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Abstract: MapReduce systems have been widely used by several applications, from search engines to financial and com-
mercial systems. There is considerable enthusiasm around MapReduce systems due to their simplicity and
scalability. However, they lack a testing approach and framework ensuring their dependability. In this work,
we propose a complete dependability testing solution for MapReduce systems. This solution is a model-based
approach to generate representative fault cases, and a testing framework to automate their execution. More-
over, we introduce a new way to model distributed components using Petri Nets, and we show the promising
results of the proposed testing framework, HadoopTest, on identifying faulty systems in real deployment sce-
narios.

1 INTRODUCTION

The amount of data stored by various applications,
such as social networks, commercial applications, and
research, have grown to over petabytes. There are
many frameworks to facilitate the analysis of large
data sets; MapReduce is one of them, with broad
adoption. It abstracts parallel and distributed issues
such as data partition, replication, distributed process-
ing, and fault tolerance (Dean and Ghemawat, 2004).

Despite a considerable number of MapReduce ap-
plications may present partial results, such as large-
scale web indexing and pattern-based searching, sev-
eral applications must present full results, such as ap-
plications in domains of business, financial, and re-
search. To make use of MapReduce in such domains,
it is essential to test its dependability (Abouzeid et al.,
2009; Teradata Coorporation, 2012; Hadoop, 2012).

Dependability test aims at validating the behavior
of fault tolerant systems, i.e., it aims at finding errors
in the implementation or specification of fault tolerant
mechanisms (Avizienis et al., 2004; Ammann and Of-
futt, 2008). For this purpose, the system is executed
on a controlled testing environment with the injec-
tion of artificial faults. Two main issues concerning
this approach are: generating representative elements
from the potentially infinite and partially unknown set
of fault cases, and automating their executions.

Testing the dependability of MapReduce systems

requires to execute fault cases capable of stimulating
all of its tolerated faults, which, by turn requires ex-
plicit control over its processing steps.

In this work, we present a solution for dependabil-
ity testing of MapReduce systems through the gener-
ation and execution of representative fault cases. We
use a Petri Net model of the fault tolerance mecha-
nism to generate these fault cases, and a framework
to automate their execution in real deployment scenar-
ios. Additionally, we introduce a new approach to in-
terpret the model components, modeling the MapRe-
duce components as dynamic items, and modeling the
independence of these components with their actions
and states.

This paper is organized as follows. The next
session introduces the basic concepts, presenting a
description of MapReduce and defining fault cases.
Section 3 presents our approach to model MapRe-
duce fault tolerance mechanism. Section 4 shows
how we generate the representative fault cases. Sec-
tion 5 presents our framework for dependability test-
ing. Section 6 describes the initial results through im-
plementation and experimentation. Section 7 surveys
related work. Section 8 concludes the paper.
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2 BASIC CONCEPTS

2.1 MapReduce

MapReduce is a simplified programming model and
the associated implementation for processing and an-
alyzing large scale data. It offers a programming envi-
ronment based on two high-level functions, map and
reduce, and a runtime environment to execute them on
a cluster. The MapReduce architecture includes sev-
eral worker components, and one master that sched-
ules map and reduce tasks to run at the workers.

Figure 1 shows a MapReduce execution in-
stance. The master receives a Job and co-
ordinates five worker components, identified by
fworker0; : : : ;worker4g. It assigns the map function
to fworker0;worker1;worker2;worker3g, and each
one reads the input data from the files splitted in a Dis-
tributed File System (DFS), applies the user-defined
map function on each split, and creates several out-
puts locally. The master assigns the reduce function
to fworker4;worker1;worker0g, and each one reads
the map outputs locally or remotely, applies user-
defined reduce function, and writes the results to the
DFS.

Figure 1: A MapReduce execution overview.

The MapReduce fault tolerance mechanism iden-
tifies faulty workers by timeout, and reschedules their
tasks to a healthy worker. The fault handling differs
between tasks and their processing steps, e.g., if a
worker fails when it is executing a map task, the mas-
ter only reschedules its task for another worker; but
if a component fails after executing a map task, the
master reschedules the task for another worker and
informs all workers executing reduce tasks that they
must read the map result from the new worker.

2.2 Fault Case

A fault case is a distributed test case extension involv-
ing the components required for a complete execu-
tion and validation of a system under test while faults

are injected (Echtle and Leu, 1994; Ambrosio et al.,
2005; de Almeida et al., 2010b).

Definition 2.1 (Fault Case). A fault case is a 4-tuple
F = (CF ;AF ;RF ;O) where:

� CF = fc0;c1; : : : ;cng, and it is a finite set of sys-
tem components;

� AF = fa0;a1; : : : ;amg, and it is a finite set of ac-
tions that can involve fault injections;

� RF = fra0 ; : : : ;ramg, and it is a finite set of action
results;

� O is an oracle.

The oracle is a mechanism responsible for verify-
ing the system behavior during a fault case execution,
and associating its result, i.e., a verdict pass, fail or
inconclusive. Each action (ai) can get its result (rai ):
success, failure, or timeout (without response during
a time limit). If all action results (RF ) get success, the
F verdict is pass. If any action result is failure, the
F verdict is fail. But if at least one action execution
gets timeout, the F verdict is inconclusive, making
the test inaccurate for assigning some of the earlier
statements and, moreover, it is necessary to rerun the
fault case.

Definition 2.2 (Action). A fault case action is a 7-
tuple ai = (h;n;C0; I;W;D; t) where:

� h 2 Njh 6 jAF j, and it is an hierarchical order in
which action ai must execute - actions with same
h execute in parallel;

� n 2 Njn 6 jC0j, and it is the success number of
action executions to result success for ai;

� C0�CF , and it is a set of components that execute
ai;

� I is a set of instructions or commands executed by
the components;

� W is an optional instruction or command that is a
trigger required to execute ai;

� D� AF j8a j 2D : j < i;ra j = SUCCESS, and it is
a set of actions that must be successfully executed
before ai, otherwise the action result rai is failure;

� t is a time to execute ai.

3 MODELING MapReduce FAULT
TOLERANCE MECHANISM

Modeling the MapReduce fault tolerance mechanism
demands a formal model of the concurrent and dis-
tributed behavior of its components. The model must
represent the components as dynamic items, enabling
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them to be easily removed or inserted, without sub-
stantial model changes. Moreover, the model should
represent the components without specifying their ac-
tions, allowing an action to be performed by any en-
abled component. This feature is essential to model
the rescheduling process of faulty map and reduce
tasks.

Finite State Machine (FSM) (Bernardi et al.,
2012) and Petri Net (PN) (Callou et al., 2012) are
the main approaches to model distributed systems in-
volving their dependability properties. FSM abstracts
the details of the system behavior and enables to a di-
rect relation to the MapReduce processing steps. Al-
though there are extensions to represent other features
(e.g., timing specs), FSM restricts the modeling of
several components that have parallel and distinct be-
haviors. Each component needs a specific set of states
and an alphabet to model its behavior.

The PN modeling enables us to take a new ap-
proach to interpret their components, modeling the
MapReduce components as dynamic items, to be eas-
ily inserted or removed. Moreover, it allows to model
the independence of these components with their ac-
tions and states, i.e., an action can be executed by any
enabled component.

Figure 2 shows a Petri Net that models
part of the MapReduce fault tolerance mecha-
nism that handles faults while running Map and
Reduce functions. Labeled transitions represent
the fault case actions, tokens represent MapRe-
duce components, and places represent their states
or processing steps. When the transition “mas-
ter.sendJOB” fires, it consumes one token from
“online master” and one from “online workers”,
and produces a new one in “worker.runningMap”.
Now, two transitions can fire, “nothing” and
“worker.runningMap-FAIL”. If “nothing” fires, it
consumes one token from “worker.runningMap”,
and produces one in “worker.runningReduce”. If
“worker.runningMap-FAIL” transition fires, it con-
sumes one token from “worker.runningMap” and one
from “online workers”, and produces one again in
“worker.runningMap”. This behavior occurs simi-
larly if “worker.runningReduce-FAIL” fires when it
has a token at “worker.runningReduce”, but it is nec-
essary to have a token at “online workers” for firing
it.

PN allows a comprehensively modeling of the
MapReduce fault tolerance mechanism. Moreover, it
allows extensions to model other behaviors implicitly
specified in MapReduce fault tolerance mechanism,
such as the temporal faults identification and the pro-
cess interruption when it is impossible complete a job.

Figure 2: A Petri Net modeling example.

4 GENERATING
REPRESENTATIVE FAULT
CASES

The representativeness of a fault case is how impor-
tant it is to identify defects on a system under test (Ar-
lat et al., 2003; Natella et al., 2012). We consider the
representative fault cases for the dependability test-
ing of MapReduce systems as generated through an
abstraction of its fault tolerance mechanism. This ap-
proach is successfully used to test other systems (Ech-
tle and Leu, 1994; Ambrosio et al., 2005; Bernardi
et al., 2012). It guides the generation to a finite set of
fault cases that should be tolerated, and that they must
be tested to ensure the system dependability.

We generate representative fault cases from a
reachability graph of the Petri Net that models the
MapReduce fault tolerance mechanism. A reachabil-
ity graph consists of all possible sequences of tran-
sition firings from a Petri Net. Each possible path
starting from the root graph vertex composes one fault
case. This approach is applicable only in a Pure Petri
Net, i.e., that has no loops.

Figure 3 shows a reachability graph generated
from the Petri Net example at Figure 2. There are
three fault case possible: (1) without faults, execut-
ing “master.sendJOB” and “master.assertRESULT”;
(2) with one fault, adding “worker.runningMap-
FAIL”; and (3) with the other possible fault,
“worker.runningReduce-FAIL”.

Table 1 shows a set of fault case actions of the fault
case (2). The goal is to validate the MapReduce ex-
ecution while one component fails when executing a
map task. This fault case involves three components,
CF = fc0;c1;c2g, obtained from the Petri Net tokens,
and seven actions AF = fa0; : : : ;a6g, obtained from
the reachability graph (Figure 3) and the start and stop
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Figure 3: A reachability graph example.

actions. The component c0 executes the action a0 to
start the master. If action a0 succeeds, the compo-
nents fc1;c2g execute the action a1 to start the work-
ers. Otherwise, the action a1 finishes and receives
the failure result. This occurs with all actions that
has a dependency relation with a failed action, recur-
sively. Without failed actions, the process continues
and the next execution is a2 by the component c0, and
it submits a job. During the job execution, only the
first component (na3 = 1) of fc1;c2g fails when it ex-
ecutes the map task (Wa3 = runningMap()). At action
a4, the c0 validates the job result, comparing the ex-
pected with the obtained. The next actions stop the
MapReduce execution.

5 FRAMEWORK FOR TESTING
MAPREDUCE SYSTEMS

HadoopTest is a test framework to automatically exe-
cute fault cases. It extends the PeerUnit testing frame-
work (de Almeida et al., 2010a). HadoopTest adds the
controlling and monitoring of all MapReduce compo-
nents, the injecting of faults according to its process-
ing steps, and the validation of its behavior.

The HadoopTest architecture consists of one co-
ordinator and several testers. The coordinator con-
trols the execution of distributed testers, coordinates
the actions of fault cases, and generates the verdict
from tester results. Each tester receives coordination
messages, executes fault case actions in the MapRe-
duce components, and returns their results.

Figure 4 shows the application of HadoopTest to
the MapReduce instance presented in Figure 1, and
with a fault injection while a worker executes a Re-
duce function. The coordinator individually controls
the execution of six testers, identified by t0::t5, fol-
lowing the fault case. Tester t0 controls the mas-
ter component and each other tester, t1::t5, controls
a worker instance. This architecture enables the de-
ployment of fault cases applying lower service func-
tions on testers. For instance, tester t2 injects a fault
on worker1, removing it from the system while it exe-
cutes the reduce function. This enables to put MapRe-

Figure 4: Testing a MapReduce instance with fault injec-
tion.

duce components in any state (i.e., running, idle, or
stopped) and monitors their activity at any time.

The fault case execution consists of coordinating
and controlling testers to execute actions in a dis-
tributed, parallel and synchronized way. Algorithm 1
shows the main steps to coordinate testers for execut-
ing a fault case F . For each hierarchical level h, exist-
ing in A, the coordinator sends messages to the testers
for executing actions in parallel, receives the local re-
sults, and processes them to set action results, R. Af-
ter executing all actions, the oracle O analyzes R and
assigns the fault case verdict.

Algorithm 1: Coordination Algorithm.

Input: F , a fault case; M , a map function
between AF and the hierarchical orders
of its actions

Data: Rt , a set of local tester results
Output: A verdict
foreach h 2M (AF ) do

SendMessages(M �1(h);RF )
Rt  ReceiveResults(M �1(h))
RF  ProcessResults(Rt ;M �1(h))

return O(RF ) ;

Algorithm 2 shows the steps to execute a fault case
action by a tester. It receives the coordination mes-
sage to execute ai. If the trigger Wai is defined, it waits
his execution. After that, or if Wai is not defined, the
tester verifies if the number of success action execu-
tions nai is greater than zero, then it executes the set of
instructions Iai and returns the execution result. Oth-
erwise, it returns failure, informing to the coordinator
that it cannot execute ai.

6 EXPERIMENTAL VALIDATION

This section presents an evaluation of our proposed
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Table 1: A set of fault case actions.

h n C0 I W D t
a0 1 1 fc0g startMaster() /0 100
a1 2 2 fc1;c2g startWorker() fa0g 1000
a2 3 1 fc0g sendJOB() fa1g 1000000
a3 3 1 fc1;c2g FAIL() runningMap() fa1g 1000
a4 4 1 fc0g assertRESULT () fa2g 10000
a5 5 1 fc1;c2g stopWorker() fa1g 1000
a6 6 1 fc0g stopMaster() fa0g 1000

Algorithm 2: Action Execution Algorithm.

Data: ai, a fault case action
Output: An action result
ai ReceiveAction()
if Wai 6= NULL then

Wait Wai

if nai > 0 then
return Run Iai

return FAILURE

solution through the automatic and manual executions
of fault cases for testing Hadoop (Hadoop, 2012), an
open-source MapReduce implementation. First, we
present the results obtained by the manual execution
of the representative fault cases. Second, we evaluate
the overhead produced by HadoopTest to coordinate
the execution of fault cases. Finally, we validate the
HadoopTest effectiveness for identifying faulty sys-
tems by testing the PiEstimator, an application bun-
dled into Hadoop.

6.1 Manual Execution of Representative
Fault Cases

We manually executed some fault cases generated
from the modeling of the MapReduce fault tolerance
mechanism to confirm their representativeness in the
defect identification. One fault case consisted of four
components that execute the WordCount, while two
components failed by crash when they executed the
map task. Hadoop interrupted the execution when the
second component failed, although the data remained
in the other active component. The correct behavior
would be to schedule the tasks to the active compo-
nent, but Hadoop did not do it due to a corruption of
a control file.

In addition, we executed fault cases involving
temporal parameters. We identified that Hadoop does
not consider timeout parameters to detect fault com-
ponents, and does not interrupt the execution when
the data were no longer available, i.e., all components
that stored data failed, but Hadoop continued without
iteration by two hours.

6.2 The HadoopTest Overhead

We evaluated the HadoopTest overhead by executing
PiEstimator in two ways. In the first one, Hadoop is
executed alone, to evaluate the raw execution time.
In the second one, Hadoop is executed along with
HadoopTest, to evaluate the overhead produced dur-
ing testing. We use 10, 50, 100 and 200 machine-
nodes on the Grid’5000 plataform to realize this ex-
periment. Figure 5 shows the average execution time
of PiEstimator running on Hadoop and HadoopTest.
We vary the number of map instances in each execu-
tion.
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Figure 5: Execution time variance of the PiEstimator.

HadoopTest presents a minimal overhead by con-
trolling Hadoop while executing fault cases. This
characteristic enables testing MapReduce systems
considering large-scale failure scenarios.

6.3 Identifying Faulty Systems

We used Mutation Testing (Offutt, 1994) to evaluate
whether HadoopTest is able to identify faulty systems.
We create a set of faulty versions (i.e., mutants) of
the PiEstimator. Mutations are changes of arithmetic
and logic operators into the original source code to
generate incorrect results. The goal is to identify the
largest possible number of incorrect results.

We generated 13 mutants of the PiEstimator class
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and Table 2 shows the results. The expected p value
returned by the original application was 3:1416 and
only the mutants M1, M6, M7, M9 and M12 returned
this value. These mutants have the pass verdict on
the test case execution while the other mutants M4,
M5, M10 and M11 received a fail verdict, since the p

computation parameters were modified resulting in a
different value than the expected one. In the case of
the mutants M0, M2, M3 and M8, the modifications
were in the execution parameters which interfered on
their correct execution. Hence, they returned NULL
as results.

Table 2: Results and verdicts generated by 13 PiEstimator
mutants.

Mutants Result Pass Fail
M0 NULL X
M1 3.1416 X
M2 NULL X
M3 NULL X
M4 3.0776 X
M5 3.1312 X
M6 3.1416 X
M7 3.1416 X
M8 NULL X
M9 3.1416 X
M10 3.1408 X
M11 3.1408 X
M12 3.1416 X

We evaluated the HadoopTest effectiveness by the
number of detected mutants. When mutation analy-
sis is applied to a system code and generates several
mutants, some of them are equivalent to the origi-
nal source code, due to different reasons, such as the
modified part is never executed, and the binary oper-
ators used have the same result. We considered the
equivalent mutants those that obtained the same out-
put as the original system. The initial implementa-
tion of HadoopTest demonstrated promising results
by identifying all the non-equivalent mutants of PiEs-
timator.

7 RELATED WORK

The fault case generation is commonly done ran-
domly or by the Test Engineer (Benso et al., 2007;
Chandra et al., 2007; Henry, 2009; Bernardi et al.,
2012; Jacques-Silva et al., 2006; Lefever et al., 2004).
These approaches are inadequate for the dependabil-
ity testing of MapReduce systems because they dis-
regard the internals of the fault tolerance mechanism,

i.e., they ignore the behavior of fault recovery pro-
tocols regarding the different processing steps, e.g.,
they inject faults in some machines (fails 3 of 10) for
some period (from 30 to 40 sec). They can evaluate
the system behavior, but they cannot test system de-
pendability. Others evaluate the dependability by gen-
erating, systematically, fault cases from source code.
Such approaches are costly, even after applying prun-
ing techniques, and they limit the fault case genera-
tion to few concurrent cases (Joshi et al., 2011; Fu
et al., 2004; Marinescu et al., 2010).

Some testing frameworks provide solutions to
control distributed components and to validate the
system behavior, but they do not inject faults nei-
ther consider the components processing steps (Pan
et al., 2010; Dragan et al., 2006; Zhou et al., 2006;
de Almeida et al., 2010a). Related fault injection
frameworks enable to inject multiple and various
faults, but they do not control the system dynami-
cally to inject faults according the processing steps
(Jacques-Silva et al., 2006; Pham et al., 2011; Stott
et al., 2000; Lefever et al., 2004; Hoarau et al., 2007).
Moreover, none of the cited frameworks presents re-
sults about MapReduce dependability.

MapReduce related testing frameworks are not ap-
plicable to the dependability testing. Herriot (Boud-
nik et al., 2010) provides a set of interfaces that val-
idates small system parts, e.g., a method or a func-
tion. Csallner et al. (Csallner et al., 2011) system-
atically search the bad-defined map and reduce func-
tions, possibly identified by component faults. Oth-
ers, evaluate MapReduce execution by log analysis to
detect MapReduce performance problems (Tan et al.,
2008; Pan et al., 2009; Tan et al., 2009; Huang et al.,
2010). Although, these approaches evaluate MapRe-
duce functionality and performance, they do not auto-
matically execute fault cases and validate the system
dependability.

8 CONCLUSIONS

We exposed and analyzed the issue of testing MapRe-
duce system dependability. We presented a solution
based on the generation and execution of represen-
tative fault cases. We generated fault cases from
a formal model of the MapReduce fault tolerance
mechanism. We evaluated two modeling approaches
and adopted the Petri Net because its adequacy. We
presented a new way to model distributed compo-
nents using Petri Nets. We modeled the MapRe-
duce components as dynamic items and the indepen-
dence of them with their actions and states. Moreover,
we showed the HadoopTest framework, that executes

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

170



fault cases in real deployment scenarios without over-
head and identifying faulty systems.

We identified some bugs in Hadoop with the man-
ual execution of representative fault cases, but we in-
tend to automatically execute them with HadoopTest.
We plan to automatically generate representative fault
cases from a Petri Net model, and test other MapRe-
duce systems, such as HadoopDB and Hive.
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