
QEF-LD
A Query Engine for Distributed Query Processing on Linked Data

Regis Pires Magalhães1,2, José Maria Monteiro1, Vânia M. P. Vidal1, José A. F. de Macêdo1,
Macedo Maia1, Fábio Porto3 and Marco A. Casanova4

1Computer Science Department, Universidade Federal do Ceará (UFC), Fortaleza, Brazil
2Quixadá Campus, Universidade Federal do Ceará (UFC), Quixadá, Brazil

3Extreme Data Lab, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
4Informatics Department, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

Keywords: Linked Data, Federated Queries, Query Processing, Data Integration, Mashup.

Abstract: Linked data applications express integrated views using the SPARQL query language. A SPARQL federated
query is submitted to a query engine that processes it over the distributed SPARQL endpoints. However,
achieving an efficient execution of such a SPARQL federated query is hard. This is mainly due to the fact that
query processors have little or no statistical information about the data stored at the endpoints. Moreover, the
endpoints, usually, are autonomous and unstable. This paper presents QEF-LD, a query engine that enables
the efficient execution of federated queries over multiple Linked Data sources. Experiments demonstrate the
feasibility of QEF-LD when compared to available federated query engines.

1 INTRODUCTION

The Linked Data initiative promotes the publication
of data as Web accessible resources. By using stan-
dard protocols and representing data using the RDF
model, autonomous datasources are published and
can be queried using the SPARQL query language.
The diversity of published data in a standard format
makes the basis for new kinds of applications that
combine data from different sources into a federated
view.

Linked data integration applications express fed-
erated views using the SPARQL query language. In a
SPARQL federated query (Prud’hommeaux and Buil-
Aranda, 2011), the service keyword points to the dis-
tributed data sources, while joins and unions integrate
the data in the federation. The integrated query is sub-
mitted to a federated query engine that processes it
over the distributed SPARQL endpoints.

It turns out that achieving an efficient execution
of such a SPARQL federated query is hard. This is
mainly due to the fact that query processors have lit-
tle or no statistical information about the data stored
at the endpoints. As a result, traditional query opti-
mization strategies are jeopardized, making it hard to
define optimal join orderings and to react to large bind

sets, which are common operations used in federated
query execution. Furthermore, the data sources are
usually autonomous and unstable.

There is, however, a particular kind of federated
application for which fine-tuned query strategies may
be conceived. Data mashups are pre-defined data
views that are computed by integrating distributed
data sources. In these applications, the designer
knows which data sources will provide the required
data and may define from experience the best strategy
to access them. Thus, inter-site join orderings, for in-
stance, can be defined at design time. Note however
that, depending on the query parameters, the size of
intermediate results may vary considerably, so a query
engine must also be able to react to this variation by
dynamically setting the size of bind sets in joins.

In this paper, QEF-LD, a query engine for dis-
tributed query processing on Linked Data, is pre-
sented. The system enables designers to specify
mashup queries over federated Linked Data sources.
During mashup design, join ordering between dis-
tributed endpoints are defined, while local joins re-
main specified in SPARQL subqueries to be run by
the endpoints themselves. Moreover, inter-site joins
are implemented by the SetBindJoin operator.

We conducted experiments that run five SPARQL

185Magalhães R., Monteiro J., M. P. Vidal V., A. F. de Macêdo J., Maia M., Porto F. and A. Casanova M..
QEF-LD - A Query Engine for Distributed Query Processing on Linked Data.
DOI: 10.5220/0004443401850192
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 185-192
ISBN: 978-989-8565-59-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

federated queries on three different SPARQL query
engines and on QEF-LD. The results show that QEF-
LD produces a query elapsed-time that is up to 4500
times faster than one of the query engines (Table 1).
Moreover, QEF-LD was able to run all five queries,
whereas some of the other systems suffered from
memory overflow or simply would not respond. This
performance gain is due mainly to two aspects: a) the
manual design of QEPs and b) the effect of SetBind
Join algorithm .

This paper is structured as follows. Section 2 cov-
ers related work. Section 3 presents the QEF-LD
component used to execute federated query plans on
Linked Data. Section 4 explains the proposed algo-
rithms used in QEF-LD. Section 5 analyses the exper-
iments performed to evaluate the feasibility of QEF-
LD, and to compare QEF-LD to other strategies for
the execution of federated queries. Finally, section
6 contains the conclusions and suggestions for future
work.

2 RELATED WORK

Jena ARQ1 and Sesame2 are query processors that
implement the federated query specification for
SPARQL 1.1 (Prud’hommeaux and Buil-Aranda,
2011). The specification defines the SERVICE oper-
ator that in turn defines the SPARQL Endpoint URI
and SPARQL query to be executed. However, the
specification is quite simple and does not provide op-
timizations or other strategies to improve query per-
formance, such as caching or grouping of intermedi-
ate results.

DARQ (Quilitz and Leser, 2008) – Distributed
ARQ – extends Jena ARQ to allow SPARQL fed-
erated queries with transparent access to multiple
SPARQL endpoints. One limitation of DARQ is that
it can only execute queries with bound predicates.
This is because data source selection in DARQ is
based on matching query pattern predicates to pred-
icates in capability patterns. Therefore, DARQ does
not allow the use of SPARQL variables in predicates
of BGPs (Basic Graph Patterns). The DARQ project
emerged in 2006, though its development ceased as of
2008.

SemWIQ (Langegger, 2010) is another data in-
tegration system in which queries are expressed in
SPARQL. Like DARQ, it also extends the Jena ARQ
query processor. SemWIQ is based on a mediator-
wrapper architecture and uses its own optimization

1http://jena.apache.org/documentation/query/
2http://www.openrdf.org/

strategy to generate execution plans. SemWIQ de-
velopment is no longer maintained and its last update
was in 2010. DARQ and SemWIQ were not used in
our experiments (Section 5) since they were discon-
tinued.

FedX (Schwarte et al., 2011) – Linked Data
in a Federation – is a framework which extends
Sesame with an integration layer for transparent ac-
cess to distributed data sources. It enables efficient
query processing on distributed Linked Data sources.
FedX is compatible with the SPARQL 1.0 query lan-
guage, which allows clients to integrate with available
SPARQL endpoints. It uses join reordering, bound
joins and grouping of subquery results to reduce the
number of intermediate results and thus to improve
federated query performance. FedX allows concur-
rent processing of join and union operations through
the use of threads.

We note that Jena, Sesame and FedX are de-
signed to evaluate ad-hoc SPARQL queries, dynam-
ically generating a federated query execution plan.

QEF-LD takes a different approach for dealing
with mashup integration queries. At design time, an
efficient federated execution plan (described in XML)
is computed for a given mashup query, which is asso-
ciated with the corresponding SPARQL query during
execution. In this scenario, a more adequate execu-
tion profile can be achieved.

3 QEF-LD

This paper describes QEF-LD, an extension of QEF –
Query Evaluation Framework(Porto et al., 2007) – to
support the execution of SPARQL endpoints integra-
tion queries.

QEF is a framework for the deployment of data
processing applications. Developers may extend QEF
with new operators, which implement the process-
ing semantics of the application, and with new data
sources, which enables access to data under hetero-
geneous formats. The application specification is ex-
posed to QEF as an XML document, known as an ap-
plication execution plan.

There are two types of QEF operators: algebraic
and control. Algebraic operators correspond to the ap-
plication semantics, whereas control operators imple-
ment the execution model and include operators for
data transformation and transfer.

QEF-LD extends QEF to allow data to be re-
trieved from SPARQL endpoints, whose underlying
data sources may be RDF stores or any other data
source with a translation to RDF, offered through a
wrapper. QEF-LD communicates with endpoints, ob-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

186

tains results from SPARQL queries, and transforms
the results into QEF tuples [3]. Currently, QEF-LD
returns results in XML, JSON or HTML.

QEF-LD offers a set of Linked Data algebraic
operators, which capture the application semantics.
Complementarily, QEF-LD includes a set of control
operators, which access the data sources or cache in-
termediate results. The QEF-LD operators were im-
plemented using a consumer-producer strategy, defin-
ing a pipeline of results from one operator to another.

In more detail, QEF-LD implements the following
operators: SPARQL Endpoint Data Source, Service
operator, Project operator, BindJoin operator, Set-
BindJoin operator, Union operator. The SetBindJoin
operator offers scalability to large result sets by the
dynamic partitioning of result sets and parallel eval-
uation. It outputs results from the parallel process-
ing of tuple sets generated by its left producer. The
grouping of tuples obtained from the left producer of
the join in sets allows a reduction in the number of
remote requests to SPARQL Endpoints related to the
right producer of the join. It also limits the number
of returned tuples, since the binding of common vari-
ables used in producers leads to the formulation of a
query with lower selectivity, i.e. a more restrictive
query.

QEF-LD stores a federated query plan, as an XML
file, represented by a URI. A plan may have named
parameters, extracted from a URI, and used to filter
the query execution results. QEF-LD also permits that
stored plans be pre-loaded into a cache during startup,
or on demand, when the plan is requested for the first
time.

4 ALGORITHMS

SetBindJoin Algorithm
The SetBindJoinalgorithm outputs results from the
parallel processing of tuple sets generated by its left
producer. The grouping of tuples obtained from the
left producer of the join in sets allows a reduction in
the number of remote requests to SPARQL Endpoints
related to the right producer of the join. It also lim-
its the number of returned tuples, since the binding of
common variables used in producers leads to the for-
mulation of a query with lower selectivity, i.e. a more
restrictive query.

The processing of each set can be briefly divided
into the following steps:

(i) Create a tuple setS with elements retrieved
from the left producer of the join.

(ii) Retrieve tuples from the right producer of the
join that are related with tuples from the tuple setS.

(iii) Return the join results between tuples from
the setSand tuples retrieved from the right producer.

The steps are detailed below:
(i) Create a Tuple Set S with Elements Re-
trieved from the Left Producer of the Join. The
SetBindJoinalgorithm (algorithms 1 and 2) groups
the tuples retrieved from the left producer of the join
in sets (Lines 6–16 of Algorithm 2). The sets have
a maximum number of tuples that is pre-configured
in the SetBindJoin operator in the query plan. That
configuration is represented in our algorithm by the
variablele f tTuplesSetSize.
(ii) Retrieve Tuples from the Right Producer of the
Join that are Related with Tuples from the Tu-
ple Set S. The right producer of the join is cloned
and existing queries in the right producer are refor-
mulated to bind the values of common variables be-
tween the left and right producers of the join. The
reformulation ensures that the right producer will
only retrieve results related to tuples from the tuple
set S. Clone and reformulation are performed by
the cloneAndRe f ormulatemethod on line 17 of Al-
gorithm 2. The reformulation changes the original
query using UNION and FILTER features from the
SPARQL query language in order to bind variables.

Other reformulation strategies were tested, but
they were not feasible either due to some incompat-
ibility with most available SPARQL Endpoints or be-
cause their performance was worse than the adopted
strategy.

All the tuples retrieved by the left producer
of the join are stored in a hash table called
le f tTupleHashTable(Lines 4, 8, 11 and 17 of Al-
gorithm 2). The hash table key is a representation of
the values of the common variables between the join
producers and its value is a list of tuples that share the
key.
(iii) Return the Join Results between Tuples from
the Set Sand Tuples Retrieved from the Right Pro-
ducer. For each tuple from the right producer of the
join, we retrieve a list with all left side tuples from the
le f tTupleHashTablethat share the same key. Next,
we go over the list to join each of its elements with
the element retrieved from the right in order to return
the final result of the operation (Lines 20–30 of Algo-
rithm 2).

The resulting tuples from all sets processed in
parallel are stored in a single linked blocking queue
called resultBu f f er. The take method from the
resultBu f f erqueue (Line 7 of Algorithm 1) retrieves
and removes its first element if the queue is not empty.
If the queue is empty, thetakemethod waits until a
new element is added. Theput method is used to in-
sert an element at the end of the queue (Lines 27 and

QEF-LD�-�A�Query�Engine�for�Distributed�Query�Processing�on�Linked�Data

187

33 of Algorithm 2). Theput method waits if no space
is available to insert a new element in the queue. If
space is available, the queue exits the wait state and
allows the insertion of new elements.

TheEND_TOKENelement is used to flag the end
of processing all tuples. It is added after the last re-
sulting tuple. Thele f tProducerSetCountervariable
is used to count sets that are processed in parallel. It
is incremented when a set starts to be processed and
decremented at the end of processing each set. When
its value is zero and no more tuples are retrieved from
the left producer of the join (Line 32 of Algoritm 2),
there is nothing to process and so theEND_TOKEN
can be inserted (Line 33 of Algorithm 2).

Algorithm 1: SetBindJoin -getNext.

Input: leftProducer, rightProducer,
leftTuplesSetSize, resultBuffer,
processStarted,
maxNumberOfLeftProducerSets

Output: tuple
1 if not processStartedthen
2 processStarted← true
3 parallel
4 processTuples (leftProducer,

rightProducer, leftTuplesSetSize,
resultBuffer,
maxNumberOfLeftProducerSets)

5 end
6 end
7 tuple← resultBuffer.take ()
8 if tuple= END_TOKENthen
9 tuple← null

10 end
11 return tuple

The SetBindJoin implemented in QEF-LD is
configurable from parameters defined in the query
execution plan. The parameters allow the defi-
nition of (i) the maximum set size and (ii) the
maximum number of concurrent threads. The pa-
rameter (ii) is also the maximum number of sets
(maxNumberO f Le f tProducerSets) that can be pro-
cessed concurrently. Line 18 of Algorithm 2 imple-
ments this restriction in order to avoid having too
many threads awaiting processing. Higher values to
parameter (ii) can open an excessive number of sock-
ets, which can interrupt the query processing.

Union Algorithm

The Union algorithm (Algorithm 3) performs the con-
current union of tuples from multiple producers. Each
thread retrieves tuples from one producer and stores
them in a linked blocking queue calledresultBu f f er.
If the resultBu f f er queue is not empty, thetake
method (Line 19 of Algorithm 3) retrieves and re-
moves its first element. Otherwise, thetakemethod

Algorithm 2: SetBindJoin -processTuples.

Input: leftProducer, rightProducer,
leftTuplesSetSize, resultBuffer,
maxNumberOfLeftProducerSets

1 leftTuple← leftProducer.getNext ()
2 leftProducerSetCounter← 0
3 while leftTuple6= null do
4 leftTuplesHashTable← createHashtable ()
5 numberOfLeftTuples← 0
6 while (numberOfLeftTuples<

leftTuplesSetSize)and leftTuple6= null do
7 key← getKeyBasedOnSharedVars

(leftTuple)
8 leftList← leftTuplesHashTable.get (key)
9 if leftList= null then

10 leftList← createList ()
11 leftTuplesHashTable.put (key, leftList)
12 end
13 leftList.add (leftTuple)
14 leftTuple← leftProducer.getNext ()
15 numberOfLeftTuples++

16 end
17 changedRightProducer←

rightProducer.cloneAndReformulate
(leftTuplesHashTable)

18 Wait until leftProducerSetCounter <
maxNumberOfLeftProducerSets

19 parallel
20 leftProducerSetCounter++

21 rightTuple←
changedRightProducer.getNext ()

22 while rightTuple 6= null do
23 key← getKeyBasedOnSharedVars

(rightTuple)
24 leftTuplesList←

leftTuplesHashTable.get (key)
25 foreach leftTuplein leftTuplesListdo
26 tuple← join (leftTuple,

rightTuple)
27 resultBuffer.put (tuple)
28 end
29 rightTuple←

changedRightProducer.getNext ()
30 end
31 leftProducerSetCounter−−
32 if leftTuple= null and

leftProducerSetCounter= 0 then
33 resultBuffer.put (END_TOKEN)
34 end
35 end
36 end

waits until a new element is inserted. Theput method
is used to insert a new element at the end of the queue
(Lines 9 and 14 of Algorithm 3). If there is no space
available to insert a new element in the queue theput
method goes into wait state. It leaves the wait state
and allows the insertion of new elements as soon as
the required space is available.

TheEND_TOKENelement is used to flag the end

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

188

of processing all tuples. It is added after the insertion
of the last resulting tuple. A counter of concurrent
processed producers calledproducersCounteris used
to help identify the end of processing all tuples. It
is incremented in the beginning of processing of each
producer and decremented after the end of processing.
Thus, when its value is zero (Line 13 of Algorithm 3)
there is nothing to process and theEND_TOKENcan
be added (Line 14 of Algorithm 3).

Algorithm 3: Union -getNext.

Input: producers, processStarted, resultBuffer
Output: tuple

1 if not processStartedthen
2 processStarted← true
3 producersCounter← 0
4 for i = 0 to producers.size () − 1 do
5 parallel
6 producersCounter++

7 prodTuple← producers[i].getNext ()
8 while prodTuple6= null do
9 resultBuffer.put (prodTuple)

10 tuple← producers[i].getNext ()
11 end
12 producersCounter−−
13 if producersCounter= 0 then
14 resultBuffer.put (END_TOKEN)
15 end
16 end
17 end
18 end
19 tuple← resultBuffer.take ()
20 if tuple= END_TOKENthen
21 tuple← null
22 end
23 return tuple

5 EXPERIMENTS AND RESULTS

In order to quantitatively evaluate the proposed query
engine under the mashup data integration scenario
with parameterized queries, we have performed sev-
eral experiments using QEF-LD, and the most widely
used tools, to run federated SPARQL queries: Jena,
Sesame and FedX. This section discuss the results
of the experiments we carried out. For that, we
used efficiency as metric that is related to query pro-
cessing time and memory footprint in each evaluated
SPARQL query processor.

To carry out the tests we used the following
datasets:diseasome, dailymed, sider, drugbank, dblp,
DBpediaandlinkedgeodata. For each dataset we im-
ported its data for an RDF Store using the dumps
available on the Web. The OpenLink Virtuoso3 was

3http://virtuoso.openlinksw.com/

used to store the RDF data and to provide a SPARQL
Endpoint service.

The workload comprised five synthetic SPARQL
mashup queries. The Q1, Q2, and Q3 queries were
designed to evaluate the join strategies, whilst queries
Q4 and Q5 were prepared with the intention of ana-
lyzing the performance of the union operations.

Queries to Evaluate the Join Strategies
Both queries Q1 and Q2 have a single join operation,
but differ principally by the amount of data returned
(see Table 2). Query Q3 involves two join opera-
tions and retrieves a large number of results (86,516
tuples).

Query Q1 (Figure 1) gets resources’ URIs from
the linkedgeodatadataset, together with their respec-
tive latitudes and longitudes obtained from theDBpe-
dia dataset. Query Q2 (Figure 2) gets URIs of dis-
eases and possible drugs used to treat each disease
from thediseasomedata source. In addition to these
data, the full names of the drugs used in treating each
disease are obtained from thedailymeddata source.

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX geopos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT ?s ?lat ?long

WHERE {

SERVICE <http://linkedgeodata.arida.ufc.br/sparql> {

?s owl:sameAs ?geo .

}

SERVICE <http://dbpedia.arida.ufc.br/sparql> {

?geo geopos:lat ?lat ;

geopos:long ?long .

}

}

Figure 1: Federated SPARQL Query Q1.

PREFIX ds:

<http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/>

PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>

SELECT DISTINCT ?ds ?dg ?dgn

WHERE {
SERVICE <http://diseasome.arida.ufc.br/sparql> {

?ds ds:possibleDrug ?dg .

}

SERVICE <http://dailymed.arida.ufc.br/sparql> {
?dg dm:fullName ?dgn .

}

}

Figure 2: Federated SPARQL Query Q2.

Query Q3 (Figure 3) gets, initially, the name of
active pharmacological agents for some drugs in the
dailymed dataset. From these values, Q3 checks:
1) the owl:sameAslinks with sider, in order to get
the side effects for each drug, and 2) the linksdaily

QEF-LD�-�A�Query�Engine�for�Distributed�Query�Processing�on�Linked�Data

189

med:genericDrugwith drugbankto retrieves chemi-
cal formulas of drugs.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>

PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>

PREFIX sider: <http://www4.wiwiss.fu-berlin.de/sider/resource/sider/>

SELECT ?dgain ?dgcf ?sen

WHERE {

SERVICE <http://dailymed.arida.ufc.br/sparql> {
?dg dm:activeIngredient ?dgai .

?dgai rdfs:label ?dgain .

?dg dailymed:genericDrug ?gdg .

?dg owl:sameAs ?sa .
}

SERVICE <http://sider.arida.ufc.br/sparql> {

?sa sider:sideEffect ?se .
?se sider:sideEffectName ?sen .

}

SERVICE <http://drugbank.arida.ufc.br/sparql> {

?gdg db:chemicalFormula ?dgcf .
}

}

Figure 3: Federated SPARQL Query Q3.

Queries to Evaluate the Union Strategies
Queries Q4 and Q5 differ in the number of union
operations performed. While query Q4 has a sin-
gle union operation, query Q5 has ten union opera-
tions. Query Q4 (Figure 4) performs the union of
generic names of drugs and medical treatment indi-
cations between the datasetsdrugbankanddailymed.
The query Q5 (Figure 5) performs the union of re-
searchers names and their publications in the DBLP
dataset.

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>

SELECT ?gn ?indication

WHERE {
{

SERVICE <http://drugbank.arida.ufc.br/sparql> {

?dn db:genericName ?gn ;

db:indication ?indication.
}

}

UNION {
SERVICE <http://dailymed.arida.ufc.br/sparql> {

?dn dm:name ?gn ;

dm:indication ?indication .

}
}

}

Figure 4: Federated SPARQL Query Q4.

Execution
To measure efficiency, we have submitted 10 execu-
tion cycles for each one of the five queries in the
workload. Each execution cycle involved two execu-

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?label ?pub_title where {

{

SERVICE <http://dblp01.arida.ufc.br/sparql> {

?publication dc:creator ?dblp_researcher ;

dc:title ?pub_title .

?dblp_researcher rdfs:label ?label .

FILTER regex(?label, "^Aab")

}

...

} UNION {

SERVICE <http://dblp10.arida.ufc.br/sparql> {

?publication dc:creator ?dblp_researcher ;

dc:title ?pub_title .

?dblp_researcher rdfs:label ?label .

FILTER regex(?label, "^Jab")

}

}

}

Figure 5: Federated SPARQL Query Q5.

tions of the same query.
In each execution cycle, the first query usually un-

derperformed due to the startup of the Java virtual
machine that prepares and allocates the necessary re-
sources. However, the second query run on the same
virtual machine instance, where all the resources were
already available. For this reason, for each execution
cycle, we ignored the response time of the first query
run. That is, we took into account only the response
time of the second query run.

Testing Environment
Two nodes comprised the test environment, a server
and a client, connected by a local network. The server
machine hosted the OpenLink Virtuoso, which stored
the RDF data and provided a SPARQL endpoint ser-
vice to each dataset used in the workload: disea-
some, dailymed, sider, drugbank, dblp, DBpedia and
linkedgeodata. The client machine hosted the eval-
uated SPARQL query engines: Jena, Sesame, FedX
and QED-LD. The server machine used in the exper-
iments was an Intel Core i7 2.93GHz with 16 GB
RAM DDR3 1333 MHz. The client machine used
during the tests was an Intel Core 2 Duo 2.93GHz
with 2GB RAM 667 MHz.

Experimental Results
In order to evaluate the efficiency of the SPARQL
query engines, we used two metrics: 1) the query re-
sponse time and 2) the maximum amount of memory
used by the Java virtual machine during each query
run.

Performance Evaluation of Join Operations
The join operator used by QEF-LD was the SetBind-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

190

Join. This operator uses threads to run queries in par-
allel. A maximum of one hundred concurrent threads
was chosen to be used for all queries involving the
SetBindJoin operator. This value was chosen due to
the following experimental observation: fixing the
other SetBindJoin parameters and varying only the
number of concurrent threads, the best performance
results were obtained when this value was near one
hundred. Moreover, fewer concurrent threads may re-
sult in a lower throughput. Then, we observed that
there are values for the maximum number of concur-
rent threads that lead to a balance between data pro-
duction (SPARQL Endpoint) and data consumption
(QEF-LD), which maximizes the throughput. For the
environment used in our experiments, this value was
close to one hundred.

Sesame (version 2.6.5.) did not return data for
Q1 ("N.R. – no results returned" in Table 1), even
after running for hours. No error message was re-
turned. We also noted no excessive memory con-
sumption (approximately 180MB).

FedX did not return data for Q1 and Q3. During
the execution of Q1 and Q3, FedX used all available
memory for the Java virtual machine and, after some
time, threw an exception indicating lack of available
memory ("O.O.M. – OutOfMemory" in Table 1).

Figures 6 and 7 show the query response times of
queries Q1 to Q5. For queries Q1, Q2 and Q3, QEF-
LD obtained considerably smaller query response
times than the other evaluated SPARQL query en-
gines. QEF-LD ran query Q5 in slightly more time
than FedX.

Table 1: Query execution times (in seconds) of queries Q1–
Q5.

Jena Sesame FedX QEF-LD

Q1 382.649 N.R. O.O.M. 50.808

Q2 39.530 47.239 12.576 1.017

Q3 88.531 339.741 O.O.M. 7.416

Q4 0.813 0.642 0.636 0.556

Q5 375.226 375.900 208.155 214.457

Table 2: Number of results of queries Q1–Q5.

Query Q1 Q2 Q3 Q4 Q5

results 43,016 6,124 86,516 5,146 18,327

Moreover, the SetBindJoin operator implemented
in QEF-LD generally consumed more memory than
the equivalent operators in others evaluated SPARQL
query engines. This memory consumption was
mainly due to the need to temporally store data re-

0

100

200

300

400

Q1 Q2 Q3 Q5

T
im

e
 (

se
co

n
d

s)

Jena Sesame FedX QEF-LD

Figure 6: Comparison chart showing execution times of
queries Q1, Q2, Q3 and Q5.

0

0.2

0.4

0.6

0.8

1

Q4

T
im

e
 (

se
co

n
d

s)

Jena Sesame FedX QEF-LD

Figure 7: Query execution times of query Q4.

quired to build the joins results. The use of multiple
threads also increases memory consumption.

Q3 query is quite different from Q1 and Q2, the
other queries that use join operations, since Q3 per-
forms two join operations instead of just one and re-
turns more results. It is important to note that, in Jena,
the amount of memory used by Q3 was much greater
than that used by Q1. However, in QEF-LD, queries
Q1 and Q3 did not suffer a significant difference in
memory consumption. In addition, Sesame provided
the lowest memory consumption among the evaluated
tools.

Analyzing Figure 9, one can see that, in query Q1,
starting at sets of 20 bind values, increasing the size
of the sets makes the query evaluation slower. There-
fore, it is important to find a balance between data
production and consumption to maximize query per-
formance. The maximum size of the sets used in
queries Q1, Q2 and Q3 was 57 QEF tuples (Porto
et al., 2007), which contains intermediate results. We
could not use larger sets because the Virtuoso server
does not allow queries with more than 57 union op-
erations. Indeed, the BINDING strategy used by Set-
BindJoin involves query reformulation using several
union operations (See Section 4).

Performance Evaluation of Union Operations
Regarding the union operation, Sesame and FedX
stood out for their smaller memory consumption com-
pared to other evaluated tools. For the first time in the
experiments, FedX achieved satisfactory results with
respect to memory usage. The QEF-LD memory foot-
print was larger than the other query engines, which
indicate that there is room for improving the QEF-LD
Union algorithm.

In query Q5, FedX and QEF-LD had similar

QEF-LD�-�A�Query�Engine�for�Distributed�Query�Processing�on�Linked�Data

191

0

100

200

300

400

500

Q1 Q2 Q3 Q4 Q5

M
e

m
o

ry
 (

M
B

)

Jena Sesame FedX QEF-LD

Figure 8: Memory usage of queries Q1–Q5.

0

10

20

30

40

50

60

70

80

90

1 2 5 10 20 25 30 40 50 57

T
im

e
 (

se
co

n
d

s)

Q1

Q2

Q3

Set size

Figure 9: Execution times of queries Q1–Q3 for different
set sizes.

response times. Furthermore, FedX and QEF-LD
proved to be almost twice as fast as the other eval-
uated query engines. This performance gain is due to
the use of threads. However, the memory consump-
tion was greater in QEF-LD than in the other query
engines.

We conclude with a remark on the testing envi-
ronment. We decided to store all triplesets used on
the OpenLink Virtuoso to expedite the experiments
and to shield the experiments from extraneous fac-
tors. In fact, we tried several times to run the designed
workload (queries Q1 to Q5) over the original data
available on the Web. However, these queries bur-
dened the endpoints, sometimes causing service inter-
ruption. In other cases, the endpoint servers limited
the results, threw exceptions, and added error mes-
sages (like "Premature end of file"). In the future, we
intend to design and run over the Web environment
a workload containing queries with greater selectivity
in order to reduce the amount of data retrieved and,
thereby, facilitating the experiments.

6 CONCLUSIONS AND FUTURE
WORK

This paper addresses the processing of federated
query plans on the Web of Data using QEF-LD,
which is a query execution engine that extends QEF
– Query Evaluation Framework. QEF-LD exploits
intra-operator parallelism, reduction in the number of
remote calls and reduction in the selectivity of queries

to remote endpoints in order to improve the perfor-
mance of query execution. Furthermore, QEF-LD
is fully compatible with the SPARQL 1.0 query lan-
guage that allows clients to integrate with available
SPARQL endpoints. Experiments demonstrated the
feasibility of using QEF-LD operators. The SetBind-
Join operator implemented in QEF-LD obtained con-
siderably smaller execution times than other strate-
gies.

The main challenges to be addressed in the future
include: (i) adding new efficient operators to QEF-
LD; (ii) creating adaptive operators to address the
aspect of unpredictability in the Web of Data; (iii)
using data cache, indexes and statistics to improve
query performance; (iv) creating a framework to au-
tomate all steps of federated query processing, where
QED-LD will be used as the query execution engine;
(v) adding support for adaptive processing of ad-hoc
queries.

REFERENCES

Langegger, A. (2010).A Flexible Architecture for Virtual
Information Integration based on Semantic Web Con-
cepts. PhD thesis, J. Kepler University Linz.

Porto, F., Tajmouati, O., Da Silva, V. F. V., Schulze, B.,
and Ayres, F. V. M. (2007). Qef - supporting com-
plex query applications. InProceedings of the Seventh
IEEE International Symposium on Cluster Computing
and the Grid, CCGRID ’07, pages 846–851, Washing-
ton, DC, USA. IEEE Computer Society.

Prud’hommeaux, E. and Buil-Aranda, C. (2011). SPARQL
1.1 Federated Query. http://www.w3.org/TR/
sparql11-federated-query/.

Quilitz, B. and Leser, U. (2008). Querying Distributed RDF
Data Sources with SPARQL. InProceedings of the
5th European semantic web conference on The seman-
tic web: research and applications, ESWC’08, pages
524–538, Berlin, Heidelberg. Springer-Verlag.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., and
Schmidt, M. (2011). Fedx: a federation layer for dis-
tributed query processing on linked open data. InPro-
ceedings of the 8th extended semantic web conference
on The semanic web: research and applications - Vol-
ume Part II, ESWC’11, pages 481–486, Berlin, Hei-
delberg.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

192

