A Survey of Tools for Mapping and Synchronization of Knowledge from
Legacy Systems

Helio H. L. C. Monte-Alto, Lucas O. Teixeira and Elisa H. M. Huzita

Informatics Department, State University of Maringa, Av. Colombo 5790, Maring4, Parana, Brazil

Keywords:

Abstract:

OWL Mapping, Knowledge Management, Semantic Web Programming.

Knowledge modeling and manipulation are great challenges in the current knowledge-based systems develop-

ment scenario. Recent development in the area of Semantic Web have arisen with solutions to build intelligent
information systems. However, adapting legacy systems to Semantic Web technologies and standards is not
trivial and demands too much effort from developers. This paper presents a survey to find tools to ease cre-
ation, maintenance and persistence of knowledge by means of mapping between existing application or domain
models and OWL ontology concepts. Such tools are intended to be used in a context-aware Global Software
Development (GSD) environment using Semantic Web standards to represent context information.

1 INTRODUCTION

The increasing amount of available information and
the need for effective communication between het-
erogeneous information systems have led many appli-
cations to adopt formal semantics. Moreover, many
software engineers have been trying to improve the
interaction of the application with the user, as well as
ease knowledge-based systems development. This is
possible by taking advantage of the inference capabil-
ities using semantic representation of the application
data.

One of the main issues concerning the adoption
of formal semantics in legacy applications is the diffi-
culty to adapt the data to this new approach. There are
many companies which use legacy systems that are
important for them. Requiring such companies to ac-
quire new information systems comprising the needs
for knowledge management is not desirable. It would
incur in too much additional cost of implementing a
new system, implanting it, and adapting to it.

One point also to observe is that nowadays the
most used approach for data storage is still relational -
or object-relational - databases. However, such tech-
nologies do not support very well many capabilities
that are required by the current software development
scenario. Such requirements include: interoperabil-
ity, reasonability and availability (Berners-Lee et al.,
2001). Several technologies have been proposed to
address most of these requirements. They are sup-
ported by W3C (World Wide Web Consortium) and

H. L. C. Monte-Alto H., O. Teixeira L. and H. M. Huzita E..

adopt an approach often known as the Semantic Web
(Berners-Lee et al., 2001).

The main Semantic Web standards for semantic
representation are the following: RDF (Resource De-
scription Framework), RDFS (or RDF Schema) and
OWL (Web Ontology Language). RDF is a foun-
dation for processing metadata, providing interoper-
ability between applications that exchange machine-
understandable information on the Web (Swick and
Lassila, 1999). RDFS is an ontology language that
provides a simple vocabulary for knowledge represen-
tation using RDF (Guha and Brickley, 2004). OWL is
an extension of RDFS, which includes a more com-
plex vocabulary for knowledge representation with
formal semantics (W3C OWL Working Group, 2009).
The OWL vocabulary is based on Description Log-
ics (DL), which allows knowledge representation by
means of descriptions of the domain terminology
(Terminology Box, or TBox) and the information as-
serted based on the terminology (Assertion Box, or
ABOoX).

Although Semantic Web technologies offer sev-
eral features - mainly interoperability and reasonabil-
ity - there is still the issue of adapting legacy applica-
tions to them. There are many frameworks, such as
Jena (Carroll et al., 2004), Sesame (Broekstra et al.,
2002) and OWL API (Bechhofer et al., 2003), with
focus on manipulating RDF and OWL data. How-
ever, there are few mature tools that offer capabili-
ties to create and manipulate such knowledge repre-
sentation based on existing application and domain

157

A Survey of Tools for Mapping and Synchronization of Knowledge from Legacy Systems.

DOI: 10.5220/0004436001570164

In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 157-164

ISBN: 978-989-8565-60-0

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

models, such as POJOs, relational databases, ER dia-
grams, UML diagrams, etc.

Our main goal is to find a solution to map an ex-
isting application or domain model to knowledge rep-
resentation in OWL notation, i.e. a knowledge base
(KB) specified by an OWL ontology. Furthermore,
we focus on tools that support automatic persistence
of entities in a KB, i.e. ABox synchronization and
TBox creation and synchronization in a KB. This pa-
per aims to explore some of these tools and find out
if there are any of them that meet the most impor-
tant requirements of our application scenario which is
a context-aware Global / Distributed Software Devel-
opment (GSD/DSD) environment.

This paper is structured as follows. Section 2
presents our application scenario and its issues con-
cerning to knowledge management. Section 3 in-
troduces some of the tools and approaches we have
found. Section 4 presents some qualitative compar-
isons among the most suitable approaches for our ap-
plication. Section 5 presents a discussion about the
suitability of the analysed tools in the application sce-
nario, as well as our choice and some ideas to improve
it to better support OWL mapping. Finally, we present
the conclusions and future works.

2 APPLICATION SCENARIO:
DISEN

The main goal of our research group is to develop
a software engineering environment (SEE) called
DiSEN (Distributed Software Engineering Environ-
ment). It focuses on supporting GSD/DSD, offering
features to support communication, persistence and
collaboration among geographically distributed teams
(Huzita et al., 2007).

Context-awareness and knowledge management
are appropriate approaches to support such environ-
ment. The first one intends to improve communica-
tion and collaboration between individuals. It is nec-
essary that individuals who participate in a project
are aware of context information while interacting
(Chaves et al., 2008). Context is any information that
can be used to characterize the situation of entities
that are considered relevant to the interaction between
a user and an application, including the user and the
application themselves (Dey et al., 2001).

One of the main concerns about context-
awareness is the context representation itself. In
(Chaves et al., 2011) it is proposed an OWL ontology
called OntoDiSEN to specify the context information.
Such ontology also specifies a KB for DiSEN since it
holds semantic information about the domain. A key

158

requirement for realizing context-aware systems is to
give computer systems the ability to understand their
situational conditions. To achieve this, it requires that
contextual information have been adequately repre-
sented for reasoning and machine processing. Ontolo-
gies allow to make inferences about the context, since
it allows explicit semantic representation (Chen et al.,
2004). Therefore, the main characteristic of semantic
information on which we are interested in DiSEN is
the reasonability.

It has also been proposed in (Monte-Alto et al.,
2012) a multi-agent mechanism to implement con-
text awareness, processing and dissemination called
ContextP-GSD (Context Processing on Global Soft-
ware Development). One of the main issues of the
examples implemented with this mechanism is the
difficulty to extract the various context information
mainly based on CRUD (Create, Read, Update and
Delete) operations. For example, when using the en-
vironment to allocate participants to projects, it is nec-
essary to take the following steps to capture the con-
text information: (i) detect the event generated by
the user; (ii) traverse the just created entities (cur-
rently implemented as JavaBeans) mapping the in-
formation to ontology assertions, according to On-
toDISEN’s TBox; (iii) send the assertions to another
agent to store the context information in DiSEN’s KB.

In this case, the problem is the elevated program-
ming and maintainability effort in (ii). Traversing the
objects while mapping their contents into ontology as-
sertions requires several lines of code and too much
burden on the programmer. Furthermore it is neces-
sary to make it for every operation in the environment.

In the current implementation the entities are
mapped to a relational model using JPA (Java Per-
sistence API)! through Java Annotations. Based on
that, we realized that we could possibly use a simi-
lar approach to persist the entities in the ontology. It
would allow the environment to automatically update
the KB, ensuring its consistency with the application
data. Moreover, it would ensure the ontology com-
pleteness related to the application, because it would
grow together with the application model, becoming
more detailed as the mapping becomes more detailed.

Using this new approach, step (ii) would be au-
tomatized in cases where context information is re-
lated to operations that make changes over application
entities. There are context that do not involve such en-
tities, which requires specialized agents to map them
to OWL notation. For example, capturing and pro-
cessing context information about project artifacts -
which are managed by external tools like version con-

Lhttp://java.sun.com/developer/technical Articles/J2EE/
ipa/

A Survey of Tools for Mapping and Synchronization of Knowledge from Legacy Systems

trol systems - or capturing ubiquitous context infor-
mation, like the presence of a specific user in its work-
place. In these cases, it is necessary specific handling
to represent the context as ontologies.

In summary, we are interested in a tool that would
allow us to use Java Annotations in order to: (i) auto-
matically persist semantic data (ABox synchroniza-
tion); (ii) automatically create part of the TBox spec-
ification based on Java Annotations (TBox genera-
tion); and (iii) continuously synchronize the appli-
cation domain model and the ontology TBox (TBox
synchronization).

3 RELATED WORKS

There are many related works focused on Seman-
tic Web application development and ontology-based
systems. Many of them are APIs that provide ways to
handle and persist knowledge, but lack of features to
map it to application code.

Many RDF APIs are available. Some provide ac-
cess to RDF stores, such as the Jena API (Carroll
et al., 2004), the Sesame API (Broekstra et al., 2002)
and RDF2Go2. Most of these APIs are generic and
triple-based, allowing handling RDF triples, although
some of them (e.g. Jena) provide different layers to
ease handling OWL ontologies. One exception is the
OWL API (Bechhofer et al., 2003), which is not based
on RDF graphs.

These APIs provide high-level methods for the
most common data access patterns. It can be observed
three such high-level methods: to read object values,
to write object values and to find resources. These ac-
cess patterns correspond exactly to the main manipu-
lation patterns in relational and object-oriented data.
Most of the current works toward mapping existing
models of applications to ontologies apply some de-
sign patterns, such as Active Record and Data Map-
per (Fowler et al., 2002). Fundamentally, these data
access patterns are based on filtering the dataset into
a set of relevant objects and then manipulating these
objects.

Anyway, the existent solutions may be split into
two categories: (i) RDB (relational database) map-
ping and (ii) application code mapping. Some exam-
ples of efforts towards the first category are given be-
low:

ER20OWL (Fahad, 2008) is a framework that
transforms extended entity-relationship diagram
(ERD) into OWL ontology by using a set of pre-
defined rules.

Zhttp://rdf2go.ontoware.org

D2R (Bizer and Cyganiak, 2006) is a system
which exports relational databases to RDF. This
is achieved by assigning URIs to the entries of the
database and automatically generating a schema
for them.

R2RML (Das et al., 2011) is an ongoing project
of W3C RDB2RDF Working Group to define
a language for expressing customized mappings
from relational databases to RDF datasets.

Although these approaches are interesting, there
are some issues that make them rather inappropriate
for our application scenario. As we intend to main-
tain some synchronization between the current sys-
tem model and the ontology, there is a problem be-
cause such approach depends on converting data and
schema of the RDB continuously to RDF representa-
tion. It may generate some overhead because it will
be necessary to persist the data primarily in the RDB
and then later map this data to RDF. Moreover, the
current approaches, except for ER20WL, are only ca-
pable to map from RDB to RDF, whereas we intend
to use OWL.

ER20OWL is an interesting approach, however it
is necessary to maintain a mapping from the ERD
model of the domain to the RDB model, implying in
an additional layer of data synchronization and redun-
dancy. There are some efforts concerning the mainte-
nance of such mapping, such as the framework pre-
sented in (An et al., 2008). It uses Round-Trip En-
gineering (RTE), a process for synchronizing models
by keeping them consistent, thus changes in the re-
lational model are synchronized with the conceptual
model (CM). Similarly, such approach may be used
to synchronize the CM (in this case, an ERD) with
the ontology model. Although this approach incurs
in additional overhead after the persistence operation,
the results show that the additional time is insignifi-
cant (An et al., 2008).

Some solutions that fit in the second category are
given below:

Jenabean (Cowan, 2008) is a framework that
binds a Java Object specifically to Jena framework
to persist JavaBeans using RDFS. It uses Java An-
notations to map the objects and does not require
placing any interface or extension in the object-
oriented model, representing a little intrusive de-
sign.

JASB (Java Architecture for Semantic Bind-
ing) (Calero, 2010) is a framework which uses
Java Annotations for semantic enforcing, which
consist of reclassifying Java objects at runtime by
means of predefined OWL ontologies or SWRL
(Semantic Web Rule Language) rules. It also in-

159

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

Table 1: Qualitative comparisons among Java20OWL, JAOB and JASB.

Feature / technology Java20OWL JAOB JASB
OWL features support \ery good Satisfactory Regular
ABox synchronization Full Partial No
Creates TBox from domain model? | Yes Yes Yes
TBox synchronization Partial Partial No
Supported APIs OWLAPI OWLAPI Jena
Semantic repositories support owLDB OowLDB No
SPARQL support No No D/A
License GPL LGPL GPL

cludes a TBox compiler to map the annotated
classes to an ontology schema.

JAOB (Java Architecture for OWL. Binding)
(Malottki, 2008) is a framework, similar to Jen-
abean, that creates OWL ontologies from Java
classes and objects. It uses OWL API instead of
Jena, and it does not require any superclass exten-
sion or previously defined ontology models. Al-
though it is not yet fully implemented, it provides
a good mapping to OWL.

Java20OWL (Ohlbach, 2012) is another Java soft-
ware library for synchronizing Java class hierar-
chies with OWL concept hierarchies. It is also
based on OWL API. With a few extra annotations
in Java class files, the Java2OWL library can auto-
matically map Java class hierarchies to OWL on-
tologies. The instances of these Java classes are
automatically mapped to OWL individuals and
vice versa.

There are other approaches that were disconsid-
ered because of the lack of support to OWL, like
RDFBeans®, TRIOO (Fernandez et al., 2010) and
Texai KB (Reed, 2007). There is also an architec-
ture, proposed in (Paulheim et al., 2011), which al-
lows arbitrary mapping between Java and RDF/OWL
in a non-intrusive way by means of using rules to map
each class. It was disconsidered because we were un-
able to find its prototype implementation for testing.

4 ANALYSIS AND EVALUATION
OF THE CURRENT
TECHNOLOGIES

In Section 3 we discussed some possible existent so-
lutions. OntoDiSEN is modeled as an OWL ontology,
thus some of the tools are not appropriate since they
only support mapping to RDF triples.

3http://rdfbeans.sourceforge.net/

160

Therefore we chose three frameworks, which are
those that promise to support OWL: Java20OWL,
JAOB and JASB. Table 1 presents some qualitative
comparisons among these technologies, focusing on
their appropriateness to DISEN’s scenario.

For our comparison, we chose the following fea-
tures: (i) OWL features support; (ii) the ABox syn-
chronization issue as exposed in Section 2; (iii) the
functionality of creating TBox based on the existing
domain model; (iv) the TBox synchronization; (v) the
supported APIs; and (vi) the possibility of semantic
repositories support. Those features were chosen be-
cause they are basically requirements of our scenario.
It was also included the license for copying and modi-
fying. Fortunately, they are all free software and open
source.

4.1 OWL Features Support

We analysed the OWL features support by taking into
account the most important OWL constructions that
are implemented in the outlined technologies. A good
OWL support must include most of the following
items (W3C OWL Working Group, 2009):

Property Axioms: property domain and range,
functional and inverse functional properties, ir-
reflexive properties, symmetric and asymmetric
properties, transitive properties and subproperties;

Class Axioms: subclasses, equivalent classes and
disjoint classes;

Property Expressions: inverse properties;

Class Expressions: Boolean combinations (inter-
section, union, complement) and existential and
universal restrictions;

Supporting the mapping of all these features is a
great challenge since there are many semantic differ-
ences between the object-oriented approach and the
Description Logics implemented in OWL. Most of the
class axioms and expressions are possibly the most
difficult to map from Java classes, as it is shown in
Table 2.

A Survey of Tools for Mapping and Synchronization of Knowledge from Legacy Systems

Table 2: Differences between object-oriented approach and the description logics.

Characteristic / approach Java

Description logics

Class hierarchy Mono-inheritance

Multi-inheritance

Class instances

Each object is instance of exactly one

An individual can be instance of several

plement

class classes
Class equivalence No Yes
Property restrictions /anonymous | Nol Yes
classes
Class union, intersection and com- | No Yes

Runtime evolution
during runtime

class definitions typically cannot evolve

data is integrated from heterogeneous
sources with varying structures where
both schema and data may evolve at
runtime

I There are anonymous classes in Java, but not in the same sense as in DL. In DL, anonymous classes are property restrictions that describe a
class of all individuals that satisfy the restrictions. In Java, anonymous classes are inner classes that you can declare inside a method without

naming them.

Java20OWL is the tool that provides the best efforts
to address such problems. To deal with the classes
hierarchy and instances it is proposed in (Ohlbach,
2012) the individual wrappers, which encapsulate an
OWL individual together with several Java objects.
The main problem of this approach is that it is too
much intrusive for legacy systems, in the sense that
Java programs should not work with Java objects in
the usual way, but with individual wrappers.

Another approach, not related to Java2OWL, pro-
posed in (Kalyanpur et al., 2004) is to use Java inter-
faces instead of simple Java classes to be mapped to
OWL, since an interface can inherit from many oth-
ers. This way, each OWL class corresponds to a Java
interface and a JavaBean that implements the access
methods (get/set methods) declared in such interface.
Using this approach it is possible to address the is-
sue of hierarchy, equivalence, union, intersection and
complement. Although this is not as intrusive as the
individual wrappers, there is the need for creating in-
terfaces for every class, which may be done by using
an interface extractor like the one provided in Net-
Beans IDE 4. Unfortunately, we have not found any
tools that support Java to OWL mapping using this
approach.

Although not complete, JAOB also provides a
good mapping from Java to OWL. It does not try to
deal with the class axioms and expressions as thor-
ough as (Ohlbach, 2012) and (Kalyanpur et al., 2004),
but provides concise ways to map Java classes to their
representation in OWL.

JASB is much more incomplete than the others.
Moreover, its goal is not to map Java to OWL, but
reclassify Java objects at runtime - which the authors

4http://netbeans.org

call semantic enforcing - based on predefined ontolo-
gies or rules.

4.2 - ABox Synchronization

The ABox synchronization means that changes in
Java objects’ attributes are forwarded to the corre-
sponding OWL individuals. In other words, the appli-
cation data is continuously and automatically mapped
and persisted in the KB represented by the OWL on-
tology.

The Java20WL library provides two ways to do it
(Ohlbach, 2012):

Life Synchronization: in this approach all
changes to the attributes of Java objects are imme-
diately forwarded to the ontology. This is possible
if the annotated Java classes got a ”synchronizer
code” injected. Such code is automatically in-
jected by activating the J20SynchronizerAgent
or by setting a specific flag to true.

Block Synchronization: in this approach the ap-
plication data is only synchronized when a spe-
cific method is called to commit the changes to
the ontology. It does not require any code to be
injected in the Java classes.

JAOB does not have a specialized synchronization
code. It has only a class called Marshal ler which is
responsible for creating an OWL serialization of the
application data. Such serialization includes TBox
and ABox. The main problem of this implementa-
tion concerns the removal operations, because mar-
shalling consists of appending new data to the previ-
ous serialization. Therefore it still has to be improved
to support better synchronization between the appli-
cation data and the KB.

161

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

As JASB does not aim to provide semantic persis-
tence for Java applications, it does not have any mech-
anism to do it.

4.3 TBox Generation and
Synchronization

This feature consists of generating the terminology of
the ontology based on the Java Annotations. It would
allow legacy systems developers to model the ontol-
ogy and map it to application model using only Java
annotations, which is much easier than doing both
things by hand separately. TBox synchronization is
also a desirable feature as it supports software evolu-
tion.

In DISEN’s scenario we already have a fairly
advanced model of the domain ontology. How-
ever, TBox synchronization would be very convenient
since OntoDISEN is still under development. It is
possible to use the TBox synchronization with the
Java Annotations to continuously construct the ontol-
ogy together with the application, thus making it eas-
ier to find out semantic details that could be added to
the ontology model. Such details could improve the
reasoning capabilities for the KB, enabling smarter
context processing.

Java2OWL assumes the existence of a background
ontology with predefined classes and properties. The
Java20WL compiler then extend it with OWL classes
generated from Java classes, creating an extended on-
tology (Ohlbach, 2012). However, such background
ontology is optional, which means that it is possible to
create a new TBox from scratch only with the OWL
generated from Java classes. The synchronization is
partially supported by using the previous extended on-
tology as background ontology when it is necessary to
make changes in the Java code.

JAOB and its marshalling approach also generate
TBox based on the Java Annotations. The synchro-
nization can be partially guaranteed because the mar-
shalling operation creates both TBox and ABox. Al-
though JASB does not aim to synchronize application
data with ontologies, it provides a compiler to gener-
ate TBox based on the Java classes.

In every instance, it is necessary to recompile the
TBox if the class structure is changed (e.g. a class
is removed, or a hierarchy relation is changed). Such
changes may end up incurring inconsistencies or loss
of knowledge, depending on the affected structure.
Inconsistency can be resolved by using consistency
checking provided by inference engines, as well as
techniques like defeasible logic (Bao and Honavar,
2004).

162

4.4 Supported APIs and Semantic
Repositories

For legacy systems without any implementation of se-
mantic features there are not many issues concern-
ing the technologies and APIs which are going to be
used. As there are not many available frameworks and
toolkits for manipulating OWL and most of them are
still under development, the options are very strict.
All of the technologies in question, except JASB, use
OWL API, which is quite mature, although there are
some downsides related to other technologies, like
Jena. However, further comparison of such tools is
out of the scope of this paper.

Our main concern about the supported APIs is
mainly due to the fact that DiSEN already has some
implemented features that use ontologies. These are
currently implemented with Jena framework. Among
the analysed technologies, only JASB supports Jena,
but as it is seen in the previous sections, it is not ap-
propriate for our problem.

Another consideration is SPARQL
(Prud’hommeaux and Seaborne, 2008) and triple
store support. ~ Different from Jena, OWL API
bypasses RDF graphs, i.e. it is not possible to deal
with lower level RDF triples. Therefore, currently
it is difficult to support SPARQL queries and triple
stores - which are high performance solutions for
storing and accessing semantic data - in OWL API.

An alternative for SPARQL and triple stores is
OWLDB (Henss et al., 2009). It consists of an ex-
tension to OWL API which provides native map-
ping of OWL constructs to a database schema with-
out a complex transformation in triples. According
to performance tests reported in (Henss et al., 2009)
the system performs comparably to some triple-based
approaches and even outperforms those on several
queries.

5 DISCUSSION

In the previous section some important characteristics
of the selected solutions were enumerated, in order
to find out what would be the most suitable for our
application scenario. Given the good evaluation of
Java20WL, and considering it is a recent project with
plenty of documentation, it is reasonable to go deeper
into this library. JAOB is also a very interesting ini-
tiative, however it is a discontinued project lacking of
documentation and publications.

The most important issue about adopting
Java20WL in our scenario is the incompatibility
with the APl we are currently using for dealing

A Survey of Tools for Mapping and Synchronization of Knowledge from Legacy Systems

with ontologies. It is necessary to evaluate what
would be the best alternative: creating a new version
of Java20WL which uses Jena or refactoring the
current code of ContextP-GSD and related projects
to use OWL API. Considering the contribution to
the Semantic Web community, we conclude that
creating a new version of Java20OWL is the best
alternative. It would also allow us to use SPARQL
queries and reasoning features and the various triple
store solutions.

There are still some complex issues related to
OWL, like dealing with multi-inheritance in a less in-
trusive way, dealing with inconsistencies in the ontol-
ogy, and considering open and closed world assump-
tions, that could be better explored as we advance in
working with the tool.

6 CONCLUSIONS AND FUTURE
WORKS

It was presented a-qualitative comparison-among
some solutions to map application data to OWL rep-
resentation by means of Java Annotations. This facil-
itates the incorporation of semantic features in legacy
systems in a little intrusive way. It also reduces the
programming effort since it eliminates the need to
write code responsible to map specific Java classes to
OWL concepts for every internal operation which in-
volves manipulating application entities. Another ad-
vantage is that such mapping approach allows any de-
veloper to cumulatively construct the ontology TBox
as the mapping becomes more detailed.

Among many researched approaches, there are
two outstanding technologies: Java2OWL and JAOB.
The first one showed to be the most appropriate for
DiSEN'’s application scenario, because of its wide
OWL features support and its focus on synchroniza-
tion between application data and OWL. Moreover,
Java20OWL is an ongoing project whereas JAOB is not
being supported.

Although many advantages were encountered in
these approaches, there are still some issues. First,
the mapping does not cover all of the OWL vocabu-
lary yet. Indeed such mapping is not trivial. There-
fore it still needs a lot of improvements. Second,
such approaches only support OWL API, which is not
suitable when it is intended to use SPARQL queries
and/or triple stores. In DIiSEN’s case, it becomes
even more serious since there are already many imple-
mented semantic features using Jena instead of OWL
API.

For our case, it is necessary to make a choice:
migrating to OWL API or implementing an exten-

sion of Java2OWL or JAOB to support Jena. The
first one is interesting, however it would be neces-
sary to discard the increasing progress of technolo-
gies based on RDF triples, such as SPARQL and triple
stores. Benchmarks like Berlin SPARQL Bench-
mark (BSBM) (Bizer and Schultz, 2009) are contin-
uously exposing the performance improvement made
on triple stores and SPARQL engines. Though there is
the OWLDB alternative for persistence and querying,
it may not be appropriate to ignore all of the current
work being done on triple stores.

Based on that we conclude that the best choice is
to implement an extension of Java2OWL which sup-
ports Jena. It would allow us to take advantage of
triple-based technologies without losing the possibil-
ity of using OWL APl .and OWLDB. Furthermore, we
intend to gradually improve such tool in order to ad-
just it for our needs.

REFERENCES

An, Y., Hu, X., and Song, I.-Y. (2008). Round-trip engineer-
ing for maintaining conceptual-relational mappings.
In CAISE, volume 5074 of Lecture Notes in Computer
Science, pages 296-311. Springer.

Bao, J. and Honavar, V. (2004). Collaborative ontology
building with wiki@nt - a multi-agent based ontology
building environment. In Third International Work-
shop on Evaluation of Ontology Building Tools, Hi-
roshima.

Bechhofer, S., Volz, R., and Lord, P. W. (2003). Cooking
the semantic web with the OWL API. In The Seman-
tic Web — ISWC 2003: Second International Seman-
tic Web Conference, Sanibel Island, FL, USA, volume
2870 of Lecture Notes in Computer Science, pages
659-675. Springer, Berlin.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34-43.

Bizer, C. and Cyganiak, R. (2006). Dr2 server - publish-
ing relational databases on the semantic web. Poster
at the 5th International Semantic Web Conference
(ISWC2006).

Bizer, C. and Schultz, A. (2009). The Berlin SPARQL
benchmark. International Journal on Semantic Web
and Information Systems (IJSWIS), 5(2):1-24.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and query-
ing RDF and RDF Schema. In Proceedings of the first
Int’l Semantic Web Conference (ISWC 2002), volume
2342 of Lecture Notes in Computer Science, pages
54-68, Sardinia, Italy. Springer Verlag.

Calero, J. M. A. (2010). Jasb project.
http://jash.sourceforge.net/. Accessed May 2012.
Carroll, J. J., Dickinson, 1., Dollin, C., Reynolds, D.,
Seaborne, A., and Wilkinson, K. (2004). Jena: im-
plementing the semantic web recommendations. In
Proceedings of the 13th international World Wide

163

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

Web conference on Alternate track papers & posters,
WWW Alt. ’04, pages 74-83, New York, NY, USA.
ACM.

Chaves, A., Wiese, I., da Silva, C., and Huzita, E. (2008).
A model based on context-awareness for information
dissemination in a distributed software development
environment (in portuguese). In XXXIV Conferencia
Latinoamericana de Informaica (CLEI 2008), Santa
Fe, Argentina, pages 1365-374.

Chaves, A. P., Steinmacher, I., Leal, G. C. L., Huzita, E.
H. M., and Biasdo, A. B. (2011). Ontodisenvl: an
ontology to support global software development (in
portuguese). CLEI Electron. J., 14(2).

Chen, H., Finin, T. W,, and Joshi, A. (2004). Semantic web
in the context broker architecture. In PerCom, pages
277-286. IEEE Computer Society.

Cowan, T. (2008). Jenabean: Easily bind javabeans
to rdf. http://www.ibm.com/developerworks/java/
library/j-jenabean.html. Accessed May 2012.

Das, S., Sundara, S., and Cyganiak, R. (2011). R2rml: Rdb
to rdf mapping language (w3c working draft).

Dey, A., Abowd, G., and Salber, D. (2001). A concep-
tual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, 16(2):97-166.

Fahad, M. (2008). Er2owl: Generating owl ontology from
er diagram. In Intelligent Information Processing, vol-
ume 288 of IFIP, pages 28-37. Springer.

Fernandez, S., Berrueta, D., Rodriguez, M. G., and Gayo, J.
E. L. (2010). Trioo - Keeping the Semantics of Data
Safe and Sound into Object-oriented Software. In In-
ternational Conference on Software and Data Tech-
nologies, pages 311-320.

Fowler, M., Rice, D., and Foemmel, M. (2002). Patterns of
Enterprise Application Architecture. Addison-Wesley
Professional.

Guha, R. V. and Brickley, D. (2004). RDF vocabulary de-
scription language 1.0: RDF schema. W3C recom-
mendation, W3C.

Henss, J., Kleb, J., Grimm, S., and Bock, J. (2009). A
database backend for owl. In Proceedings of the
5th International Workshop on OWL: Experiences
and Directions (OWLED 2009), Chantilly, VA, United
States, October 23-24, 2009, volume 529.

Huzita, E., Tait, T., Colanzi, T. E., and Quinaia, M. (2007).
Disen - a distributed software development environ-
ment (in portuguese). In 1st Workshop de Desenvolvi-
mento Distribuido de Software.

Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J. A.
(2004). Automatic mapping of owl ontologies into
java. In SEKE, pages 98-103.

Malottki, J. (2008). Yoshtec kb: Jaob (java architecture for
owl binding). http://wiki.yoshtec.com/jaob. Accessed
May 2012.

Monte-Alto, H. H. L. C., Biasdo, A. B., Teixeira, L. O., and
Huzita, E. H. M. (2012). Multi-agent applications in a
context-aware global software development environ-
ment. In Distributed Computing and Artificial Intelli-
gence, volume 151 of Advances in Intelligent and Soft
Computing, pages 265-272. Springer Berlin / Heidel-
berg.

164

Ohlbach, H. J. (2012). Java2owl - a system for synchronis-
ing java and owl version 1.1. Technical report, Insti-
tute for Informatics, University of Munich.

Paulheim, H., Plendl, R., Probst, F., and Oberle, D. (2011).
Mapping pragmatic class models to reference ontolo-
gies. In ICDE Workshops, pages 200-205. IEEE.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
query language for RDF. W3C recommendation,
W3C.

Reed, S. L. (2007). Semantic annotation for persistence.
In Proceedings of AAAI2007 Workshop on Semantic
e-Science.

Swick, R. R. and Lassila, O. (1999). Resource description
framework (RDF) model and syntax specification. su-
persed work, W3C.

W3C OWL Working Group (2009). OWL 2 web ontology
language document overview. Technical report, W3C.

