
How Do Globally Distributed Agile Teams Self-organise?
Initial Insights from a Case Study

Sherlock A. Licorish and Stephen G. MacDonell
SERL, School of Computing & Mathematical Sciences, Auckland University of Technology,

Private Bag 92006, Auckland 1142, New Zealand

Keywords: Software Development, Psycholinguistics, Jazz, Self-organising Roles, Attitudes and Competencies.

Abstract: Agile software developers are required to self-organize, occupying various informal roles as needed in order
to successfully deliver software features. However, previous research has reported conflicting evidence
about the way teams actually undertake this activity. The ability to self-organize is particularly necessary for
software development in globally distributed environments, where distance has been shown to exacerbate
human-centric issues. Understanding the way successful teams self-organise should inform distributed team
composition strategies and software project governance. We have used psycholinguistics to study the way
IBM Rational Jazz practitioners enacted various roles, expressed attitudes and shared competencies to
successfully self-organize in their global projects. Among our findings, we uncovered that practitioners
enacted various roles depending on their teams’ cohort of features; and that team leaders were most critical
to IBM Jazz teams’ self-organisation. We discuss these findings and highlight their implications for
software project governance.

1 INTRODUCTION

The consensus of recent evidence continues to
indicate that a variety of human and social factors
are among the strongest determinants of software
development project performance (e.g., see
(Abrahamsson et al., 2006)). In particular, the
matching of software practitioners to certain roles
has been shown to aid with task performance (Acuna
et al., 2006), lending credence to an assumption that
particular software activities demand specific
competencies, and individuals who possess higher
levels of those competencies would perform best in
the corresponding roles. The implication of such a
finding is that role assignment should be conducted
in relation to individuals’ specific expertise.

Proponents of Agile software development have
challenged these views however, and methods such
as Extreme Programming (XP), Adaptive Software
Development (ASD), and SCRUM all emphasise the
need for self-organisation and less rigid team role
assignment (Pressman, 2009). Additionally, studies
examining self-organizing agile teams have found
evidence that suggests that project team members do
indeed adopt various roles, as needed, to facilitate
self-organization during projects. Hoda et al. (2010),

for instance, found that the roles of mentor,
translator, champion, coordinator, promoter and
terminator were assumed at various times by
different team members so that project management,
team harmony and effective idea generation were
sustained during development.

However, while the adoption of roles in such a
way is said to be evident and necessary in agile
development contexts (Hoda et al., 2010), previous
work has noted that it is rarely achieved (Moe et al.,
2008). In addition, investigations of the issues of
expertise, role assignment, role adoption and self-
organization in globally distributed development
contexts have not been reported. This is despite the
relevance of these phenomena in such settings, given
the often limited opportunities available for rapid
communication and feedback (Serce et al., 2009).
We have therefore used psycholinguistics to analyze
repository data to examine the specific attitudes and
competencies adopted by those occupying a range of
roles while they were working in multiple teams
during distributed agile software development.
Through this preliminary study we provide
explanations for the way agile teams actually self-
organize, along with recommendations for agile
team composition and project governance.

157Licorish S. and MacDonell S..
How Do Globally Distributed Agile Teams Self-organise? - Initial Insights from a Case Study.
DOI: 10.5220/0004437001570164
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 157-164
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

In Section 2 we survey related work and outline
our research questions, and our research settings are
outlined in Section 3. Section 4 provides our
measures, and our results and analysis are presented
in Section 5. Section 6 provides a discussion of our
main findings, highlights the study’s implications,
and outlines our future work. In Section 7 we
consider our study’s limitations.

2 RELATED WORK

Roles reflect the particular rights, responsibilities,
expectations and behaviours that persons are
expected to honour or fulfil (Belbin, 2002). The idea
of studying and relating participants’ behaviours to
roles has attracted extensive research in the
psychology, sociology and management disciplines
(Ashforth, 2001); (Biddle and Thomas, 1966);
(Hellriegel and Slocum, 2007). Research in these
domains seeks to inform the process of personnel
assignment to jobs or tasks according to their traits,
based on the expectation that team role principles
are relevant for informing effective team formation.

Outside of these domains, human resource
management has also integrated psychology and role
theories to support the task of selecting individuals
with appropriate skill-sets for particular positions.
In particular, most software-related positions
demand multiple competencies, including
intrapersonal, organisational, interpersonal and
management skills (Downey, 2009). Intrapersonal
skills include judgement, innovation and creativity,
and tenacity, while having knowledge of specific
environments (for example: recent programming
competence in Java) is characterised as
organisational. Inter-personal skills comprise team
work, cooperation and negotiating skills, and
management skills are related to planning,
organisation and leadership.

In relation to software groups or departments,
roles may also relate to the specific software process
or methodology being utilised by teams. For
instance, a software department adopting XP may
define roles such as programmer, tester, coach and
so on (Highsmith, 2004). Additionally, sometimes
roles may be performed arbitrarily by project
members in which case these environments require
that team members possess general competency in
many roles (Gorla and Lam, 2004). Thus, role
arrangement and competency requirements for
individual software-related roles are somewhat
subject to specific organisational requirements and
contexts (Trigo et al., 2010).

Psychology and role theories have also been
applied previously in the software engineering
discipline with success (Licorish et al., 2009). Such
considerations were embedded in the view that
human involvement, and the constraints that arise as
a result of human issues in software development,
substantially determine the outcomes of software
projects (Standish Group, 2009). To this end, it has
been asserted that studying issues related to how
software developers behave in teams while solving
problems may provide valuable insights into
software development critical success factors.

As noted in Section 1, software engineering
research has also considered teams from a self-
organisation perspective. In fact, the ability to self-
organize is purported to be one of the determinants
of agile teams’ success (Hoda et al., 2010).
However, Moe et al. (2008) noted that the actual
self-organising process is quite complex. Their
ethnographic study in Norway of software
developers utilizing agile practices uncovered that
team members displayed little internal autonomy
and were rarely willing to assume roles other than
those that matched their specialized competencies.
These findings are somewhat in contradiction to the
work of Hoda et al. (2010), which found that agile
developers in India and New Zealand operated more
fluidly across informal roles.

The divergence in findings between the studies
of Moe et al. (2008) and Hoda et al. (2010) suggests
a need for additional research, to further examine the
ways agile teams actually self-organise. In fact, the
teams studied by Moe et al. (2008) were composed
of novice developers, a factor that could have
influenced the effects observed by these authors.
This adds support for the view that further studies
are required to address this issue, to provide
understandings of how different attitudes and
competencies are actually enacted by those assigned
to specific roles during successful agile projects. As
noted above, the ability to work across roles is
particularly relevant for distributed agile software
development settings, where issues related to
distance, culture and personality demand that such
teams are effective at self-organizing (Serce et al.,
2009). We look to address this research opportunity
by answering the following research questions:

RQ1. How are roles enacted during distributed
agile software development?

RQ2. Are the specific attitudes and competencies
enacted related to practitioners’ actual role
assignment?

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

158

3 RESEARCH SETTINGS

To address the research questions just specified we
conducted a case study, and have examined artefacts
and messages extracted from a specific release
(1.0.1) of Jazz (based on the IBMR RationalR Team
ConcertTM (RTC) – refer to the Acknowledgements
section for details). Jazz, created by IBM, is a fully
functional environment for developing software and
managing the entire software development process
(Frost, 2007). The software includes features for
work planning and traceability, software builds,
code analysis, bug tracking and version control in
one system, and so data captured in Jazz is likely to
reflect what actually happens during the software
development process. Changes to source code in the
Jazz environment are only allowed as a consequence
of work items (WIs) being created beforehand, in the
form of a bug report, a new feature request or a
request to enhance an existing feature. The Jazz
repository comprised a large amount of process data
from development and management activities
carried out across the USA, Canada and Europe.
Jazz teams use the “Eclipse-way” approach for
guiding the software development process (Frost,
2007). This approach outlines iteration cycles that
are six weeks in duration, comprising planning,
development and stabilizing phases. Builds are
executed after project iterations. All information for

the software process is stored in a server repository
that is accessible through a web-based or Eclipse-
based RTC client interface.

While criteria for software project success are
often said to relate to projects being completed on
time, on budget and with the required features and
functionality (Standish Group, 2009), others assert
that measures related to software projects’ impacts
on the host organization, post-release customers’
reviews and actual software usage are also relevant
project success indicators (Espinosa et al., 2006).
Accordingly, given the impact IBM Rational
products (included in the Jazz repository, see
jazz.net for details) have had on IBM and many
other organizations (with over 30,000 companies
using these tools), and that these products have been
positively reviewed and tested by those companies,
we would infer that Jazz teams should indeed be
considered as successful. Thus, studying these teams
should provide us with insights into successful
teams’ enacted roles, attitudes and competencies.

We created a Java program to leverage the Jazz
Client API to extract information and development
and communication artefacts from ten teams (shown
in Table 1) from the Jazz repository. This included:
Work Items (WIs) and history logs, representing
project management and development tasks; Project
Workspaces, representing multiple team areas and
including information on team memberships and

Table 1: Summary statistics for the selected Jazz projects.

P
ro

je
ct

(T

ea
m

)
ID

T
as

k
 (

W
I)

C

ou
nt

S
of

tw
ar

e
T

as
k

s
(P

ro
je

ct
)

T
ot

al

C
on

tr
ib

u
to

rs

–
R

ol
es

T
ot

al

M
es

sa
ge

s

P
er

io
d

 (
d

ay
s)

–

It
er

at
io

ns

P1 54
User Experience – tasks related to UI
development

33 – 18 programmers, 11 team leads, 2 project
managers, 1 admin, 1 multiple roles

460 304 - 04

P2 112
User Experience – tasks related to UI
development

47 – 24 programmers, 14 team leads, 2 project
managers, 1 admin, 6 multiple roles

975 630 - 11

P3 30
Documentation – tasks related to Web portal
documentation

29 – 12 programmers, 10 team leads, 4 project
managers, 1 admin, 2 multiple roles

158 59 - 02

P4 214
Code (Functionality) – tasks related to
development of application middleware

39 – 20 programmers, 11 team leads, 2 project
managers, 2 admins, 4 multiple roles

883 539 - 06

P5 122
Code (Functionality) – tasks related to
development of application middleware

48 – 23 programmers, 14 team leads, 4 project
managers, 1 admin, 6 multiple roles

539 1014 - 17

P6 111
Code (Functionality) – tasks related to
development of application middleware

25 – 11 programmers, 9 team leads, 2 project
managers, 3 multiple roles

553 224 - 13

P7 91
Code (Functionality) – tasks related to
development of application middleware

16 – 6 programmers, 7 team leads, 1 project
manager, 1 admin, 1 multiple roles

489 360 - 11

P8 210
Project Management – tasks under the project
managers’ control

90 – 29 programmers, 24 team leads, 6 project
managers, 2 admins, 29 multiple roles

612 660 - 16

P9 50
Code (Functionality) – tasks related to
development of application middleware

19 – 10 programmers, 3 team leads, 4 project
managers, 2 multiple roles

254 390 - 10

P10 207
Code (Functionality) – tasks related to
development of application middleware

48 – 22 programmers, 12 team leads, 2 project
managers, 1 admin, 11 multiple roles

640 520 - 11

∑ 1201 -
394 contributors, comprising 175
programmers, 115 team leads, 29 project
managers, 10 admins, 65 multiple roles

5563 -

How�Do�Globally�Distributed�Agile�Teams�Self-organise?�-�Initial�Insights�from�a�Case�Study

159

roles; and Messages, representing practitioner
dialogues and communication around project WIs.

The selected project artefacts amounted to 1201
software development tasks, involving 394
contributors belonging to five different roles
(described below), and 5563 messages exchanged
around the 1201 tasks. As the data were analyzed, it
became clear that the ten cases selected were
representative of those in the repository, as we
reached data saturation (Glaser and Strauss, 1967)
after analyzing the third project case. Additionally,
we used social network analysis (SNA) to explore
the teams’ communications and noted that all ten
teams had similar profiles for network density
(between 0.02 and 0.14) and closeness (between 0
and 0.06). Formal statistical testing for significant
differences in In-Degree measures also confirmed
that the projects were relatively homogenous, X2 =
13.182, p = 0.155 (Kruskal-Wallis test result).

The actual role information extracted from the
repository is as follows: Team leads (or component
leads) are responsible for planning and executing the
architectural integration of components; Admins are
responsible for the configuration and integration of
artefacts; Project managers (PMC) are responsible
for project governance; those occupying the
Programmer (contributor) role contribute code to
features; and finally, those who occupied more than
one of these roles were labelled Multiple. We used

these practitioners’ roles as our unit of analysis, we
made comparisons of attitude and competencies
across roles in individual teams, and we also
conducted assessments across various task types.

4 MEASURING ENACTED
ROLES, ATTITUDES
AND COMPETENCIES

Previous research has identified that an individual’s
linguistic style is quite stable over time and that text
analysis programs are able to accurately link
language characteristics to attitudes (e.g., see
(Mairesse et al., 2007)). We employed the Linguistic
Inquiry and Word Count (LIWC) software tool in
our analysis of practitioners’ messages to discern the
roles they enacted during their projects and the way
specific attitudes and competencies were enacted
given practitioners’ actual roles. The LIWC is a
software tool created after four decades of research
using data collected across the USA, Canada and
New Zealand (Pennebaker and King, 1999). Similar
to an electronic parser, this tool accepts written text
as input which is then processed based on the LIWC
dictionary, after which summarized output is
provided. The several linguistic dimensions assessed

Table 2: Selected linguistic dimensions.

Linguistic
Category

Abbreviation
(Abbrev.)

Examples Reason for Inclusion

Pronouns

I I, me, mine, my Elevated use of first person plural pronouns (we) is evident during shared
situations, whereas, relatively high use of self references (I) has been linked to
individualistic attitudes (Pennebaker and Lay, 2002). Use of the second person
pronoun (you) signals the degree to which members rely on other team members
(Pennebaker et al., 2003).

we we, us, our, we’ve, lets

you you, your, you’ll, you’ve

Cognitive
language

cogmech think, consider,
determined, idea
should, prefer, definitely,
always, extremely, certain

Software teams were previously found to be most successful when many group
members were highly cognitive and were natural solution providers (Andre et
al., 2011). These traits are also linked to effective task analysis and
brainstorming capabilities.

Work and
achievement
related
language

work feedback, goal, program,
delegate, duty, meeting

Individuals most concerned with task completion and achievement are said to
reflect these traits during their communication. Such individuals are most
concerned with task success, contributing and initiating ideas and knowledge
towards task completion (Benne and Sheats, 1948).

achieve accomplish, attain, resolve,
finalize, solve

Leisure,
social and
positive
language

leisure movie, entertain, party Individuals that are personal and social in nature are said to communicate
positive emotion and social words and this trait is said to contribute towards an
optimistic group climate (Benne and Sheats, 1948). Leisure related language is
also an indicator of a team-friendly atmosphere.

social give, love, explain, friend

posemo beautiful, perfect, glad

Negative
language

negemo afraid, crap, hate, dislike,
terrified, suck, annoyed

Negative emotion affects team cohesiveness and group climate. This form of
language shows discontent and resentment (Goldberg, 1981). anger

Past, present
and future
tenses

past went, worked, accepted Reflective communication is said to be evaluative, linking previous
communications and adjusting previous viewpoints, and those focused on the
present and future also communicate accordingly (Zhu, 1996).

present begin, does, try, completes

future might, will, gonna, next

Question
mark

qmark ? Questions are said to start the knowledge construction process and help those
responding to confirm their own understanding (Batson et al., 2002).

Word count wc - People having more ideas and suggestions to convey generally communicate
with longer messages (Gonzales et al., 2010).

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

160

by the tool and reported in the summary (see Table
2) are said to capture the psychology of individuals
through the words they use (Pennebaker and King,
1999, Mairesse et al., 2007). For example, consider
the following sample comment:

“We are aiming to have all the patches ready by
the end of this release; this will provide us some
space for the next one. Also, we are extremely
confident that similar bug-issues will not appear in
the future.”

In the comment the author is expressing
optimism that the team will succeed, and in the
process finish ahead of time and with acceptable
quality standards. In this quotation, the words “we”
and “us” are indicators of team or collective focus,
“all”, “extremely” and “confident” are associated
with certainty, while the words “some” and “appear”
are indicators of tentative processes. Words such as
“bug-issues” and “patches” are not included in the
LIWC dictionary and so would not affect the context
of its use - whether it was to indicate a fault in
software code or a problem with one’s immunity to a
disease. Although these omissions may be thought to
represent a limitation of the approach, we know that
the context is software development; and what is of
interest, and is being captured by the tool, is
evidence of attitudes and competencies. Previous
work has also provided confirmation of the utility of
the LIWC dictionary in a software development
context (Rigby and Hassan, 2007). In the current
work we examine practitioners’ enacted roles,
attitudes and competencies via their messages (5563
messages contributed by 394 practitioners assigned
to five different roles), along multiple linguistic
categories. Table 2 describes the categories chosen
with brief theoretical justification for their selection.

5 RESULTS AND ANALYSIS

We grouped the 5563 individual messages based on
practitioners’ assigned project roles (Multiple, Team
lead, Admin, Project manager or Programmer). We
then examined the distributions of the five groups’
use of linguistic dimensions for normality, using the
Kolmogorov-Smirnov test. This revealed violations
of the normality assumption. We therefore
conducted Kruskal-Wallis tests to check for
differences in the 16 linguistic dimensions (shown in
Table 2) between those occupying the five roles.
These tests revealed that there were statistically
significant differences (p < 0.05) in language usage
for each of the 16 linguistic dimensions between
practitioners occupying the five roles (see the mean

ranks and Kruskal-Wallis test results in Table 3).
Given the results in Table 3, paired comparisons
were then conducted using Mann-Whitney U tests to
determine the specific differences between type
pairs (e.g., between Team leads and Programmers).

Considering the practitioners assigned to the five
roles, Table 3 shows that those who were assigned to
fulfil Multiple roles typically used the highest level
of individualistic language (e.g., I, me, my), and our
Mann-Whitney results showed that the differences in
use were statistically significant when this group of
practitioners was compared with those occupying
Admin (p = 0.001) and Project manager (p = 0.027)
roles. A similar pattern of results is seen in Table 3
for positive language use (e.g., beautiful, relax,
perfect); apart from the paired comparison with
those occupying the Programmer role, our Mann-
Whitney results confirmed that those that were
assigned Multiple roles used significantly more
positive language (p < 0.01) than others.

Table 3 further shows that Team leads made the
most use of collective language (e.g., we, our, us),
and our paired Mann-Whitney comparisons revealed
statistically significant differences in this form of
language use between this group of practitioners and
those occupying the other roles: Multiple (p =
0.002), Admin (p = 0.005), Project manager (p =
0.048), and Programmer (p = 0.000), respectively.
Similar patterns of results were obtained for reliance
type language (e.g., you, your, you’re), work and
achievement language (e.g., feedback, goal,
delegate), leisure language (e.g., club, movie, party),
social language (e.g., give, buddy, love), future tense
words, question mark use and message word count.

Table 3 shows that Project managers used the
most cognitive language (e.g., think, believe,
consider), negative emotion (e.g., afraid, hate,
dislike) and past tense words. Our paired Mann-
Whitney comparisons revealed statistically
significant differences for cognitive language use
when this group of practitioners was compared with
those occupying Multiple (p = 0.024) and
Programmer (p = 0.003) roles. Those occupying the
Admin role used most present tense words, with
statistically significant differences evident when
these members were compared with those occupying
Multiple (p = 0.009), Team lead (p = 0.011), and
Programmer (p = 0.000) roles, respectively.

We then examined the roles enacted by those
working in four of the teams selected in Table 1 (P1:
user experience, P3: documentation, P7: code, and
P8: project management) to investigate how those
working on different forms of software tasks self-
organize. We again conducted Kruskal-Wallis tests

How�Do�Globally�Distributed�Agile�Teams�Self-organise?�-�Initial�Insights�from�a�Case�Study

161

Table 3: Mean ranks and Kruskal-Wallis test results.

Linguistic Category Abbrev.
Mean Rank Kruskal-Wallis

Test (p-value) Multiple Team lead Admin Project manager Programmer

Pronouns

I 2991.03 2777.09 2361.71 2694.85 2810.56 0.008

we 2622.86 2935.21 2537.20 2794.53 2703.34 0.000

you 2674.87 2915.50 2613.93 2710.63 2723.35 0.000

Cognitive language cogmech 2620.47 2891.15 2697.36 2960.21 2706.05 0.000

Work and achievement
related language

work 2451.69 2932.13 2821.04 2716.94 2717.61 0.000

achieve 2416.27 2942.57 2893.45 2656.81 2718.64 0.000

Leisure, social and positive
language

leisure 2808.21 2906.31 2761.47 2791.67 2706.35 0.000

social 2423.11 3022.93 2567.07 2809.93 2651.25 0.000

posemo 3111.42 2652.12 2555.61 2429.64 2921.12 0.000

Negative language
negemo 2748.43 2790.96 2808.55 2856.85 2778.98 0.777

anger 2759.90 2781.34 2725.04 2750.46 2802.29 0.278

Past, present and future
tenses

past 2733.15 2809.96 2387.70 2845.99 2780.84 0.064

present 2770.25 2886.07 3306.91 3063.61 2668.32 0.000

future 2550.38 2898.23 2281.82 2733.33 2749.21 0.000

Question mark qmark 2812.70 2851.67 2663.76 2769.12 2749.90 0.015

Word count wc 2691.75 2982.79 2140.84 2626.31 2701.80 0.000

to check for differences in the 16 linguistic
dimensions (shown in Table 2) between those
occupying the five roles (Multiple, Team lead,
Admin, Project manager and Programmer) for each
of the four teams. These tests revealed that there
were statistically significant differences (p < 0.05) in
language usage among practitioners occupying the
five roles for six of the linguistic dimensions for P1,
three for P3, five for P7, and eight linguistic
dimensions for P8. Due to space limitations we
present these results in matrix form in Table 4,
showing the role that dominated each of the
linguistic dimensions for the four teams. Table 4
shows that a similar pattern of results is maintained
(as seen in Table 3) for individualistic and positive
language use, work word use and word count, and
anger language use by those occupying Multiple,
Team lead and Programmer roles, respectively.
However, collective and negative language use was
highest among four different roles for the four
teams. A similar pattern of results is observed for the
use of reliance, cognitive, achievement and leisure
language, past tense, present tense, future tense and
questions among the four teams, which varied
among three groups of practitioners. Table 4 further
shows that social language use was highest among
Team leads and Admins.

6 DISCUSSION, IMPLICATIONS
AND FUTURE WORK

RQ1. How are roles enacted during distributed agile
software development? Beyond their formally
assigned roles, Jazz practitioners enacted various

team-based roles to facilitate self-organisation
during distributed software development. For the
teams studied here, those that were assigned
multiple roles enacted inter-personal team roles
during project execution, while those that were
formally assigned to administrative roles promoted
task urgency. Project managers were expected to
enact coordination and planning roles; however, our
findings revealed that these members also performed
more cognitive and insightful roles. On the other
hand, team leaders enacted task-based and social
roles and were integrally involved in task planning.
Finally, programmers showed the most frustration
during their teams developments (see details below).

RQ2. Are the specific attitudes and competencies
enacted related to practitioners’ actual role
assignment? Jazz practitioners occupying various
roles demonstrated a diverse range of attitudes and
competencies during their projects. These
differences were somewhat aligned to the types of
features these practitioners were working on. Based
on our analysis, and taking into account recent
literature, it is our contention that the variances in
attitudes and competencies observed among those
occupying different roles are likely to have provided
a balancing effect (Hoda et al., 2010), and may have
therefore contributed to the Jazz teams’ effective
self-organization.

We noted that those in Jazz that were assigned to
multiple roles were most individualistic; and these
individuals were largely responsible for promoting
positive team climate. While evidence of
individualistic behaviour denotes that these member
were self-focused, and this trait is generally negative
for teamwork (Pennebaker and Lay, 2002), positive

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

162

Table 4: Most pronounced language usage among roles for
P1, P3, P7 and P8.

Linguistic
Category

Abbrev.
Project ID

P1 P3 P7 P8

Pronouns

I PM Mul Mul Mul

we Admin PM Pgmr TL

you TL Admin Admin Mul

Cognitive
language

cogmech PM TL PM Pgmr

Work and
achievement
related language

work TL TL PM TL

achieve Admin TL PM TL

Leisure, social
and positive
language

leisure Admin TL PM TL

social TL Admin Admin TL

posemo Mul Mul Admin Mul

Negative
language

negemo Pgmr Mul PM Admin

anger Pgmr Pgmr Pgmr Mul

Past, present
and future
tenses

past TL Pgmr PM TL

present Admin Mul PM Admin

future PM TL Pgmr TL

Question mark qmark Pgmr TL PM Pgmr

Word count wc TL TL PM TL

KEYS:- Mul = Multiple, TL = Team lead, PM = Project
manager, Pgmr = Programmer

language use also promotes optimism and a team-
friendly atmosphere (Benne and Sheats, 1948).
Those who occupied the Admin role were
particularly work and achievement focused; perhaps
too much so, as these individuals were fixated with
the specific issues under consideration. Involvement
in configuration and integration of artefacts likely
demands such an outlook, as a lack of focus can
result in issues arising during integration that may
lead to delays, or worse, project failures.

IBM Jazz project managers were highly
cognitive and insightful during their projects, while
programmers exhibited more cynical attitudes.
Aligned with their actual role, project managers are
required to support their teams with cognitive and
insightful competencies in order to promote team
confidence and effective project governance, and
cynical attitudes exhibited by programmers may be
linked to the significant mental challenges involved
in coding. Although unconstructive attitudes such as
these have a negative effect on team work
(Goldberg, 1981), the positive, social and collective
competencies exhibited by those occupying Admin,
Team lead and Multiple roles could mitigate the
negative effects of these undesirable attitudes.

IBM Jazz team leaders exhibited the greatest
number of distinct competencies. Jazz team leaders
maintained their teams’ work and achievement
focus, they contributed significantly to their teams’
social climate, they were evaluative and reflective,
and they were actively involved in planning for
future tasks and activities. These members also had

the most to say whenever they engaged during their
projects. Given team leaders’ actual responsibilities
(leading, planning and integration), these skills were
required of them for their projects to succeed. For
instance, work and achievement focus promote team
urgency, social climate is necessary for motivating
others, and reflection and future planning is
necessary to avoid repeating previous mistakes and
for identifying then reducing likely future issues.

Our findings have implications for software
development, and particularly for agile distributed
teams. Our evidence here shows that intra-personal,
inter-personal and organizational skills are required
of all distributed agile software practitioners, but
may be particularly necessary for those occupying
leadership roles. The absence of these competencies
may hamper project performance. In our future
work, we plan to examine the way these
practitioners’ enacted roles, competencies and
behaviours evolve over their projects from iteration
to iteration, and to complement our psycholinguistic
analysis with contextual (thematic) examinations.
We encourage future research to conduct similar
studies considering other distributed teams.

7 LIMITATIONS

The LIWC language constructs used to measure
practitioners’ attitudes and competencies have been
used previously to study this subject, and were
assessed for validity and reliability (Mairesse et al.,
2007). However, the adequacy of these constructs
(and the way the dimensions were combined) in the
specific context of software development warrants
further investigation. We reached data saturation
(Glaser and Strauss, 1967) after analyzing artefacts
from our third team, and our SNA results also
confirmed that our sample was representative of
those in the repository as we noted relative
homogeneity in In-Degree measures across the ten
projects. However, work processes and work culture
at IBM are specific to that organization and may not
be representative of organization dynamics
elsewhere.

ACKNOWLEDGEMENTS

S. Licorish is supported by an AUT VC Doctoral
Scholarship. We thank IBM for granting us access to
the Jazz repository. IBM, the IBM logo, ibm.com,
and Rational are trademarks or registered trademarks

How�Do�Globally�Distributed�Agile�Teams�Self-organise?�-�Initial�Insights�from�a�Case�Study

163

of International Business Machines Corporation in
the United States, other countries, or both.

REFERENCES

Abrahamsson, P., Marchesi, M., Succi, G., Sfetsos, P.,
Stamelos, I., Angelis, L. & Deligiannis, I. 2006.
Investigating the Impact of Personality Types on
Communication and Collaboration-Viability in Pair
Programming – An Empirical Study. Extreme
Programming and Agile Processes in Software
Engineering. Springer Berlin / Heidelberg.

Acuna, S. T., Juristo, N. & Moreno, A. M. 2006.
Emphasizing human capabilities in software
development. IEEE Software, 23, 94 - 101.

Andre, M., Baldoquin, M. G. & Acuna, S. T. 2011. Formal
model for assigning human resources to teams in
software projects. I&ST, 53, 259-275.

Ashforth, B. E. 2001. Role transitions in organizational
life: An identity based perspective, Mahwah, NJ:
Lawrence Earlbaum.

Batson, C. D., Ahmad, N. & Tsang, J. A. 2002. Four
Motives for Community Involvement. Journal of
Social Issues, 58, 429-445.

Belbin, R. M. 2002. Management teams: why they succeed
or fail., Woburn, UK, Butterworth-Heinemann.

Benne, K. D. & Sheats, P. 1948. Functional Roles of
Group Members. Journal of Social Issues, 4, 41-49.

Biddle, B. J. & Thomas, E. J. 1966. Role theory: Concepts
and research, New York: John Wiley & Sons.

Downey, J. 2009. Designing Job Descriptions for Software
Development. Info. Sys. Dev.: Challenges in Practice,
Theory, and Education. USA: Springer US.

Espinosa, J. A., Delone, W. & Lee, G. 2006. Global
boundaries, task processes and IS project success: a
field study. Info. Tech. & People, 19, 345 - 370.

Frost, R. 2007. Jazz and the Eclipse Way of Collaboration.
IEEE Softw., 24, 114-117.

Glaser, B. G. & Strauss, A. L. 1967. The Discovery of
Grounded Theory: Strategies for Qualitative
Research, Chicago, Aldine Publishing Company.

Goldberg, L. R. 1981. Language and individual
differences: The search for universals in personality
lexicons. Review of Pers. & Soc.Psyc., 2, 141-165.

Gonzales, A. L., Hancock, J. T. & Pennebaker, J. W.
2010. Language Style Matching as a Predictor of
Social Dynamics in Small Groups. Communication
Research, 37, 3-19.

Gorla, N. & Lam, Y. W. 2004. Who should work with
whom?: building effective software project teams.
Commun. ACM, 47, 79-82.

Hellriegel, D. & Slocum, J. W. 2007. Organizational
Behavior, Mason, OH: Thomson Learning.

Highsmith, J. 2004. Agile Project Management: Creating
Innovative Products., Boston, MA, Pearson Education.

Hoda, R., Noble, J. & Marshall, S. 2010. Organizing

self-organizing teams. Proceedings of the 32nd
ACM/IEEE ICSE - Volume 1. Cape Town, South
Africa: ACM.

Licorish, S., Philpott, A. & Macdonell, S. G. 2009
Supporting agile team composition: A prototype tool
for identifying personality (In)compatibilities. ICSE
Workshop on CHASE. Vancouver, Canada: IEEE
Computer Society.

Mairesse, F., Walker, M., Mehl, M. R. & Moore, R. K.
2007. Using linguistic cues for the automatic
recognition of personality in conversation and text. J.
Artif. Int. Res., 30, 457-500.

Moe, N. B., Dingsoyr, T. & Dyba, T. 2008. Understanding
Self-Organizing Teams in Agile Software
Development. Proceedings of the 19th ASWEC. Perth,
WA: IEEE Computer Society.

Pennebaker, J. W. & King, L. A. 1999. Linguistic Styles:
Language Use as an Individual Difference. Journal of
Personality & Social Psychology, 77, 1296-1312.

Pennebaker, J. W. & Lay, T. C. 2002. Language Use and
Personality during Crises: Analyses of Mayor Rudolph
Giuliani's Press Conferences. Journal of Research in
Personality, 36, 271-282.

Pennebaker, J. W., Mehl, M. R. & Niederhoffer, K. G.
2003. Psychological Aspects of Natural Language
Use: Our Words, Our Selves. Annual Review of
Psychology, 54, 547-577.

Pressman, R. S. 2009. Software Engineering: A
Practitioner's Approach, New York, McGraw-Hill.

Rigby, P. & Hassan, A. E. 2007. What Can OSS Mailing
Lists Tell Us? A Preliminary Psychometric Text
Analysis of the Apache Developer Mailing List.
Proceedings of the 4th MSR. Minneapolis, MN: IEEE
Computer Society.

Serce, F. C., Alpaslan, F.-N., Swigger, K., Brazile, R.,
Dafoulas, G., Lopez, V. & Schumacker, R. 2009.
Exploring Collaboration Patterns among Global
Software Development Teams. Proceedings of the 4th
ICGSE. IEEE Computer Society.

Standish Group 2009. CHAOS Summary 2009. West
Yarmouth, MA: The Standish Group International
Inc.

Trigo, A., Varajao, J., Soto-Acosta, P., Barroso, J.,
Molina-Castillo, F. J. & Gonzalvez-Gallego, N. 2010.
IT professionals: an Iberian snapshot. IJHCITP, 1, 61-
75.

Zhu, E. 1996. Meaning Negotiation, Knowledge
Construction, and Mentoring in a Distance Learning
Course. In: Presentations at the National Convention
of the Association for Educational Communications
and Technology, 1996 Indianapolis, USA. Education
Research Information Center, 821-844.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

164

