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Abstract: For highly selective queries, a simple random sample of records drawn from a large data warehouse may not 
contain sufficient number of records that satisfy the query conditions. Efficient sampling schemes for such 
queries require innovative techniques that can access records that are relevant to each specific query. In 
drawing the sample, it is advantageous to know what would be an adequate sample size for a given query. 
This paper proposes methods for picking adequate samples that ensure approximate query results with a 
desired level of accuracy. A special index based on a structure known as the k-MDI Tree is used to draw 
samples. An unbiased estimator named inverse simple random sampling without replacement is adapted to 
estimate adequate sample sizes for queries. The methods are evaluated experimentally on a large real life 
data set. The results of evaluation show that adequate sample sizes can be determined such that errors in 
outputs of most queries are within the acceptable limit of 5%. 

1 INTRODUCTION 

Decision support queries often involve applying 
aggregate functions like count, average, and sum on 
relatively small subset of records in a data 
warehouse. Approximate results are usually 
sufficient for such queries to provide a good idea of 
how a business is doing. While relatively small 
random samples can be used effectively for some 
data warehouse queries, they are not suitable for 
highly selective queries as the records that satisfy 
the query conditions may not be adequately 
represented in such samples. Ideally, an adequate 
sample for such a query should be drawn from a 
subset of the data warehouse that satisfies the 
query’s selection conditions. A sample is adequate 
for a query if it can be used to estimate the query 
result with its accuracy within a specified confidence 
interval. In this paper, we focus on estimating the 
sizes of adequate samples for specific queries. 

As Olken and Rotem (1990) pointed out, picking 
records at random from a database without prior 
rearrangement is very inefficient since a large 
number of disk accesses may be needed to retrieve a 
sample. To alleviate this problem, several recent 

schemes for approximate query processing have 
been proposed (Aouich and Lemire 2007); (Heule et 
al., 2013); (Jermaine 2007); (Jermaine 2003); 
(Jermaine et al., 2004); (Jin et al., 2006); (Joshi and 
Jermaine, 2008); (Li et al., 2008); (Spiegel and 
Polyzotis, 2009). Joshi and Jermaine (2008) 
introduced the ACE Tree, which is a binary tree 
index structure for efficiently drawing samples for 
processing database queries. They demonstrated the 
effectiveness of this structure for single and two 
attribute database queries, but did not deal with 
multi-attribute aggregate queries. For extending the 
ACE Tree to k key attributes, Joshi and Jermaine 
(2008) proposed binary splitting of one attribute 
range after another at consecutive levels of the 
binary tree starting from the root; from level k+1, 
the process is repeated with each attribute in the 
same sequence as before. This process could lead to 
an index tree of very large height for a data 
warehouse even if only a relatively small number of 
attributes are considered. Rudra et al., (2012) 
proposed the k-MDI Tree, that extends the ACE 
Tree structure to deal with multi-dimensional data 
warehouses with k-ary splits of data ranges. It was 
shown that random samples of relevant rows (rows 
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that satisfy the conditions of a given query) could be 
drawn more efficiently using the k-MDI tree. 

The sampling scheme using the k-MDI tree index 
(Rudra et al., 2012) facilitates picking rich samples 
for queries with highly specific selection conditions. 
If the sample contains an adequate number of 
records that satisfy the query conditions, the average 
values can be estimated from these records. 
However, to estimate sum (= avg x count) we need 
to estimate both the average as well as count of the 
records that satisfy the query in the whole database. 
Therefore, from the sample we need to project the 
number of records in the entire database that satisfy 
the given query conditions. Chaudhuri and Mukerjee 
(1985) proposed an unbiased estimator based on 
inverse simple random sampling without 
replacement (SRSWOR) where random sampling is 
carried out on a finite population until a predefined 
number of domain members are observed. In this 
paper, we propose the adaptation of inverse 
SRSWOR to estimate adequate sample sizes for 
queries using the k-MDI tree index. The method is 
empirically evaluated on a large real world data 
warehouse. 

The rest of the paper is organized as follows:  In 
Section 2, we briefly describe the k-way multi-
dimensional (k-MDI) indexing structure and the 
storage structure of data records. Section 3 discusses 
how to pick adequate samples using inverse 
SRSWOR. In Section 4 we discuss the results of our 
experiments. Finally, Section 5 concludes the paper. 

2 TERMS, DEFINITIONS AND 
k-MDI TREE INDEX 

In this section, we define some terms pertaining to 
data warehousing, define confidence interval and 
then review the k-MDI tree index for retrieving 
relevant samples from a data warehouse. 

2.1 Dimension and Measures 

To execute decision support queries, data is usually 
structured in large databases called data warehouses. 
Typically, data warehouses are relational databases 
with a large table in the middle called the fact table 
connected to other tables called dimensions. For 
example, consider the fact table Sales shown as Table 
1. A dimension table Store linked to StoreNo in this 
fact table will contain more information on each of 
the stores such as store name, location, state, and 
country (Hobbs et al., 2003). Other dimension tables 

could exist for items and date. The remaining 
attributes like quantity and amount are typically, but 
not necessarily, numerical and are termed measures. 
A typical decision support query aggregates a 
measure using functions such as Sum(), Avg() or 
Count(). The fact table Sales along with all its 
dimension tables forms a star schema. 

Table 1: Fact table SALES. 

  SALES   

StoreNo Date Item Quantity Amount 

  21 12-Jan-11 iPad     223 123,455 

  21 12-Jan-11 PC       20   24,800 

  24 11-Jan-11 iMac       11     9,990 

  77 25-Jan-11 PC       10   12,600 
 

In decision support queries a measure is of 
interest for calculation of averages, totals and 
counts. For example, a sales manager may like to 
know the total sales quantity and amount for certain 
item(s) in a certain period of time for a particular 
store or even all (or some) stores in a region. This 
may then allow her to make decisions to order more 
or less stocks as appropriate at a point in time. 

2.2 Multidimensional Indexing 

The k-ary multi-dimensional index tree (k-MDI tree) 
proposed in Rudra et al., (2012) extends the ACE 
Tree index (Joshi and Jermaine, 2008) for multiple 
dimensions. The height of the k-MDI tree is limited 
to the number of key attributes. As a multi-way tree 
index, it is relatively shallow even for a large 
number of key value ranges and so requires only a 
small number of disk accesses to traverse from the 
root to the leaf nodes. 

The k-MDI tree is a k-ary balanced tree (Bentley 
1975) as described below:   
1. The root node of a k-MDI tree corresponds to the 

first attribute (dimension) in the index. 
2. The root points to k1 (k1 ≤ k) index nodes at level 

2, with each node corresponding to one of the k1 
splits of the ranges for attribute a1. 

3. Each of the nodes at level 2, in turn, points to up 
to k2 (k2 ≤ k) index nodes at level 3 
corresponding to k2 splits of the ranges of values 
of attribute a2; similarly for nodes at levels 3 to 
h, corresponding to attributes a3,..., ah. 

4. At level h, each of up to kh-1 nodes points to up to 
kh (kh ≤ k) leaf nodes that store data records. 

5. Each leaf node has h+1 sections; for sections 1 to 
h, each section i contains random subset of 
records in the key range of the node i in

Selecting�Adequate�Samples�for�Approximate�Decision�Support�Queries

47



 

Figure 1: General structure of the k-MDI tree. 

the path from the root to the level h above the 
leaf; section h+1 contains a random subset of 
records with keys in the specific range for the 
given leaf. 

 

Thus, the dataset is divided into a maximum of kh 
leaf nodes with each leaf node, in turn, consisting of 
h+1 sections and each section containing a random 
subset of records. The total number of leaf nodes 
depends on the total number of records in the dataset 
and the size of a leaf node (which may be chosen as 
equal to the disk block size or another suitable size). 
More details on leaf nodes and sections are given in 
sub-section II.C. In real data sets, the number of 
range splits at different nodes of a given level i need 
not be the same. For convenience, the number of 
splits at all levels are kept as k in Figure 1 that 
shows the structure of the general scheme for k-MDI 
multilevel index tree of attributes A1, A2, …, Ah with 
k ranges (R11, R12, …, R1k), (R21, R22, …, R2k ), … 
(Rh1, Rh2, …, Rhk) respectively at levels (1, …, h). In 
other words, Rij is the i-th attribute’s j-th range high 
water mark (HWM). 

An example of the k-MDI tree is shown in Figure 
1 from a store chain dataset with three dimensions – 
store, date sold and item number. The number of 
range splits and hence branches from non-leaf nodes 
vary between 2 and 4 in this example.  

2.3 Leaf Nodes 

The lowest level nodes of a k-MDI tree point to leaf 
nodes containing data records. The data records are 
stored in h+1 sections, where h is the height of the 
tree. Section S1 of every leaf node is drawn from the 

entire database with no range restriction on the 
attribute values. Each section Si (2 ≤ i ≤ h+1) in a 
leaf node L is restricted on the range of key values 
by the same restrictions that apply to the 
corresponding sub-path along the path from the root 
to L. Thus for section S2, the restrictions are the 
same as on the branch to the node at level 2 along 
the path from the root to L and so on. 

Figure 2 shows an example leaf node projected 
from the sample k-MDI tree. The sections are 
indicated above the node with attribute ranges for 
each section below the node. The circled numbers in 
each section indicate record numbers that are 
randomly placed in the section. The range 
restrictions on the records are indicated below each 
section, where the first section S1 has records drawn 
from the entire range of the database. Thus, it can 
contain records uniformly sampled from the whole 
dataset. The next section S2 has restriction on the 
first dimension viz. store (for leaf node L7 this range 
is store numbers 1-16). The third section S3 has 
restrictions on both first and second dimensions viz. 
store and date. While the last section S4 has 
restrictions on all the three dimensions – store, date 
and item. 

The scheme for selection of records into various 
leaf nodes and sections is explained in detail in the 
following section. 

2.4 Using the k-MDI Tree for Data 
Warehouse Queries 

By using a k-MDI tree index, we can draw stratified 
samples for data warehousing queries from restricted 
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Figure 2: A leaf node (changes in range values for attributes are indicated in bold).

ranges of key values. The database relevancy ratio 
(DRR) of a query Q, denoted by ρ(Q) is the ratio of 
the number of records in a dataset D that satisfies the 
query conditions to the total number of records in D.  
For a query with no condition, ρ(Q) is 1. Similarly, 
the sample relevancy ratio (SRR) of a query Q for a 
sample set S, denoted by ρ(Q, S) is defined as the 
ratio of the number of records in S that satisfy a 
given query Q to the total number of records in S.  

In a true random sample of records, the SRR for 
a query Q is expected to be equal to its DRR, i.e., 
E(ρ(Q, S) ) = ρ(Q).  A sample with ρ(Q, S) > ρ(Q) is 
likely to give a better estimate of the mean than a 
true random sample. However, for the sum of a 
column, the sample needs to be representative of the 
population, i.e., ρ(Q, S) should be close to ρ(Q). 

Consider the following formula for estimating 
the sum (Berenson and Levine 1992): ෠ܶ ൌ ̂݌ܰ തܺ, 
where N is the cardinality of the population, ̂݌ the 
estimated proportion of records satisfying the query 
conditions and തܺ the mean of records in the sample 
satisfying the query condition.  In order to estimate 
the mean we can use all relevant sampled records 
from all sections of the retrieved leaf nodes, but to 
estimate the sum we can use sampled records only 
from section S1, which is the only section with 
records drawn randomly from the entire dataset.  For 
estimating the sum for a query with conditions on 

some of the indexed dimensions we use appropriate 
sections of the retrieved leaf nodes to get a better 
estimate of the mean; the records from section S1 are 
used to get a fair estimation of the proportion of 
records that satisfy the query conditions. 

2.5 Effect of Sectioning on Relevancy 
Ratio 

As discussed earlier, sections S1 to Sh+1 of each leaf 
node contain random collections of records with the 
difference that S1 contains records from the entire 
dataset while other sections contain random records 
from restricted ranges of the key attributes. Consider 
a query with the same range restrictions on all three 
dimensions (store, date and item) as section L7.S4 in 
Figure 2. We are then likely to get more relevant 
records in the sample from the second section L7.S2 
than from S1 since records of S2 have restrictions on 
the first dimension of store that matches the query 
condition. Records in S3 will have restrictions on 
both store and date dimensions that match that of the 
query and so likely to contain more relevant records 
than in S2. All records in section L7.S4 will satisfy the 
query since the range restrictions on S4 exactly 
match the query. Mathematically, for a query Q 
having restrictions as mentioned above: 
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ρ(Q) = E(ρ(Q, L7.S1)) ≤ E(ρ(Q, L7.S2)) 

≤ E(ρ(Q, L7.S3)) ≤ E(ρ(Q, L7.S4)) 

Using this property of the k-MDI tree, it is possible 
to quickly increase the size of a sample that is too 
small, by including more records from other sections 
of the retrieved leaf nodes. 

2.6 Record Retrieval to Process a 
Query  

The objective of using the k-MDI tree is to retrieve a 
significant number of relevant records (i.e. records 
that satisfy the query conditions) in the sample 
drawn for processing a given query. The query 
conditions may span sections of one or more leaf 
nodes, which can be reached from index nodes that 
straddle more than one range of attribute values. 
Traversing the tree from the root using the attribute 
value ranges in the query conditions can access these 
leaf nodes. Sections from multiple leaf nodes are 
then combined to form the sample.   

We describe the retrieval process using an 
example query on the sample database of Figure 2. 
Consider a query Q0 about sales in store 12 for date 
range 1-13 and item range 12M-20M.  The retrieval 
algorithm finds the sections of leaf nodes for this 
query as follows: 
1. Search index level 1 to locate the relevant store 

range. Store 12 is in the left most range of 1-16. 
2. Traverse down to index level 2 (date), indicated 

by a dashed arrow in Figure 3, along the first 
store range. Since there is a condition on date (1-
13), compare the HWMs (high water marks) of 
the three ranges and find that it fits into two date 
ranges viz. the first and the second.  Make a note 
of these date ranges. 

3. Traverse down using the first date range to the 
next index level, which has item ranges. Since 
there is a condition on item numbers (12M-
20M), compare this range with HWMs and find 
that it fits into two ranges viz. the third and the 
fourth.  Make a note of these item ranges.   

4. Traverse down using the third item range to 
relevant leaf pages and make a note of them.   

5. Iterate step 4, except this time using the fourth 
item range. 

6. Next, repeat the above three steps i.e. steps 3 
through 5; but this time using the second date 
range instead. 

7. Now retrieve records from the relevant sections 
in the four leaf nodes (viz. L3, L4, L7 and L8) to 
form a sample for the given query. 

3 SAMPLING TO ADEQUATE 
LEVELS USING INVERSE 
SRSWOR 

An important question to be answered is how much 
sampling is adequate to estimate some property of a 
population. For business analytics on very large data 
(Chaudhuri, 2012), it is valuable to provide the 
analytic query user with incremental feedback of the 
ongoing progress of an approximate query (Fisher 
2011); (Fisher et al., 2012). The method described 
below for determining if an adequate sample size 
has been retrieved is based on the works of 
Chaudhuri and Mukerjee (1985) and Sangngam and 
Suwatee (2010). Their research established that 
inverse simple random sampling without 
replacement (or inverse SRSWOR) method provides 
an unbiased estimate of the number of data points 
(M) satisfying property P, if sampling is continued 
until a pre-assigned number, say m, of data points 
satisfying property P are present in the sample.  In 
the present case, property P would be the conditions 
imposed on a query viz. the dimension ranges.  For a 
given query Q, assume that we have determined the 
estimate of ( )Q .  

Recall that  

 
We could also choose the above sample size n as 
follows: 

Fix the error we are ready to tolerate, say e. Then 

choose 
2

/2
2

( )(1 ( ))z Q Q
n

e
  

 , where e is a number 

such as 0.01, 0.02, or 0.05 etc. and /2z  is the 

normal ordinate such that  /2Prob P(Q)> 
2

z


  

where P(Q) is the random variable representing ρ(Q). 
Usually we take = 0.05  for 95% confidence 
interval. 

Now estimate ρ(Q) again using this new sample 
size. Henceforth, assume that we have this new 
estimate with error bounded by e. In fact, when the 
true value of ρ(Q) is not too close to zero (0) or one 
(1), and sample size n is large enough we know that 
the random variable P(Q) representing ρ(Q), follows 
approximately the Normal distribution with mean 

( )Q and standard deviation 
( )(1 ( ))

.
Q Q

n

 

. Now 
assume that the true value of ( )Q is not too close to 
zero (0) or one (1), then we can get 95% confidence 
interval for true value of ρ(Q) as

Number of cases satisying conditions of query Q
( ) .

sample size n
Q 
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Figure 3: Navigation down index tree nodes for conditions on three dimensions. 

( )(1 ( )) ( )(1 ( ))
( ) 1.96 , ( ) 1.96 ,

  
   

 

Q Q Q Q
Q Q

n n

     (1)

Using the confidence interval (1) we can choose 
about 5 to 10 possible values for P(Q). These values 
may correspond to 10, 25, 50, 75, 90 percentile 
points of the random variable P(Q). Let us denote 

these values by .  
Using these 5 percentiles, choose 10% or 20% of 

the corresponding M values as possible choice of 
values for m. More specifically,  

; 

; 

; 

; 
and 

. 
Henceforth, denote these 10 possible values of m by 
mt , 1≤ t ≤ 10. We now describe the Basic Find_M or 
BF_M algorithm and the steps involved. There are 
five steps in the BF_M algorithm, which are as 
follows:  
1. Initialization: In this step, various variables, like 
counts and cumulative totals, are initialized. 

2. Sampling: Records are sampled iteratively and 
those meeting the given condition i.e. satisfying the 
given property, say P, are used for calculating the 
sum and the count of the value(s) in the query. 
3. Check & Iterate: This step checks if adequate 
number of samples have been retrieved. In case, it 
has not reached the targeted number of samples, it 
iterates the sampling step, else it terminates further 
sampling. 
4. Estimation: In this step, unbiased estimators of 
M, average and sum, and their variances are 
computed. 
5. Best Estimate: Choose the best estimate as the 
one that minimizes the desired variance. 
 

The BF_M algorithm used for the inverse sampling 
without replacement is shown in Algorithm 1. 

Now for a given query Q, we can use Algorithm 
1 to recommend the appropriate value of m that 
yields the smallest variance for the estimate of M. 
To determine the number of sections to retrieve, 
frequency tables for all dimensions are used. In case 
the query involves more than one dimension, 
information in frequency tables for all dimensions 
involved in the query condition is utilized. 
 
 
 

1 2 3 4 5( ), ( ), ( ), ( ) and ( )Q Q Q Q Q    

1,1 1 2,1 10.10 ( )  , 0.20 ( )m Q N m Q N  

1,2 2 2,2 20.10 ( )  , 0.20 ( )m Q N m Q N  

1,3 3 2,3 30.10 ( )  , 0.20 ( )m Q N m Q N  

1,4 4 2,4 40.10 ( )  , 0.20 ( )m Q N m Q N  

1,5 5 2,5 50.10 ( )  , 0.20 ( )m Q N m Q N  
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Algorithm 1. Basic Find_M (BF_M) Algorithm. 

Input Dataset to be sampled D, Cardinality of 
dataset N, the 10 different values of mt , 1≤ 
t ≤10.   

Output Estimates of M, average and sum of 
population. 

 

Choose m = mt , 1≤ t ≤10 and continue to draw a 
SRSWOR until the sample has at least mi transitions 
with property Q. More precisely, we use the 
following steps. 
 
Begin  

1. Initialization step: set i = 1, n0 = current 
sample size = 0, m10 = the number of 
transactions satisfying property Q = 0 and 
Sum0 = 0 and SumX2

0 = 0. 
Corresponding to query Q, let Li, 1≤ i ≤ r  be 
the list of all leaves of the tree that are 
candidates for drawing samples. 

Set t =1; 

While t 10   Loop 

   Set  m = mt 

2. Sampling step: Choose at random a leaf Li 
from the set of r candidate leaves. From leaf Li 
choose section Sp, during pth  visit to 
this leaf.  

 Let transactions from Sp be denoted by Ti 1, Ti 2, 
…, Ti q .            

Set j=0; ni  = ni-1; m1i = m1i-1 and Sumi =Sumi-1 
and SumX2

i = SumX2
i-1 

  Repeat  
               j = j + 1; 
               ni = ni + 1;  

 If  Ti (j+1) satisfies the property P   
       then  
         m1i = m1i+1 

Sumi = Sumi +    XTij   and 
SumX2

i = SumX2
i+(XTij )

2 . 
     Until (j = q or m1i = m) 
 

3. Check & Iterate step:  If m1i < m then set i = 
i + 1 and go to step 2. Otherwise, go to step 4 
since the sampling procedure has terminated 
(with reference to current value of m) and 
ready to determine the unbiased estimates of 
M, Sum and Average (using current value of 
m).  

 

4. Estimation step:  Set sample size n = ni  and m 
= the number of transactions satisfying the 
property Q and set sum' = Sumi and Z = 
(SumX2

i ) / m      
 

   Unbiased estimate of  m-1ˆM= M  N
1t n




 

 Unbiased estimate of variance of is   
 

  Unbiased estimate of Average is  
 

         
 

         
 

  Unbiased estimate of Sum is  
      

          

    Define  2 2m
s Z-(x )

m-1t t  

    Unbiased estimate of variance of Average is 
 

 2M̂ m
v(x ) Z-(x )

M̂ (m-1)
t

t t

t


  . 

  Define    

 
Unbiased estimate of variance of Sum. = 

     
 

5.  Retain the best estimate  
If t=1, store the estimates , 

, xത ൌ xതଵ, , sଶ=sଵଶ, vሺxതሻ ൌ

vሺxതଵሻ, ܯ෢ܶ ൌ  ෢ܶଵ, and as the bestܯ

estimates of M, Sum and Average and their 
variances. 

If 1 ൏ ݐ ൑ 10 and the latest estimates , 

vሺxത௧ሻ and  of variances are smaller than 

the best estimates (among previous runs 1, …, t-
1) then update the best estimates to the latest 
estimates with reference to current t value.  The 
user chooses to use one or more of variances

,  and  to control the 

updating step depending upon the priority he 
has in estimating M, Average or Sum. 

     Set t = t+1 
  End Loop / / when t > 10 
 

End 

4 EXPERIMENTAL RESULTS 

To evaluate the effectiveness of the proposed 



1 4p 


M

t

sum'
x =

mt


T

t
=

M

t
x

t

MT t  N2 m-1

n-1











N-1

N

m-2

n-2











1

N











v(T
t
)


T

t
2 - MT t (Z-s2 )+


M

t
s2

t








M=


M

1

v(

M) = v(


M

1
)


T=

T

1

v(

T) =v(


T

1
)

v(

M

t
)

v(

T

t
) 

v(M̂ ) v(x) v(T̂)
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sampling technique based on the k-MDI tree, 
experiments were performed on real life 
supermarket retail sales data (TUN 2007) for a 
month from 150 outlets.  The data warehouse is 
structured as a star schema shown in Figure 4, with 
the fact table (itemscan) consisting of over 21 
million rows and three dimension tables viz. 
storeInfo, itemDesc and storeMemberVisits.  

In Section 3, the concept of inverse random 
sampling without replacement (Chaudhuri and 
Mukerjee, 1985); (Sangngam and Suwatee, 2010) 
along with unbiased estimation techniques was 
introduced for estimating the mean, Sum and M, the 
count of records satisfying a property P in the 
database. Next, the results of the experiments are 
shown using the k-MDI tree to facilitate random 
retrieval of records to estimate M. 

We considered a set of three queries (modified 
version of TPC-H Query 1 (TPC-H 2007) containing 
the SQL functions – avg(), sum(), count() with 
varying database relevancy ratios (or DRR, as 
defined in Section 2.4), viz. low (<0.01), medium 
(0.01 - 0.1) and high (>0.1) DRRs. The queries were 
of the form: 

 

Figure 4: The schema for experimental retail sales data 
warehouse. 

   Select Avg(totscanAmt), Sum(totscanAmt), 

 Count(*) 

  From  itemscan, storeinfo, itemdesc 

  Where  storeno between s1 and s2 

  And 
itemscan.storeno=storeinfo.storeno   

  And itemscan.itemno=itemdesc.itemno   

And datesold between d1 and d2 

And itemno between i1 and i2; 

Table 2 shows the percentage error rates for low 

database relevancy ratio, using the 10 different 
sampling rates pertaining to 5 percentile values of 
ρ(Q) at the 0.10 rate and 5 for 0.20 rate as per the 
sampling and estimation schemes discussed in 
Section 3. Here, m1,1 refers to 0.10 rate for the 10th 
percentile value of ρ(Q); m1,2 for the 25th percentile 
value; m1,3 for the 50th; m1,4 for 75th; and m1,5 for 
90th; while m2,1-m2,5 for the same percentile values 
respectively but at 0.20 rate. Table 2 and the 
corresponding graph in Figure 5 show the accuracy 
levels achieved by the sampling scheme using 
inverse SRSWOR for low DRR queries. It is 
observed that the error rates for calculation of Avg 
are below 5%, but estimates of both the M and the 
Sum are not within the acceptable error limits of 5%. 

Table 2: Estimating for M, Avg and Sum using inverse 
SRSWOR - Low DRR 

Sampling 
Rate 

Est. value of 
M 

Error in 
estimating M 

Error 
Avg 

Error 
Sum 

m1,1 3231 6.61 4.1 14.68 

m1,2 2758 9.01 2.21 12.02 

m1,3 2757 9.05 3.12 19.08 

m1,4 3286 8.42 2.59 15.46 

m1,5 3353 10.61 2.19 15.4 

m2,1 2670 11.9 1.78 12.87 

m2,2 3340 10.18 1.36 14.65 

m2,3 3262 7.62 1.27 9.86 

m2,4 2782 8.21 1.69 9.28 

m2,5 3241 6.92 1.59 8.94 

 

 

Figure 5: Error rates of estimating M, Avg and Sum using 
SRSWOR for low DRR. 

Table 3 and the corresponding graph in Figure 6 
show the accuracy levels achieved by the sampling 
scheme as described for inverse SRSWOR on 
medium DRR queries. It can be observed that for 
medium DRR queries, the count M, the Avg and the 
Sum are within the acceptable error rate limits of 0-
5%.  

ITEMSCAN 
 

storeno 
datesold 
itemno 
visitno 
qty 
totalScanAmt 
unitcost 
unitprice 

 

21,421,663 

ITEMDESC 
 
itemno                          
categoryno             
subcategoryno     
 primarydesc            
 secondarydesc      
 colour                        
 sizedesc                      
 statuscode               
  :    
               

19,825 

STOREINFO 
  

storeno         
 storename   
 regionno      
 districtno     
 storetype     
 address        
   : 
 

150 

STOREMEMBERVISTS 
 

 memberno           
 visitno                
 storeno 
 memberstatuscode             
   : 
      

218,872 
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Table 3: Estimating for M, Avg and Sum using inverse 
SRSWOR - Medium DRR. 

 

 

Figure 6: Error rates of estimating M, Avg and Sum using 
SRSWOR for medium DRR. 

Table 4 and the corresponding graph in Figure 7 
show the accuracy levels achieved by the sampling 
scheme for inverse SRSWOR on high DRR queries. 
It can be observed that the count M, the Avg and the 
Sum were quite accurately estimated as they are 
within the acceptable error rate limits of 0-5%.  

Table 4: Estimating for M, Avg and Sum using inverse 
SRSWOR - High DRR  

 
 

 

Figure 7: Error rates of estimating M, Avg and Sum using 
SRSWOR for high DRR. 

In general, the accuracies achieved for high DRR 
queries are better than those of medium DRR. Thus, 
the sensitivities of the error rates for all the three 
statistics viz., AVG, SUM and M are much less, i.e. 
show fewer fluctuations, as compared to that of the 
medium DRR. 

5 CONCLUSIONS 

In this paper, an innovative estimation scheme based 
on inverse simple random sampling without 
replacement (SRSWOR) was presented for 
approximate processing of data warehouse queries. 
Using this technique, the total number M of records 
in the whole database satisfying the query conditions 
was estimated along with the mean and sum for 
typical queries. The k-MDI tree index was used to 
draw the samples efficiently. It was found that for 
queries of low database relevancy ratio (DRR), the 
estimated values of average were within the 
acceptable error limit of 5%, but not the estimates of 
sum and the total number of relevant records M. 
However, for both medium and high DRR queries, 
all the three statistics viz. the value of M, the 
average and the sum were estimated with error rates 
below 5% as shown in Section 4. Future research 
may incorporate the probabilistic approaches such as 
those in (Aouiche and Lemire 2007); (Heule et al., 
2013) in our algorithm based on k-MDI tree. 
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