QEF-LD
A Query Enginefor Distributed Query Processing on Linked Data

Regis Pires Magalhd&$ José Maria Monteirg Vania M. P. Vidat, José A. F. de Macédp
Macedo Maid, Fabio Portd and Marco A. Casanota
1Computer Science Department, Universidade Federal do Cearéa (UFC), Fortaleza, Brazil
2Quixad& Campus, Universidade Federal do Ceara (UFC), Quixadé, Brazil
3Extreme Data Lab, Laboratério Nacional de Computacéo Cientifica (LNCC), Petrépolis, Brazil
4Informatics Department, Pontificia Universidade Catdlica do Rio de Janeiro (PUC-RIo), Rio de Janeiro, Brazil

Keywords: Linked Data, Federated Queries, Query Processing, Data Integration, Mashup.

Abstract: Linked data applications express integrated views using the SPARQL query language. A SPARQL federated
query is submitted to a query engine that processes it over the distributed SPARQL endpoints. However,

achieving an efficient execution of such a SPARQL federated query is hard. This is mainly due to the fact that

query processors have little or no statistical information about the data stored at the endpoints. Moreover, the
endpoints, usually, are autonomous and unstable. This paper presents QEF-LD, a query engine that enables
the efficient execution of federated queries over multiple Linked Data sources. Experiments demonstrate the

feasibility of QEF-LD when compared to available federated query engines.

1 INTRODUCTION sets, which are common operations used in federated
query execution. Furthermore, the data sources are

The Linked Data initiative promotes the publication Uusually autonomous and unstable.
of data as Web accessible resources. By using stan- There is, however, a particular kind of federated
dard protocols and representing data using the RDFapplication for which fine-tuned query strategies may
model, autonomous datasources are published andoe conceived. Data mashups are pre-defined data
can be queried using the SPARQL query language.views that are computed by integrating distributed
The diversity of published data in a standard format data sources. In these applications, the designer
makes the basis for new kinds of applications that knows which data sources will provide the required
combine data from different sources into a federated data and may define from experience the best strategy
view. to access them. Thus, inter-site join orderings, for in-
Linked data integration applications express fed- stance, can be defined at design time. Note however
erated views using the SPARQL query language. In a that, depending on the query parameters, the size of
SPARQL federated query (Prud’hommeaux and Buil- intermediate results may vary considerably, so a query
Aranda, 2011), the service keyword points to the dis- €ngine must also be able to react to this variation by
tributed data sources, while joins and unions integrate dynamically setting the size of bind sets in joins.
the datain the federation. The integrated query issub- In this paper, QEF-LD, a query engine for dis-
mitted to a federated query engine that processes ittributed query processing on Linked Data, is pre-
over the distributed SPARQL endpoints. sented. The system enables designers to specify
It turns out that achieving an efficient execution mashup queries over federated Linked Data sources.
of such a SPARQL federated query is hard. This is During mashup design, join ordering between dis-
mainly due to the fact that query processors have lit- tributed endpoints are defined, while local joins re-
tle or no statistical information about the data stored main specified in SPARQL subqueries to be run by
at the endpoints. As a result, traditional query opti- the endpoints themselves. Moreover, inter-site joins
mization strategies are jeopardized, making it hard to are implemented by the SetBindJoin operator.
define optimal join orderings and to react to large bind We conducted experiments that run five SPARQL

Magalh&es R., Monteiro J., M. P. Vidal V., A. F. de Macédo J., Maia M., Porto F. and A. Casanova M.. 185
QEF-LD - A Query Engine for Distributed Query Processing on Linked Data.

DOI: 10.5220/0004443401850192

In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 185-192

ISBN: 978-989-8565-59-4

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

federated queries on three different SPARQL query strategy to generate execution plans. SemWIQ de-
engines and on QEF-LD. The results show that QEF- velopment is no longer maintained and its last update
LD produces a query elapsed-time that is up to 4500 was in 2010. DARQ and SemWIQ were not used in
times faster than one of the query engines (Table 1). our experiments (Section 5) since they were discon-
Moreover, QEF-LD was able to run all five queries, tinued.
whereas some of the other systems suffered from FedX (Schwarte et al., 2011) — Linked Data
memory overflow or simply would not respond. This in a Federation — is a framework which extends
performance gain is due mainly to two aspects: a) the Sesame with an integration layer for transparent ac-
manual design of QEPs and b) the effect of SetBind cess to distributed data sources. It enables efficient
Join algorithm . query processing on distributed Linked Data sources.
This paper is structured as follows. Section 2 cov- FedX is compatible with the SPARQL 1.0 query lan-
ers related work. Section 3 presents the QEF-LD guage, which allows clients to integrate with available
component used to execute federated query plans ofSPARQL endpoints. It uses join reordering, bound
Linked Data. Section 4 explains the proposed algo- joins and grouping of subquery results to reduce the
rithms used in QEF-LD. Section 5 analyses the exper- number of intermediate results and thus to improve
iments performed to evaluate the feasibility of QEF- federated query performance. FedX allows concur-
LD, and to compare QEF-LD to other strategies for rent processing of join and union operations through
the execution of federated queries. Finally, section the use of threads.
6 contains the conclusions and suggestions for future ~ We note that Jena, Sesame and FedX are de-
work. signed to evaluate ad-hoc SPARQL queries, dynam-
ically generating a federated query execution plan.
QEF-LD takes a different approach for dealing
with mashup integration queries. At design time, an
2 RELATED WORK efficient federated execution plan (described in XML)
is computed for a given mashup query, which is asso-
Jena ARQ and Sesanfeare query processors that ciated with the corresponding SPARQL query during

implement the federated query specification for exacution. In this scenario, a more adequate execu-
SPARQL 1.1 (Prud’hommeaux and Buil-Aranda, tjgn profile can be achieved.

2011). The specification defines the SERVICE oper-

ator that in turn defines the SPARQL Endpoint URI

and SPARQL query to be executed. However, the

specification is quite simple and does not provide op- 3 QEF-LD

timizations or other strategies to improve query per-

formance, such as caching or grouping of intermedi- This paper describes QEF-LD, an extension of QEF —

ate results. Query Evaluation FrameworfPorto et al., 2007) —to
DARQ (Quilitz and Leser, 2008) — Distributed Support the execution of SPARQL endpoints integra-

ARQ - extends Jena ARQ to allow SPARQL fed- tion queries.

erated queries with transparent access to multiple ~ QEF is a framework for the deployment of data

SPARQL endpoints. One limitation of DARQ is that processing applications. Developers may extend QEF

it can only execute queries with bound predicates. With new operators, which implement the process-

This is because data source selection in DARQ is ing semantics of the application, and with new data

based on matching query pattern predicates to pred-sources, which enables access to data under hetero-

icates in capability patterns. Therefore, DARQ does geneous formats. The application specification is ex-

not allow the use of SPARQL variables in predicates posed to QEF as an XML document, known as an ap-

of BGPs (Basic Graph Patterns). The DARQ project plication execution plan.

emerged in 2006, though its development ceased as of ~ There are two types of QEF operators: algebraic

2008. and control. Algebraic operators correspond to the ap-
SemWIQ (Langegger, 2010) is another data in- Plication semantics, whereas control operators imple-

tegration system in which queries are expressed inment the execution model and include operators for

SPARQL. Like DARQ, it also extends the Jena ARQ data transformation and transfer.

query processor. SemWIQ is based on a mediator- QEF-LD extends QEF to allow data to be re-

wrapper architecture and uses its own optimization trieved from SPARQL endpoints, whose underlying
data sources may be RDF stores or any other data

Lhttp://jena.apache.org/documentation/query/ source with a translation to RDF, offered through a
2http://www.openrdf.org/ wrapper. QEF-LD communicates with endpoints, ob-

186

QEF-LD - A Query Engine for Distributed Query Processing on Linked Data

tains results from SPARQL queries, and transforms (iii) Return the join results between tuples from
the results into QEF tuples [3]. Currently, QEF-LD the setSand tuples retrieved from the right producer.
returns results in XML, JSON or HTML.)
QEF-LD offers a set of Linked Data algebraic 1he Steps are detailed below:
operators, which capture the application semantics. () Create a Tuple Set S with Elements Re-
Complementarily, QEF-LD includes a set of control (/iéved from the Left Producer of the Join. The
operators, which access the data sources or cache inS€tBindJoinalgorithm (algorithms 1 and 2) groups
termediate results. The QEF-LD operators were im- f[he tuples. retrieved from the_left producer of the join
plemented using a consumer-producer strategy, defin-" Sets (Lines 6-16 of Algorithm 2). The sets have
ing a pipeline of results from one operator to another, & Maximum number of tuples that is pre-configured
In more detail, QEF-LD implements the following

in the SetBindJoin operator in the query plan. That
operators: SPARQL Endpoint Data Source, Service configuration is represented in our algorithm by the
operator, Project operator, BindJoin operator, Set-

variablele ftTuplesSetSize
BindJoin operator, Union operator. The SetBindJoin (1) Rétrieve Tuplesfrom theRight Producer of the

operator offers scalability to large result sets by the
dynamic partitioning of result sets and parallel eval-
uation. It outputs results from the parallel process-

Join that are Related with Tuples from the Tu-

ple Set S. The right producer of the join is cloned
and existing queries in the right producer are refor-
mulated to bind the values of common variables be-

ing of tuple sets generated by its left producer. The : o
grouping of tuples obtained from the left producer of e L the_left PGl producer§ QF GiSgiCll The
the join in sets allows a reduction in the number of reformulgtlon RN iSoeiia theailGly CECCLCE Wil
remote requests to SPARQL Endpoints related to the ONly retrieve results related to tuples from the tuple
right producer of the join. It also limits the number ~S€tS. Clone and reformulation are performed by
of returned tuples, since the binding of common vari- the cloneAndReformulatmethod on line 17 of Al-

ables used in producers leads to the formulation of a 9°rithm 2. The reformulation changes the original

query with lower selectivity, i.e. a more restrictive duery using UNION and FILTER features from the
query. SPARQL query language in order to bind variables.

QEF-LD stores a federated query plan, as an XML Other reformulation strategies were tested, but
file, represented by a URI. A plan may r;ave named they were not feasible either due to some incompat-
parameters, extracted from a URI, and used to filter IPility with most available SPARQL Endpoints or be-

the query execution results. QEF-LD also permits that C2USe their performance was worse than the adopted

stored plans be pre-loaded into a cache during startup Strategy- _
All the tuples retrieved by the left producer

or on demand, when the plan is requested for the first = _
of the join are stored in a hash table called

fime- leftTupleHashTablgLines 4, 8, 11 and 17 of Al-
gorithm 2). The hash table key is a representation of
the values of the common variables between the join
producers and its value is a list of tuples that share the
key.
SetBindJoin Algorithm (iii) Return the Join Results between Tuples from
The SetBindJoinalgorithm outputs results from the the Set Sand Tuples Retrieved from the Right Pro-
parallel processing of tuple sets generated by its left ducer. For each tuple from the right producer of the
producer. The grouping of tuples obtained from the join, we retrieve a list with all left side tuples from the
left producer of the join in sets allows a reduction in leftTupleHashTabl¢hat share the same key. Next,
the number of remote requests to SPARQL Endpoints we go over the list to join each of its elements with
related to the right producer of the join. It also lim- the element retrieved from the right in order to return
its the number of returned tuples, since the binding of the final result of the operation (Lines 20-30 of Algo-
common variables used in producers leads to the for-rithm 2).
mulation of a query with lower selectivity, i.e. a more The resulting tuples from all sets processed in
restrictive query. parallel are stored in a single linked blocking queue
The processing of each set can be briefly divided called resultBuf fer The take method from the
into the following steps: resultBuf ferqueue (Line 7 of Algorithm 1) retrieves
(i) Create a tuple seb with elements retrieved and removesits first element if the queue is not empty.
from the left producer of the join. If the queue is empty, theake method waits until a
(ii) Retrieve tuples from the right producer of the new element is added. Thmut method is used to in-
join that are related with tuples from the tuple Set sert an element at the end of the queue (Lines 27 and

4 ALGORITHMS

187

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

33 of Algorithm 2). Theput method waits if no space

is availgble to insert a new elemgnt in the.queue. If Input. IeftProducer, rightProducer

space is a_/allab_le, the queue exits the wait state and IeftTupIesSet’Size, resuItBuf’fer,

allows the insertion of new elements. maxNumberOfLeftProducerSets
TheEND_TOKENelementis usedtoflagtheend 1 |eftTuple+ leftProduceget Next ()

of processing all tuples. It is added after the last re- 2 leftProducerSetCounter O

sulting tuple. ThedeftProducerSetCountevrariable 3 while leftTuple# null do

Algorithm 2: SetBindJoin processTupl es.

is used to count sets that are processed in parallel. It 'eftTgp'%sfHathalb'@“ Cor eateHashtabl e ()
is incremented when a set starts to be processed and > \r,‘v‘ﬁmee(rnurhgggﬁ_i?&u les
decremented at the end of processing each set. When leftTuplesSetSizend |eﬁ‘-)|-up|67é null do
its value is zero and no more tuples are retrieved from key < get KeyBasedOnShar edVar s
the left producer of the join (Line 32 of Algoritm 2), (leftTuple)
there is nothing to process and so D TOKEN 8 leftList < leftTuplesHashTablget (key)
can be inserted (Line 33 of Algorithm 2). 9 if |e|f“f-t'LS_tT null thin st o
10 ertList <— createLl S
Algorithm 1: SetBindJoin get Next . 1 leftTuplesHashTablput (key, leftList)
. d
Input: leftProducer, rightProducer, © end.
: 13 leftList.add (leftTuple)
:;artt)zgps)lsesstiﬁtesdlze, resultBuffer, 14 leftTuple+ leftProduceget Next ()
maxNumberOfLeftProducerSets 12 ond G (TR | <5
Output: tuple

1 if ngt procgssStartedwen v changedRightProducer

2 processStarted- true rightProducec! oneAndRef or mul at e

3 paralld (leftTuplesHashTable)

4 processTupl es (leftProducer, 18 Walt’\lljntlIgeﬂgfrfd#gergetCosuntter <
rightProducer, leftTuplesSetSize, " E)n;);”;m g JiLelliFroducersets
resultBuffer,
maxNumberOfLeftProducerSets) 20 leftProducerSetCountert

5 end 21 rlghtTupIe<_—

6 end changedRightProducget Next ()

7 tuple « resultBuffert ake () 22 while rightTuples null do

tuple < resuitbu 23 key < get KeyBasedOnShar edVar s

8 if tuple= END_TOKENthen (rightTuple)

12 eLdtUpIEF nuill 24 leftTuplesList+—

1 return tuole leftTuplesHashTablget (key)

urntup 25 foreach leftTuplein leftTuplesListo
. . . . 26 tuple« j oi n (leftTuple,
The SetBindJoinimplemented in QEF-LD is rightTuple)

configurable from parameters defined in the query 27 resultBufferput (tuple)

execution plan. The parameters allow the defi- 23 end

nition of (i) the maximum set size and (i) the 29 rightTuple«

maximum number of concurrent threads. The pa- changedRightProducget Next ()

rameter (ii) is also the maximum number of sets 30 lmfd q

(maxNumberOfLeftProducerSgthat can be pro- i? }Ef;‘%u”fgisﬁaﬁgﬁgter_

cessed concurrently. Line 18 of Algorithm 2 imple- IeftProdSce:SetCountet Othen

ments this restriction in order to avoid having too 4 | resultBufferput (END_TOKEN)

many threads awaiting processing. Higher values to a4 end B

parameter (ii) can open an excessive number of sock- 35 end

ets, which can interrupt the query processing. 36 end

Union Algorithm waits until a new element is inserted. That method

The Union algorithm (Algorithm 3) performs the con- is used to insert a new element at the end of the queue
current union of tuples from multiple producers. Each (Lines 9 and 14 of Algorithm 3). If there is no space
thread retrieves tuples from one producer and storesavailable to insert a new element in the queuepbe
them in a linked blocking queue callegsultBuf fer method goes into wait state. It leaves the wait state
If the resultBuf ferqueue is not empty, theake and allows the insertion of new elements as soon as
method (Line 19 of Algorithm 3) retrieves and re- the required space is available.

moves its first element. Otherwise, tteke method TheEND_TOKENelementis used to flag the end

188

QEF-LD - A Query Engine for Distributed Query Processing on Linked Data

of processing all tuples. It is added after the insertion used to store the RDF data and to provide a SPARQL
of the last resulting tuple. A counter of concurrent Endpoint service.

processed producers callptbducersCounteis used

The workload comprised five synthetic SPARQL

to help identify the end of processing all tuples. It mashup queries. The Q1, Q2, and Q3 queries were
is incremented in the beginning of processing of each designed to evaluate the join strategies, whilst queries
producer and decremented after the end of processingQ4 and Q5 were prepared with the intention of ana-

Thus, when its value is zero (Line 13 of Algorithm 3)

there is nothing to process and t8BlD_TOKENcan
be added (Line 14 of Algorithm 3).

Algorithm 3: Union -get Next .

Input: producers, processStarted, resultBuffer
Output: tuple

1 if not processStartethen

2 processStarted- true

3 producersCounte- 0

4 for i = 0to producerssi ze () — 1do

5 parallel

6 producersCountef+

7 prodTuple<— producerslilget Next ()
8 while prodTuples# null do

9 resultBufferput (prodTuple)

10 tuple + producersfijget Next ()
11 end

12 producersCounter—

13 if producersCountes= 0 then

14 | resultBufferput (END_TOKEN)
15 end

16 end

17 end

18 end

19 tuple <« resultBuffert ake ()
20 if tuple= END_TOKENthen
21 | tuple< null

22 end

23 return tuple

5 EXPERIMENTSAND RESULTS

In order to quantitatively evaluate the proposed query
engine under the mashup data integration scenarig
with parameterized queries, we have performed sev-
eral experiments using QEF-LD, and the most widely
used tools, to run federated SPARQL queries: Jena,
Sesame and FedX. This section discuss the results
of the experiments we carried out. For that, we
used efficiency as metric that is related to query pro-

cessing time and memory footprint in each evaluated

lyzing the performance of the union operations.

Queriesto Evaluatethe Join Strategies

Both queries Q1 and Q2 have a single join operation,
but differ principally by the amount of data returned
(see Table 2). Query Q3 involves two join opera-
tions and retrieves a large number of results (86,516
tuples).

Query Q1 (Figure 1) gets resources’ URIs from
thelinkedgeodatalataset, together with their respec-
tive latitudes and longitudes obtained from Bpe-
dia dataset. Query Q2 (Figure 2) gets URIs of dis-
eases and possible drugs used to treat each disease
from thediseasomelata source. In addition to these
data, the full names of the drugs used in treating each
disease are obtained from tailymeddata source.

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX geopos: <http://www.w3.0rg/2003/01/geo/wgs84_pos#>

SELECT ?s ?lat ?long
WHERE {
SERVICE <http://linkedgeodata.arida.ufc.br/spargl> {
?s owl:sameAs ?geo .
}
SERVICE <http://dbpedia.arida.ufc.br/spargl> {
?geo geopos:lat ?lat ;
geopos:long ?long .

Figure 1: Federated SPARQL Query Q1.

PREFIX ds:
<http:/Aww4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/>
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>|

SELECT DISTINCT ?ds ?dg ?dgn
WHERE {
SERVICE <http://diseasome.arida.ufc.br/spargl> {
?ds ds:possibleDrug ?dg .
}
SERVICE <http://dailymed.arida.ufc.br/sparql> {
?dg dm:fullName ?dgn .

}

}

SPARQL query processor.

To carry out the tests we used the following
datasetsdiseasome, dailymed, sider, drugbank, dblp,
DBpediaandlinkedgeodataFor each dataset we im-

Figure 2: Federated SPARQL Query Q2.

Query Q3 (Figure 3) gets, initially, the name of

ported its data for an RDF Store using the dumps active pharmacological agents for some drugs in the

available on the Web. The OpenLink VirtuGsoas

Shttp://virtuoso.openlinksw.com/

dailymed dataset. From these values, Q3 checks:
1) the owl:sameAdinks with sider, in order to get
the side effects for each drug, and 2) the limesly

189

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

med:genericDrugvith drugbankto retrieves chemi-
cal formulas of drugs.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>
PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
PREFIX sider: <http://www4.wiwiss.fu-berlin.de/sider/resource/sider/>

SELECT ?dgain ?dgcf ?sen
WHERE {
SERVICE <http://dailymed.arida.ufc.br/spargl> {
?dg dm:activelngredient ?dgai .
?dgai rdfs:label ?dgain .
?dg dailymed:genericDrug ?gdg .
?dg owl:sameAs ?sa .
}
SERVICE <http://sider.arida.ufc.br/sparql> {
?sa sider:sideEffect ?se .
?se sider:sideEffectName ?sen .
}
SERVICE <http://drugbank.arida.ufc.br/spargl> {
?gdg db:chemicalFormula ?dgcf.
}
}

Figure 3: Federated SPARQL Query Q3.

Queriesto Evaluatethe Union Strategies

Queries Q4 and Q5 differ in the number of union
operations performed. While query Q4 has a sin-
gle union operation, query Q5 has ten union opera-
tions. Query Q4 (Figure 4) performs the union of
generic names of drugs and medical treatment indi-
cations between the datasdtsigbankanddailymed
The query Q5 (Figure 5) performs the union of re-
searchers names and their publications in the DBLP
dataset.

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>

SELECT ?gn ?indication
WHERE {
{
SERVICE <http://drugbank.arida.ufc.br/spargl> {
2dn db:genericName ?gn ;
db:indication ?indication.
}
}
UNION {
SERVICE <http://dailymed.arida.ufc.br/spargl> {
?dn dm:name ?gn ;
dm:indication ?indication .

Figure 4: Federated SPARQL Query Q4.

Execution

To measure efficiency, we have submitted 10 execu-
tion cycles for each one of the five queries in the
workload. Each execution cycle involved two execu-

190

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT ?label ?pub_title where {
{

SERVICE <http://dblp01.arida.ufc.br/spargl> {

?publication dc:creator ?dblp_researcher ;
dc:title ?pub_title .

?dblp_researcher rdfs:label ?label .
FILTER regex(?label, "*Aab")

}

} UNION {
SERVICE <http://dblp10.arida.ufc.br/spargl> {
?publication dc:creator ?dblp_researcher ;
dc:title ?pub_title .
?dblp_researcher rdfs:label ?label .
FILTER regex(?label, "*Jabh")
}
}
}

Figure 5: Federated SPARQL Query Q5.

tions of the same query.

In each execution cycle, the first query usually un-
derperformed due to the startup of the Java virtual
machine that prepares and allocates the necessary re-
sources. However, the second query run on the same
virtual machine instance, where all the resources were
already available. For this reason, for each execution
cycle, we ignored the response time of the first query
run. That is, we took into account only the response
time of the second query run.

Testing Environment

Two nodes comprised the test environment, a server
and a client, connected by a local network. The server
machine hosted the OpenLink Virtuoso, which stored
the RDF data and provided a SPARQL endpoint ser-
vice to each dataset used in the workload: disea-
some, dailymed, sider, drugbank, dblp, DBpedia and
linkedgeodata. The client machine hosted the eval-
uated SPARQL query engines: Jena, Sesame, FedX
and QED-LD. The server machine used in the exper-
iments was an Intel Core i7 2.93GHz with 16 GB
RAM DDR3 1333 MHz. The client machine used
during the tests was an Intel Core 2 Duo 2.93GHz
with 2GB RAM 667 MHz.

Experimental Results

In order to evaluate the efficiency of the SPARQL
query engines, we used two metrics: 1) the query re-
sponse time and 2) the maximum amount of memory
used by the Java virtual machine during each query
run.

Performance Evaluation of Join Operations
The join operator used by QEF-LD was the SetBind-

QEF-LD - A Query Engine for Distributed Query Processing on Linked Data

Join. This operator uses threads to run queries in par- 400
allel. A maximum of one hundred concurrent threads
was chosen to be used for all queries involving the
SetBindJoin operator. This value was chosen due to
the following experimental observation: fixing the
other SetBindJoin parameters and varying only the
number of concurrent threads, the best performance
results were obtained when this value was near onefijgure 6: Comparison chart showing execution times of
hundred. Moreover, fewer concurrent threads may re- queries Q1, Q2, Q3 and Q5.

sult in a lower throughput. Then, we observed that
there are values for the maximum number of concur- 1
rent threads that lead to a balance between data pro- o
duction (SPARQL Endpoint) and data consumption 04
(QEF-LD), which maximizes the throughput. For the

300

200

100

Time (seconds)

Ql Q2 Q3

OlJena BSesame BEFedX W QEF-LD

Time (seconds)

0.2
environment used in our experiments, this value was s
close to one hundred.

Sesame (version 2.6.5.) did not return data for
Q1 ("N.R. = no results returned" in Table 1), even Figure 7: Query execution times of query Q4.
after running for hours. No error message was re-
turned. We also noted no excessive memory con- quired to build the jOinS results. The use of mUItlple
sumption (approximately 180MB). threads also increases memory consumption.

FedX did not return data for Q1 and Q3. During = Q3 query is quite different from Q1 and Q2, the
the execution of Q1 and Q3, FedX used all available other queries that use join operations, since Q3 per-
memory for the Java virtual machine and, after some forms two join operations instead of just one and re-
time, threw an exception indicating lack of available turns more results. Itis importantto note that, in Jena,
memory ("0.0.M. — OutOfMemory" in Table 1). the amount of memory used by Q3 was much greater

Figures 6 and 7 show the query response times of than that used by Q1. However, in QEF-LD, queries
queries Q1 to Q5. For queries Q1, Q2 and Q3, QEF- Q1 and Q3 did not suffer a S|_g_n|f|cant dn‘ferencg in
LD obtained considerably smaller query response Memory consumption. In add_mon, Sesame provided
times than the other evaluated SPARQL query en- the lowest memory consumption among the evaluated
gines. QEF-LD ran query Q5 in slightly more time t0oOIS.
than FedX. Analyzing Figure 9, one can see that, in query Q1,

starting at sets of 20 bind values, increasing the size
Table 1: Query execution times (in seconds) of queries Q1- of the sets makes the query evaluation slower. There-

OJena BSesame BFedX MWQEF-LD

Q5. fore, it is important to find a balance between data
production and consumption to maximize query per-

lena | Sesame | FedX | QEF-LD formance. The maximum size of the sets used in

Ql | 382649 | N.R. | 0.0.M. | 50.808 queries Q1, Q2 and Q3 was 57 QEF tuples (Porto
et al., 2007), which contains intermediate results. We

Q2 | 39.530 | 47.239 | 12,576 | 1.017 could not use larger sets because the Virtuoso server
Q3 | 88531 |339.741| 0.0.M. | 7.416 does not allow queries with more than 57 union op-
erations. Indeed, the BINDING strategy used by Set-
Q4 | 0813 | 0.642 | 0.636 | 0.556 BindJoin involves query reformulation using several

Q5 | 375.226 |375.900 | 208.155 | 214.457 union operations (See Section 4).
Per for mance Evaluation of Union Operations

Table 2: Number of results of queries Q1-Q5. Regarding the union operation, Sesame and FedX
Query | Q1 az a3 a4 @G stood out for their smaller memory consumption com-
#results | 43,016 | 6,124 | 86,516 | 5,146 | 18,327 pared to other evaluated tools. For the first time in the

experiments, FedX achieved satisfactory results with
Moreover, the SetBindJoin operator implemented respectto memory usage. The QEF-LD memory foot-

in QEF-LD generally consumed more memory than print was larger than the other query engines, which

the equivalent operators in others evaluated SPARQL indicate that there is room for improving the QEF-LD

query engines. This memory consumption was Union algorithm.

mainly due to the need to temporally store data re- In query Q5, FedX and QEF-LD had similar

191

ICEIS 2013 - 15th International Conference on Enterprise Information Systems

500 to remote endpoints in order to improve the perfor-
mance of query execution. Furthermore, QEF-LD
is fully compatible with the SPARQL 1.0 query lan-

guage that allows clients to integrate with available
SPARQL endpoints. Experiments demonstrated the

400

300

Memory (MB)

200
100

Elzl 1=z

a @ a s as feasibility of using QEF-LD operators. The SetBind-
Olena BSesame @FedX mQEF-LD Join operator implemented in QEF-LD obtained con-
siderably smaller execution times than other strate-
Figure 8: Memory usage of queries Q1-Q5. gies.

The main challenges to be addressed in the future

3 include: (i) adding new efficient operators to QEF-
g :z N ~ LD; (ii) creating adaptive operators to address the
PRI e aspect of unpredictability in the Web of Data; (iii)
- —~ —a using data cache, indexes and statistics to improve
40 --a guery performance; (iv) creating a framework to au-
zz O a tomate all steps of federated query processing, where
N QED-LD will be used as the query execution engine;
0 e (v) adding support for adaptive processing of ad-hoc
1 2 5 10 20 25 30 40 50 57 quer]es

Figure 9: Execution times of queries Q1-Q3 for different
set sizes.

REFERENCES

response times. Furthermore, FedX and QEF-LD
proved to be almost twice as fast as the other eval-| gngegger, A. (2010)A Flexible Architecture for Virtual

uated query engines. This performance gain is due to Information Integration based on Semantic Web Con-

the use of threads. However, the memory consump- cepts PhD thesis, J. Kepler University Linz.

tion was greater in QEF-LD than in the other query Porto, F., Tajmouati, O., Da Silva, V. F. V., Schulze, B.,

engines. and Ayres, F. V. M. (2007). Qef - supporting com-
We conclude with a remark on the testing envi- Fé‘?EqI”ery apP“Calt'g”S' 'ﬁrf)cee‘j'”gls Ofthgseve”.th

ronment. We decided to store a_II triplesets u.sed on and thgté:?dag(():ngmé%%??ggeg% 46Lis8t56{] V?,;%‘:;'Sg

the OpenLink Virtuoso to expedite the experiments ton, DC, USA. IEEE Computer Society.

and to shield the experiments from extraneous fac- pryq'hommeaux, E. and Buil-Aranda, C. (2011). SPARQL

tors. In fact, we tried several times to run the designed 1.1 Federated Query. http:/mww.w3.0rg/TR/

workload (queries Q1 to Q5) over the original data spargl11-federated-query/.

available on the Web. However, these queries bur- Quilitz, B. and Leser, U. (2008). Querying Distributed RDF

dened the endpoints, sometimes causing service inter- ~ Data Sources with SPARQL. IRroceedings of the

ruption. In other cases, the endpoint servers limited 5th European semantic web conference on The seman-

tic web: research and applicationESWC'08, pages
524-538, Berlin, Heidelberg. Springer-Verlag.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., and

the results, threw exceptions, and added error mes-
sages (like "Premature end of file"). In the future, we

intend to design and run over the Web environment Schmidt, M. (2011). Fedx: a federation layer for dis-

a workload containing queries with greater selectivity tributed query processing on linked open dataPio-

in order to reduce the amount of data retrieved and, ceedings of the 8th extended semantic web conference

thereby, facilitating the experiments. on The semanic web: research and applications - Vol-
ume Part I| ESWC’11, pages 481-486, Berlin, Hei-
delberg.

6 CONCLUSIONSAND FUTURE
WORK

This paper addresses the processing of federated
query plans on the Web of Data using QEF-LD,
which is a query execution engine that extends QEF
— Query Evaluation Framework. QEF-LD exploits
intra-operator parallelism, reduction in the number of
remote calls and reduction in the selectivity of queries

192

