analyses
via metamodel mapping proposed in this paper.

6 CONCLUSIONS

In the face of rapid changes affecting several facets of
an enterprise, a holistic treatment is needed along with
a mechanism to represent, analyze, and use reasons
behind what enterprise is doing now and how it will
face the changes. In our approach, EA provides holis-
tic treatment of enterprise instead of point views and
analysis of whys using intentional modeling reflects in
all aspects of enterprise. Our initial explorations sug-
gest that the mapping enables a clear path from as-is
to to-be states of an EA model while preserving the
reasoning behind every alternative chosen. Providing
semantic foundation of the mapping between EA and
intentional metamodel as well as automating repre-
sentation and analysis of EA and intentional models
is part of our ongoing work.

REFERENCES

Ayala, C. P., Cares, C., Carvallo, J. P., Grau, G., Haya,
M., Salazar, G., Franch, X., Mayol, E., and Quer, C.
(2005). A comparative analysis of i*-based agent-
oriented modeling languages. In Chu, W. C., Juzgado,
N. J., and Wong, W. E., editors, SEKE, pages 43–50.

Berrisford, G. and Lankhorst, M. (2009). Using archimate
with an architecture method. Via Nova Architectura.

Buchanan, R. and Soley, R. (2002). Aligning enterprise
architecture and it investments with corporate goals.
OMG Whitepaper, Object Management Group, Need-
ham.

de Castro, J. B., Franch, X., Mylopoulos, J., and Yu, E.
S. K., editors (2011). Proceedings of the 5th Interna-
tional i* Workshop 2011, Trento, Italy, August 28-29,
2011, volume 766 of CEUR Workshop Proceedings.
CEUR-WS.org.

Engelsman, W., Quartel, D. A. C., Jonkers, H., and van Sin-
deren, M. (2011). Extending enterprise architecture
modelling with business goals and requirements. En-
terprise IS, 5(1):9–36.

Haren, V. and Publishing, V. H. (2012). ArchiMate 2. 0
Specification. Van Haren Publishing Series. Bernan
Assoc.

Horkoff, J. and Yu, E. S. K. (2009). Evaluating goal
achievement in enterprise modeling - an interactive
procedure and experiences. In Persson, A. and

Stirna, J., editors, PoEM, volume 39 of Lecture Notes
in Business Information Processing, pages 145–160.
Springer.

Horkoff, J., Yu, Y., and Yu, E. S. K. (2011). OpenOME: An
open-source goal and agent-oriented model drawing
and analysis tool. In (de Castro et al., 2011), pages
154–156.

Kulkarni, V. and Reddy, S. (2003). Separation of con-
cerns in model-driven development. IEEE Software,
20(5):64–69.

Kulkarni, V., Reddy, S., and Rajbhoj, A. (2010). Scaling
up model driven engineering - experience and lessons
learnt. In Petriu, D. C., Rouquette, N., and Haugen,
Ø., editors, MoDELS (2), volume 6395 of Lecture
Notes in Computer Science, pages 331–345. Springer.

López, L., Franch, X., and Marco, J. (2011). Making ex-
plicit some implicit i* language decisions. In Jeusfeld,
M. A., Delcambre, L. M. L., and Ling, T. W., editors,
ER, volume 6998 of Lecture Notes in Computer Sci-
ence, pages 62–77. Springer.

OMG (2010). Business Motivation Model - Version 1.1.
Quartel, D. A. C., Engelsman, W., Jonkers, H., and van Sin-

deren, M. (2009). A goal-oriented requirements mod-
elling language for enterprise architecture. In EDOC,
pages 3–13. IEEE Computer Society.

Sunkle, S., Kulkarni, V., and Roychoudhury, S. (2013). An-
alyzable enterprise models using ontology. In Proc.
CAiSE Forum. Accepted.

Wagter, R., Proper, E., and Witte, D. (2012). A practice-
based framework for enterprise coherence. In Proper,
E., Gaaloul, K., Harmsen, F., and Wrycza, S., editors,
PRET, volume 120 of Lecture Notes in Business In-
formation Processing, pages 77–95. Springer.

Yu, E. S. K. and Mylopoulos, J. (1994). Understanding
“why” in software process modelling, analysis, and
design. In Fadini, B., editor, Proceedings of the 16th
International Conference on Software Engineering,
pages 159–168, Sorrento, Italy. IEEE Computer So-
ciety Press.

Yu, E. S. K., Strohmaier, M., and Deng, X. (2006). Explor-
ing intentional modeling and analysis for enterprise
architecture. In Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC)
Workshops, page 32.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

274

