
Evolutionary Learning of Business Process Models from Legacy
Systems using Incremental Process Mining

André Cristiano Kalsing, Cirano Iochpe, Lucinéia Heloisa Thom and Gleison Samuel do Nascimento
Department of Informatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil

Keywords: Evolutionary Learning, Process Mining, Incremental Process Mining, Legacy Systems.

Abstract: Incremental Process Mining is a recent research area that brings flexibility and agility to discover process
models from legacy systems. Some algorithms have been proposed to perform incremental mining of
process models. However, these algorithms do not provide all aspects of evolutionary learning, such as
update and exclusion of elements from a process model. This happens when updates in the process
definition occur, forcing a model already discovered to be refreshed. This paper presents new techniques to
perform incremental mining of execution logs. It enables the discovery of changes in the process instances,
keeping the discovered process model synchronized with the process being executed. Discovery results can
be used in various ways by business analysts and software architects, e.g. documentation of legacy systems
or for re-engineering purposes.

1 INTRODUCTION

Extraction of business processes from legacy
systems can become a very complex task when the
continuous evolution of business processes is
required. Business processes usually translate the
current business needs of a company and they are
made up of business rules, activities, control flows,
roles and systems. When these business needs
change, it is likely that the structure of the process
will also change. Consequently, the process models
discovered during the mining task, either partial or
complete, should also reflect these changes. So, in
this case the extraction of business processes cannot
be done in one step, but several incremental ones.
Moreover, this scenario could be even more
complex when the re-engineering process must
handle large legacy system with constant
maintenance. In this case incremental discovery
helps to keep the system maintenance lives while it
is modernized.

To overcome these limitations, incremental
process mining techniques (Kalsing, 2010a),
(Kalsing, 2010b), (Ma, 2011), (Sun, 2007) are
designed to allow continuous evolution of the
discovered process models. Evolution means that
new events executed and recorded in the log can
generate new dependencies among activities or
remove old ones. Thus, using these techniques we

can significantly improve the discovery process
from legacy allowing an iterative approach and also
more accurate results.

1.1 Problem Statement

Although some techniques for incremental process
mining have already been proposed, there are still
aspects to be improved. The main aspect is the better
support for update operations during incremental
mining of logs, such as removing elements from
previously discovered process model when they are
considered obsolete elements (e.g. tasks and
transitions removed from process definition).

After the discovery of a partial or complete
process model from legacy system, any changes
contained in modified process instances (e.g.
modified business rules in source code) must be
merged in those models. Those kinds of changes can
be seen in the example of the execution logs shown
in Fig. 1 and described next. The logs were
generated by the execution of a legacy information
system which the source code is partially
represented in Fig. 2 and 3. These logs are divided
into three logical parts: Initial Traces, New Traces
and Updated Traces (see Fig. 1). We can check that
the generation of the Initial Traces and the New
Traces log occur when users (i.e. Mary, Paul and
Mark) execute specific use cases scenarios within an

58 Cristiano Kalsing A., Iochpe C., Heloisa Thom L. and Samuel do Nascimento G..
Evolutionary Learning of Business Process Models from Legacy Systems using Incremental Process Mining.
DOI: 10.5220/0004446200580069
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 58-69
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

information system (e.g. cases A, B and C)
presented in Fig. 2. The logs are composed by
business rules instances executed and recorded as
presented in lines 2, 5, 8, 11, 14, 18 and 20.

Figure 1: Information System Logs Generation.

The final log (i.e. Updated Traces) represents new
executions of previously scenarios, but this time
generating modified process instances (i.e. see
changes highlighted in Fig. 1-c). We can see in this
log modified traces, where task BR3 was replaced
by task BR4. These changes were generated by the
modified version of source code, presented in Fig. 3.
It shows that the business rule presented in lines 7-9
of Fig. 2 was removed from the system. In addition,
case C, which was originally executed by user Mark,
is now performed by Paul. This specific kind of
change is usually not present in source code and can
be represented by an organizational change.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/* MORE CODE HERE */
WriteLog(currentUser, “BR1”, traceId);
printf("PRODUCT/QTY/CUSTOMER: "); //execs business rule 1
scanf("%s", product); scanf("%s",qty); scanf("%s", customer);
WriteLog(“finApp”, “BR2” , traceId);
approved = fin.creditAnalysis(customer); //business rule 2
if (approved && price >1000) {
 WriteLog(“orderapp”, “BR3” , traceId);
 newPrice = price ‐ (price * 0.10); // execs business rule 3
} else if (approved) {
 WriteLog(“orderapp”, “BR4” , traceId);
 newPrice = price ‐ (price * 0.05); // execs business rule 4
} else {
 WriteLog(“sendMail”, “BR5” , traceId);
 sendMail.Send(customer,"credit refused!"); // exec rule 5
 return;
}
WriteLog(“stockApp”, “BR6” , traceId)
stock.Update(product, qty); // execs business rule 6
WriteLog(“Db”, “BR7” , traceId);
query.execute (“INSERT INTO orders VALUES (customer,
product, qty)”); // executes business rule 7
/* MORE CODE HERE */

Figure 2: Example of instrumented source code.

.
7
8
9
10
11
12
13
14
.

/* ORIGINAL SOURCE CODE HERE */
if (approved) {
 WriteLog(“orderapp”, “BR4” , traceId);
 newPrice = price ‐ (price * 0.05); //execs business rule 4
} else {

WriteLog(“sendMail”, “BR5” , traceId);
sendMail.Send(cust, "credit refused!"); //exec bus. rule 5
return;

}
/* ORIGINAL SOURCE CODE HERE */

Figure 3: Modified version of legacy source code of Fig.
2.

1.2 Contribution

In our previous work (Kalsing, 2010b) we propose
an incremental algorithm which is able to perform
the incremental mining of process logs (i.e. only the
discovery of new process elements) generated from
legacy systems or any other kind of system. In this
article, we are proposing new algorithms and
improving the original ones to detect new and also
obsolete elements on discovered process models. We
use new heuristics to analyze new and modified
process instances recorded in the log in order to
incrementally discovery process models and mainly
update previous discovered process models. This
distinguishes our approach from all previous works.
Thus, the main contribution of this work is the
creation of algorithms that introduce new mining
techniques, capable to i) add new discovered
activities to an existing model and ii) remove
obsolete activities and transitions from the
discovered model. As a complementary contribution
we introduce a statistical method to measure the
quality of discovered models on incremental mining.

The next sections are organized as follow:
Section 2 introduces the operations supported by the
incremental algorithm. Section 3 introduces details
of the incremental mining algorithm and how it
performs the creation and update of process models.
Experiments using a real legacy system and also
simulated logs are presented in section 4. Section 5
introduces the related work and how techniques
presented here include considerable improvements
over them. In the last section, we present the
conclusions and future work.

2 BASIC CONCEPTS

This section introduces the basic concepts related to
process mining, which are used in our approach.

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

59

2.1 Basic Relations

The techniques presented here mine the control-flow
perspective of a process model from logs. In order to
find a process model on the basis of an event log, it
must be analyzed for causal dependencies, e.g., if an
activity is always followed by another, a dependency
relation between both activities is likely to exist.

On our previous work (Kalsing, 2010a) we
define the basic relations used by incremental
mining algorithm. Here we introduce a new relation
to represent obsolete relations in a log, where:
1)][wca wba  if and only if there is a log of

events W= σ1σ2σ3…σn and i < j and i, j{1, …, n-1}
and a trace σ = t1t2t3…tn, where ti = a and ti+1= (b or
c) and σi  wca  and σj  wba  . The relation

w represents the sibling relation of w derived
from log of events W, where the relation

w represents a relation older than (i.e. that occurs
chronologically before in the log) the sibling
relation w .

2.2 Update Operations

In this section we introduce the update operations
that may occur during incremental mining. The first
operations (i.e. rows a-d of Table 1) represent the
insertion of structures in a process model, such as
the inclusion of tasks, gateways and participants.
These operations were already supported by our
previous algorithm and will be complemented here
with new removal operations (i.e. rows e-h of Table
1).

3 INCREMENTAL MINING

We consider two main phases to extract business
process models from legacy: i) identification and
annotation of business rules in the source code and
ii) incremental mining process. The steps are shown
in Fig. 4. First, the source code of the system is
analyzed by static methods (Sneed, 1996), (Wang,
2008) to identify business rules in the source. After
identified, the business rule is annotated to enable
the output of its behavior to log (i.e. as show in fig. 2
and 3). So, the main objective of the identification of
business rules is to generate log information about
its behavior as input for the next step. Thus, all
business process models extracted from legacy
systems will be composed by business rules (i.e.
tasks) extracted from the source code. The last main
step in the process is the incremental process mining

approach. It is used to extract dynamic behavior
from the system based on execution of business
rules recorded in log data. This phase output is a set
of business process structures and task participants,
similar to the structures in Fig. 5.

Table 1: Update Operations of Incremental Mining.

Operation When it occurs
(a) Add a new task to the model It occurs when

wba  introduces a new
transition into the graph,
where b (task D) is a new
task.

(b) Add a new participant to the
model

It occurs when a
participant (human or
system) starts executing a
new task.

(c) Add a new gateway (control flow)
to the model

It occurs when wba 
introduces a new
transition into the graph,
where a (task B) has two
causal relations (e.g.
B C and B D).

(d) Add a new transition to the model

It occurs when
wba  introduces a

new transition into the
graph, where a and b were
already in the graph.

(e) Remove transition from the model It occurs when wba 
represents a transition that
does not belong more to
the graph anymore, but a
(C) e b (C) must be kept
in the graph;

(f) Remove a participant from the
model

It occurs when a
participant (human or
system) does not execute
some task anymore.

(g) Remove a gateway from the
model

It occurs when wba 
represents a transition that
does not belong to the
graph anymore, where a
(B) has now just one
causal relation (task C).

(h) Remove a task from the model

It occurs when
wba  represents a

transition that does not
belong more to the graph
anymore, where b (D)
must be removed from the
graph.

The next sections describe the details of the
incremental mining algorithm (i.e. step 5 of Fig. 4)
and how it handles incremental knowledge
discovery from legacy systems. More details about
the whole process described by Fig. 4 can be found
in (Kalsing, 2010b).

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

60

Figure 4: Knowledge Extraction Process.

3.1 Mining of Execution Traces

Our mining algorithm uses a heuristic approach to
extract the dependency relations from logs. These
heuristics use a frequency based metric to indicate
how certain we are that there is a truly dependency
relation between two events. The main algorithm is
presented in Algorithm 1 (i.e. see Fig. 8) and can be
divided in three main steps: 1) mining of
dependency graph (i.e. mining of relations w ,║w
and >>w) and control-flow semantics; 2) discovery
of obsolete relations and 3) mining of participants.
The first step discovers all dependency relations
from events log, such as sequences, loops,
parallelism and control-flows (i.e. see item 2.a.iv of
algorithm 1). It is performed applying the heuristics
defined in this work and it is covered by the
algorithm 2 (i.e. ProcessRelation). Then, in the next
step, the algorithm discovers obsolete dependency
relations from log. These relations represent
elements removed from process definition and must
be excluded from previous discovered model. In the
last main step, we mine the task participants. It is a
simple step to discovery and to manage the set of all
participants that perform one task. This behavior is
covered by algorithm 7 (i.e. ProcessParticipant).

3.2 Starting the Mining of Logs

The IncrementalMiner algorithm uses three basics
information from logs to perform the mining: Task
Id, Participant and Trace Id (i.e. log in Fig. 1). To
exemplify how the mining of logs is performed,
consider the partial log W = {BR1BR2BR3BR6BR76,
BR1BR2BR4BR6BR75} (i.e. column Act. ID values
of the log shown in Fig. 1-a). IncrementalMiner
starts iterating on each process instance in the log.
Each instance is composed by a set of events (i.e. an
execution trace). For each pair of events (i.e. e1 and
e2) in this trace, we apply a set of heuristics to

Figure 5: Process model generated from the log in Fig. 1.

discover likely relations (i.e. ProcessRelation
algorithm). Considering the pair of two first events
(e.g. BR1 and BR2) in the log, the first heuristic to
be applied is heuristic (1) named Dependency
Relation heuristic. It verifies if a dependency
between the two elements in the trace exists. Let W
be an event log onT , and Tba , . Then || wba 

is the partial number of times wba  occurs inW ,
and:














1||||

||||

wabwba

wabwba
wba (1)

The Dependency Relation heuristic calculates the
Partial Confidence (i.e. the Confidence value at
some point of the algorithm) of this relation, using
the support of wba  (e.g. partial number of times
that BR1 comes before BR2) and the support of

wab  (e.g. partial number of times that BR2 comes
before BR1). In this example,  wba (11-0) /
(11+0+1) = 0.916 is the partial confidence for the
relation BR1→BR2. After calculated, this value and
all the associated data of dependency relation are
inserted in the Dependency Tree. Dependency tree is
an AVL tree that keeps the candidate relations (i.e.
relations that could be considered in the final
process graph) together with their confidence and
support values, respectively. Fig. 6 shows the
Dependency Tree for the heuristic

wba  calculated above (i.e. see node BR2, in the
dependency tree BR1) and all further dependency
relations. IncrementalMiner uses AVL trees because
of satisfactory time for searching, insertion and
removal operations, which is required by the
incremental approach.

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

61

The result of this and all other heuristics of
IncrementalMiner has values between -1 and 1,
where values near to 1 are considered good
confidences. The next two heuristics below (i.e.
heuristics 2 and 3) verify the occurrence of short
loops in the trace. That is, it checks the existence of
iterations in the trace. Heuristic (2) calculates the
confidence of short loops relations with size one (i.e.
only one task, e.g. BR1BR1) and heuristic (3)
considers loops of size two (i.e. two tasks, e.g.
BR1BR2BR1). Let W be an event log over T, and a,
b  T. Then |a >W a| is the number of times a >wa
occurs in W, and |a >>W b| is the number of times a
>>W b occurs in W:














1||

||

waa

waa
waa

(2)
















1||||

||||

wabwba

wabwba
wb2a  

The heuristic (4) is used to verify the occurrence
of non-observable activities in the log (i.e.
AND/XOR-split/join semantic elements). Let W be
an event log over T, and a, b, c  T, and b and c are
in dependency relation with a. Then:














1||||

||||
^

wcawba

wbcwcb
cwba 




|||| wcawba  represents the partial

number of positive observations and
|||| wbcwcb  represents the partial number

of times that b and c appear directly after each other.
Considering the partial event log W = {…,
BR1BR2BR3…, BR1BR2BR4…} extracted from
Fig. 1-a, the value of cwba ^ = (0 + 0) / (6 + 5 +
1) = 0.0 indicates that BR3 and BR4 are in a XOR-
relation after BR2. High values to

cwba ^ usually indicate a possible parallel
AND-relation and low values a XOR-relation.

The above defined heuristics are used to calculate
the candidate relations that can be added to the final
dependency graph. In order to select the best
relations, we used the best relations trees (see Fig. 7).
These trees keep the best dependency and the best
causal relations (i.e. relations with the highest
confidence value, as presented in Fig. 6) of each
dependency tree. Like the dependency tree, the best
relations trees are updated after the evaluation of
each dependency relation, calculated by heuristics
(1), (2) and (3).

Figure 6: Dependency trees.

The first step to update the best relation tree is to
update the best dependency tree for the current
relation. Considering the current relation of the
example (i.e. BR1→BR2), we first check if the
confidence value of this relation (i.e. 0.916) is lower
than the confidence value of the relations in the best
dependency tree of BR1 (i.e. see tree BR1 in Fig. 7-
a). If it is the case, we remove it from the final
dependency graph (i.e. see algorithm
UpdateBestRelation). Besides, we check if its
confidence value is greater than the one of the
current best relations in the dependency tree of BR1
and remove all the older relations from it (i.e. the
older relations have confidence values smaller than
the one of the current relation). Finally, we add the
current relation to the end of the best dependency
tree of BR1. The same process is carried out for the
second element (i.e. BR2). Instead we use the best
causal tree of BR2 (see Fig. 7-b). All the elements of
the dependency tree are considered best
dependencies in this simple example. So, the two
trees (Fig. 7-a and Fig 6) are very similar to each
other. At the end, we discovered the partial process
model (i.e. dependency graph), as shown in Fig. 5-a.

Figure 7: The best relations trees extracted from
dependency tree of Fig. 6.

3.3 Adding New Elements to the Model

In an incremental discovery of process models,
adding new entries to the log (e.g, new process
instances) may reveal additional behavior that should
be incorporated into the process model already

BR1

0.916

BR2

BR2

0.857

BR3

0.833

 BR4

BR3

0.857

 BR6

BR6

0.916

 BR7

BR4

0.833

 BR6

(b) Best Causal Trees

BR2

0.916

 BR1

BR3

0.857

 BR2

BR6

0.857

 BR3

0.833

 BR4

BR7

0.916

 BR6

BR4

0.833

BR2

(a) Best Dependency Trees

BR1

0.916 11

BR2

BR1→BR2

BR3

0.857 6

BR6

BR3→BR6

BR2

0.857 6

BR3

BR2→BR3

0.833 5

BR4

BR2→BR4

BR4

0.833 5

BR6

BR4→BR6

BR6

0.916 11

BR7

BR6→BR7

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

62

discovered. Thus, after process the log of initial
traces as described in the previous section (i.e. log of
Fig. 1-a), we still need to process the complementary
log traces of Fig. 1-b, represented by the log set W =
{BR1BR2BR510}. After running IncrementalMiner
over this log, we will obtain the final dependency
graph of Fig. 5b. The dependency graph shows
additional structures extracted from the new traces
(i.e. BR5 activity and participants Mark and
sendMail).

Algorithm 1. IncrementalMiner
Input w: Log, g1:DependencyGraph Out g2:
DependencyGraph

1. g2← g1
2. For each new instance  W

(a) For each event ei 

(i) e1 ← ei
(ii) e2 ←ei+1
(iii) e3 ←ei+2
(iv) ProcessRelation(e1, e2, e3)
(v) CheckOldSiblingRelations(e1)
(vi) ProcessParticipant (e1)

Algorithm 2. ProcessRelation
Input e1, e2, e3: Event

1. r12 ← CreateRelation(e1, e2).

2. confidence ← wba  , where a = e1 e b = e2.

3. IF e1 = e2 then
(a) loop1 ← waa  , where a = e1 e a = e2
(b) IF loop1 > LOOP1_THSLD then
(i) AddRelationToGraph(e1, e2).

4. Else IF e1 = e3 then

(a) loop2 ← wba 2 , where a = e1 e b = e3.

(b) IF loop2 > LOOP2_THSLD then
(i) AddRelationToGraph(e3, e1).

5. n1←UpdateDependencyTree(r12 , confidence)

6. andSemantic ← cwba ^ , where a=e1,b=e2 e

c=e3
7. amd←get best relations tree of e1
8. amc← get best causes tree of e2
9. UpdateBestRelation(n1, amd)
10. UpdateBestCause (n1, amc)
11. n3← get the root of amd tree
12. n1←amd.getNode(e2)
13. n2←amc. getNode(e1)
14. IF ( (n1 = Ø)   (n2 = Ø) confidence >
DEPENDENCY_THSLD) support(r12) >
POSITIVEOBSERVATION_THSLD  confidence –

n3.confidenceRELATIVETOBEST_THSLD then
(a) AddRelationToGraph(e1, e2).

15. ComputeOldSiblingRelation(e1, e2).

Algorithm 3. UpdateBestRelation
Input n1: Node, a1: Tree

1. value←CheckConfidence(n1.confidence, a1)
2. IF value = ‐1 then //smaller value

(a) RemoveRelationFromGraph(n1.relation).
3. Else IF value = 1 then //higher value
(a) For each node n2  a1
(i) Remove n2 from a1
(ii) RemoveRelationFromGraph(e1, e2)
(b) Add n1 to a1
5. Else IF value = 0 then //equal value
(a) Add n1 to a1

Algorithm 4. CheckOldSiblingRelations
Input e1: Event
1. bestRelations←Ø //create a temporary set
2. worstRelations←Ø // create a temporary set
3. ve1←get vertex related to e1 from graph g2
4. outve1←get output vertices set related to ve1
5. For each vertex vi  outve1
(a) r12 ←GetRelation(e1, vi.event).
(b) sibvi←get sibling relations set of vi
(c) For each sibling relation ri1sibvi
(i) IF ri1.confidenceOBSOL_THSLD then
(x) Add ri1 to bestRelations
(ii) Else
(x) Add ri1 to worstRelations
(d) IF sibvi bestRelations then
(i) RemoveRelationFromGraph(r12)
(e) Else
(i) For each relation r1 worstRelations
(x) For each sibling relation ri1 r1

a. IF ri.confidence>OBSOL_THSLD then
i.exclude←ri1bestRelationsexclude =true
(ii) IF (bestRelations=Ø) exclude=true then
(x) For each relation r1 worstRelations

a. RemoveRelationFromGraph(r1)
(y) RemoveRelationFromGraph(r12)
Algorithm 5. ComputeOldSiblingRelation
Input e1, e2: Event
1. ve1←Get vertex related to e1 from graph g2
2. r12 ← GetRelation(e1, e2).
3. sibr←get sibling relations set related to r12
4. For each sibling relation ri1 sibr
(a) IF ri1 = r12 then
(i) confidence← cwba  , where wba  =

support of r12, wca  = support of r and
][wca wba  = support of ri1

(ii) ri1.confidence←confidence

Algorithm 6. CheckConfidence
Input conf: Number, a1: Tree Output: v: Number
1. n1←get root node of a1
2. IF confidence > n1.confidence then
(a) v←1
3. Else IF n1.confidence = confidence then
(b) v← 0
4. Else
(c) v← ‐1

Algorithm 7. ProcessParticipant
Input e1: Event
1. ve1←Get vertex related to e1 from graph g2
2. IF  e1.participant  ve1.participants
(a). Add e1.participant to ve1.participants

Figure 8: Pseudocode of Incremental Mining Algorithms.

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

63

3.4 Removing Elements from Model

A process model is considered complete when it
replays all events recorded in a complete log (van
der Aalst, 2004). In this case, new traces added to
the log will not change and neither will add new
behavior to the model. However, this definition
could not be true when changes occur in the process
structure, recording possibly modified instances in
the log.

The problem in identifying modified process
instances is that this information is often not
recorded in the log. What happens in this case is the
empirical analysis to check the likelihood of
obsolete events (events related to elements that are
not longer in the process definition, and
consequently they also no longer occur). Thus, the
main goal of the algorithms presented in this section
and also one of the main contributions of this work
is the ability to identify and remove obsolete
dependency relations from discovered process
models during the incremental mining.

To demonstrate how these algorithms work, we
shall return to the log presented in Fig. 1-c. This log
contains modified versions of initial process
instances and it was recorded by the execution of
modified source code presented in Fig. 3. The first
change can be observed in the log generated by case
A (i.e. executed by the user Mary). This case
generates 18 occurrences of trace
BR1BR2BR4BR6BR7. However, we can see in Fig.
1-a that this case originally used to record the trace
BR1BR2BR3BR6BR7. The change in this case is
the replacement of task BR3 by task BR4.

Process instances changes as described above
can be often imperceptible during the mining task,
because they depend on several factors such as
frequency of related events (i.e. events related to
task BR4), incidence of noise, etc. Thus,
ComputeOld SiblingRelation and
CheckOldSiblingRelation enable the identification of
obsolete relations based on previous discovered
model, modified process instances and its frequency.
An obsolete relation is basically a dependency
relation w presented in the dependency graph
which is not executed anymore. The algorithm
ComputeOldSiblingRelation is responsible for
calculating the confidence of the candidate obsolete
relations and it is used by the algorithm
ProcessRelation (i.e. see item 15 of algorithm 2). To
perform this, it uses the heuristic (5) defined bellow.
The heuristic calculates the confidence of relation

w to be an obsolete relation against its sibling
relations w . To demonstrate this, we can see the

relation BR2→BR3 in Fig. 9-a. The sibling relations
of BR2→BR3 are BR2  BR4 and BR2  BR5
(i.e. dashed transitions). Thus, we need to apply the
heuristic for each sibling relation of BR2→BR3. So,
let W be a log of events T , and Tcba ,, . So

|| wba  is the partial number of times that

wba  occurs in W , || wca  is the partial

number of times that wca  occurs in W ,
|][| wca wba 
 is the partial number of times that

][wca wba 
 occurs in W and:

 

  

















































1|][|||
||

||
1

|][|||
||

||
1

wca wbawba
wca

wba

wca wbawba
wca

wba

cwba






(5)

Another important point of heuristic (5)
presented above is that as more events are available
in the log greater is the confidence of obsolete
relations. This behavior is introduced by the partial
expression)/(1  wcawba presented in

(5). It is used as a factor to maximize the value
calculated by cwba  .

Considering the log with modified instances (i.e.
log generated from the execution of a modified
source code) W = {..., BR1BR2BR4BR6BR718,
BR1BR2BR518}, presented in Fig. 1-c, we can check
that the task BR3 was replaced by BR4. All
dependency relations in the dependency graph which
have task BR3 as a causal relation is likely to be an
obsolete relation. In the example, the relation
BR2→BR3 is the only relation having task BR3 in
the causal relation. To confirm if it is an obsolete
relation, we need to analyze it from the sibling
relations perspective (i.e. BR2  BR4 e
BR2 BR5). Thus, we apply the heuristic (5) for
each of them. The first sibling relation BR2→BR4
has the support of wba  as the partial number of
times that BR2→BR4 occurs in the log (i.e. 23
times), the support of wca  as the partial number
of times that BR2→BR3 occurs in the log (i.e. 6
times), and][wca wba  as the support of

sibling relation BR2  BR4 before the last
occurrence of BR2→BR3. Fig. 9-a shows that the
support of sibling relation BR2  BR4 was zero
(i.e. no occurrences) in the last time that BR2→BR3
occurs. After that, we can calculate the confidence
of BR2→BR3 to be an obsolete relation against
BR2 BR4 as cwba  = ((1 + 23 / 6) x (23 –
0)) / (((1 + 23 / 6) x (23 – 0)) + 1) = 0.991. We
repeated the same process to the next sibling relation

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

64

BR2 BR5, where cwba  = ((1 + 28 / 6) x
(28 – 0)) / (((1 + 28 / 6) x (28 – 0)) + 1) = 0.993. As
result of the execution of ComputeOldSibling
Relation for both sibling relations BR2 BR4 and
BR2  BR5 we have obtained values 0.991 and
0.993, respectively.

Figure 9 : Calculating the candidate obsolete relations.

To check if the relation above (i.e. BR2→BR3)
can really be defined as an obsolete dependency
relation, we execute the algorithm 4 (i.e. see
CheckOldSiblingRelation at item 2.a.v of
IncrementalMiner). The algorithm checks the
confidence of each sibling relation w of
dependency relation w calculated by
ComputeOldSiblingRelation. To set the minimum
acceptable value calculated by the heuristic (5), the
threshold Obsolete Relation was created and used by
the following definition:

Definition 1 (Obsolete Relation). Let w be a
relation with two or more sibling relations w , a
dependency relation is considered obsolete if and
only if all sibling relations have cwba  result
above threshold Obsolete Relation.

The definition above is followed by algorithm 4,
as presented at item 5.c and 5.d. Moreover, we set
the threshold Obsolete Relation value to 0.990 to get
only obsolete relation candidates with high
confidence. So, if all sibling relations w of

w reach heuristic results above threshold, then we
need to remove w from dependency process
graph, as presented in items 5.d and 5.e.ii of
algorithm 6. Back to the example, we can see that
relation BR2→BR3 presented in Fig. 9-a has both of
sibling relations with heuristic result above 0.990
(i.e. 0.991 for BR2  BR4 and 0.993 for
BR2  BR5). Thus, it means that we need to
remove the relation from dependency graph, such as
presented in the final discovered model in Fig. 5-c.

4 EXPERIMENTS

The experiments in this section were implemented in
Java language and divided into two groups. The first
group shows the quality of models mined from logs
generated by a process execution simulator (i.e. see
section 4.1). The second group demonstrates the
quality of models mined from logs of a real legacy
system.

4.1 Experiments on Simulated Data

Obtaining practical data for incremental mining is
not a trivial task. Therefore, we have used a
simulation tool (Burattin, 2010) to generate data
about process models definitions and their execution
logs. The models are generated in a recursive way.
First n parts are generated. Each part is a task (with
probability 50%), a parallel structure (20%), an
alternative structure (20%) or a loop (10%). We also
included noise in 5% of all traces in the log.
Additionally, each task has a performer that
represents a process participant. For a parallel or an
alternative structure the simulation randomly
generates b branches. Usually there are no more than
100 tasks in a workflow model (Weijters et al,
2006), so we set n = 4 and 2 ≤ b ≤ 4 to limit the
scale. Each model has at least one loop and at most
three alternative structures and at most three parallel
structures. The simulation randomly generates each
task’s waiting time and execution time. At the
choice point it enters each branch with the same
probability. Each generated model has also a
modified version. It was used to simulate the
evolution of the process model and to perform the
incremental mining with modified process instances.
At the end, we generated 400 models (i.e. 200
original process models and 200 modified versions
of them) and 200 log files, with an average of 47.6
tasks. In each log dataset there are 500 simulated
instances made up by 300 new process instances (i.e.
from original process model) and 200 modified
process instances, generated from the modified
version of these processes.

4.2 Quality of Non Incremental Mining

For measuring the correctness (i.e. accuracy) of our
method in a non-incremental scenario, we have used
the conformance checking metrics for models and
logs (Rozinat, 2007). The result is evaluated from
aspects of Token Fitness (i.e. which evaluates the
extent to which the workflow traces can be
associated with valid execution paths specified in the

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

65

model), Behavioral Appropriateness (i.e. which
evaluates how much behavior is allowed by the
model but is never observed in the log) and
Structural Appropriateness (i.e. which evaluates the
degree of clarity of the model). We use the
conformance checker plug-in of ProM 5.2 (van
Dongen, 2005). The average results from the mining
of 200 datasets (i.e. considering just original process
instances without changes from the logs) are shown
in Table 2.

The Token Fitness and the Structural Fitness
metric values suggest that our method has nearly the
same precision as α-algorithm (van der Aalst, 2004)
and Behavioral Appropriateness slightly lower than
α-algorithm and the method proposed by Ma et al
(Ma, 2011).

Table 2: Quality metrics values.

Metric Our Method α-algorithm Ma et al [5]

Token Fitness 0.998 0.882 0.953
B. Appropriateness 0.851 0.865 0.854
Structural Fitness 1.000 1.000 0.901

4.3 Quality of Incremental Mining

Because of a lack of techniques to measure the
models conformance during the incremental mining
with modified process instances, it was necessary to
use an alternative technique. Kappa (Cohen, 1960)
was used to give a quantitative measure of
agreement between the input process models which
generate the log records (i.e. observer 1) and the
process model mined by the IncrementalMiner (i.e.
observer 2). Here, this measure of agreement defines
the level of similarity between the process structures
of both models. The reason to use Kappa to check
process graph similarity instead other methods like
(Dijkman, 2009) is that we must also consider the
organizational aspects of process such as
participants of process, which is not part of the
graph structure.

The values obtained from Kappa range from -1
(i.e. complete disagreement or low similarity) to +1
(i.e. perfect agreement or full similarity). The
statistic formula is presented by equation (6), where
P(A) is the empirical probability of agreement
between two observers for one aspect of the process,
and P(E) is the probability of agreement between
two observers who performed the classification of
that aspect randomly (i.e. with the observed
empirical frequency of each mapping aspect). Thus,
high Kappa values suggest high similarity between
the input and output models. In this work, the

agreement measure is applied to six different
aspects, as shown in Table 3.

)(1

)()(

EP

EPAP
K







 

The first aspect checks the mapping of activities
in the model. It identifies whether all activities
presented in the mined models belongs to the
process definition and are also arranged in the
process graph appropriately. The second aspect
refers to the mapping of participants to the tasks of
the process. It defines whether the participant
associated with a task actually performs the activity
in the process. The next two aspects define the
mapping of incoming and outgoing transitions of an
activity. These aspects define if all input and output
transitions associated with an activity are correct.
The last two aspects evaluate whether the semantics
of input and output activities (e.g. AND/XOR-
split/join) are correct. So, we can check whether
control flows associated to the process are correct.

Table 3: Kappa results for real and simulated data.

Aspect
Precision with

Simulated Logs
Precision with Real
Legacy System Logs

Activity Mapping 1.000 0.920
Participants Mapping 0.710 1.000
Input Transitions 0.950 0.930
Output Transitions 0.910 0.900
Output Semantics 1.000 1.000
Input Semantics 1.000 1.000

The Kappa verification of models is divided into
three main steps which are represented in Fig. 10.
First, we perform the mining of initial log (i.e. new
traces without changes, generated by simulator, as
described in Section 4.1) through IncrementalMiner
to generate the intermediate models. After that, we
submit to IncrementalMiner both intermediate model
(i.e. generated in first step) and the log with
modified instances of processes, also generated by
simulator. The result is a set of updated process
models containing all new dependencies and the
updated ones. As the last step, we submit both
modified process definition and updated discovered
process model to Kappa for similarity verification.
In column Precision with Simulated Logs of Table 3,
we can check the results. We have obtained high
values for Kappa in the majority of aspects (i.e.
values above 0.8 are considered good agreement
(Landis, 1977)), what suggests that the discovered
models and the designed models that generate the
logs are similar. This means that the incremental
mining of logs was conducted efficiently for the
main aspects.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

66

Figure 10: Incremental Mining Verification Process.

4.4 Experiments on Real Legacy
System

To demonstrate how effective this approach on a real
scenario is, we use a real legacy system. So, the
process logs were generated from successive
executions of an ERP legacy system written in
COBOL language. It has more than 2,000,000 lines
of source code and several modules (i.e. Financial
Management, Sales Management, etc). Moreover,
each module implements several implicit (i.e. no
formal process models defined) and interrelated
business processes, represented in source code as
business rules, and illustrated in Fig. 11.

In order to start the discovery of business
processes from legacy system, we followed the
process defined in Fig. 4. On this experiment each
module of legacy system was annotated and
recompiled to generate trace events to the log. They
were instrumented in such a way that each executed
business rule (i.e. task) records an event into the log.
Moreover, use case scenarios were defined to
coordinate both the system execution and the log
generation.

Figure 11: Legacy ERP system and related modules.

We have split and executed the user scenarios in
seven groups. Each group represented all the
scenarios related to one specific user of legacy
system. Following the successive execution of these
system scenarios, seven incremental dataset (i.e. one
per user) with approximately 30,000 trace instances
were generated. The datasets were named
respectively as A, B, C, D, E, F and G. The datasets
A, B recorded incremental logs related to execution
of Financial Management module. Therefore, dataset
C recorded process instances from execution of
Sales Management. Dataset D recorded process
instances of Service Management module. The next
two datasets E and F recorded process instances of
modules Production Management and Warehouse
Management, respectively. The last dataset (i.e. G)
perhaps introduce modified process instances,
generated from execution of modified version of
Sales Management module (i.e. version 2 as
illustrated in Fig. 11).

Table 4: Elements Extracted from Legacy.

 Log file

Element A B C D E F G Total

Biz Processes
Structures

+2 +1 +2 +1 +4 +3 - 13

System Participants +3 +1 +1 +1 +1 +1 - 8
Human Participants +1 +1 +1 +1 +1 +1 +1 7
Tasks (Business
Rules)

+20 +8 +15 +11
+24 +1 +2 (-4) 77

XOR-split/join +10 +5 +5 +1 +3 +3 +3 (-2) 28
AND-split/join +1 1

The results can be seen in Table 4. It shows the
complete list of elements extracted from the
incremental mining of execution logs. All elements
listed are part of business process model structure.
Incremental mining reveals new elements after each
mined dataset of instances, gradually generating a
more complete model. On the other hand, the last
dataset log (i.e. G) revel obsolete elements that were
removed from process models (i.e. see negative
values on rows Tasks and XOR-split/join). Thus,
these results can demonstrate that we can extract
process models from legacy in an incremental way
even on those situations where the system have to be
modified during the mining process.

To measure the quality of models extracted from
legacy, we have also used Kappa statistic. The same
aspects considered on Section 4.3 and shown on
Table 3 were used. Here, these aspects were used to
demonstrate the level of business analysts agreement
on the business process structures obtained from
legacy. So, in experiments using two different
business analysts, Kappa values between 0.90 and
1.00 were obtained, as shown in column Precision

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

67

with Real Legacy System Logs of Table 3. That
means the business analysts agree with most of
process models structures mined from legacy, during
the incremental discovery.

5 RELATED WORK

Gunther (Gunther et al, 2008) introduced the mining
of ad-hoc process changes in adaptive Process
Management Systems (PMS). This technique
introduces extension events in the log (e.g. insert
task event, remove task event, etc) that record all
changes in a process instance. So change logs must
be interpreted as emerging sequences of activities
which are taken from a set of change operations. It is
different from conventional execution logs where
the log content describes the execution of a defined
process. The problem here is that sometimes legacy
information systems and WfMS do not generate
process change information into the log. Thus, it is
very hard to discovery process changes from these
systems. Bose (Bose et al, 2011) although,
introduced concept drift applied to mining processes.
He applied techniques for detection, location and
classification of process modifications directly in the
implementation log without the need for specialized
log containing such modifications as proposed by
Gunter. After that, Luengo (Luengo et al, 2012)
proposed a new approach using clustering
techniques. He uses the starting time of each process
instance as an additional feature to those considered
in traditional clustering approaches.

The work presented here supports the main
operations of evolutionary learning (e.g. insert and
exclusion operations) using an incremental mining
approach. Moreover, our technique does not require
extra information in the log to detect process
changes. Thus, it makes possible to avoid the
reprocessing of the complete set of logs, reducing its
total processing time.

6 SUMMARY AND OUTLOOK

This paper proposed an incremental process mining
algorithm for mining of process structures in an
evolutionary way from legacy systems. This is an
important step for the incremental legacy
modernization because it keeps the system
maintenance live while the system is modernized.
The algorithm enables the discovery of new and
obsolete relations from log as new or modified

traces are executed and recorded in the log. Thus, we
can keep all process models discovered updated with
the process definition when it changes.

In quality experiments using non-incremental
simulated data and conformance metrics, the models
discovered by IncrementalMiner present good
accuracy. Regarding the incremental approach,
IncrementalMiner also shows good precision for the
models discovered from logs with modified process
instances. During the discovery of process models
from real legacy system and also simulated logs, the
algorithm shows good results on the extracted
models (i.e. Kappa values above 0.900). Thus, our
approach could be an effective alternative for
incremental mining of process models during the re-
engineering of legacy systems.

Altogether, the main contribution of this work
was the creation of a mechanism that introduces the
incremental mining of logs with support to i) the
discovery of new dependency relations (i.e. new
tasks) and participants in order to complement a
partial or complete process model, and ii) the
identification and removal of obsolete dependency
relations in order to update an existent process
model. We also introduced an alternative way to
measure the quality of models generated during the
incremental process mining.

As future work we include the improvement of
the identification of obsolete participants in the
model (i.e. see low kappa value in simulate data of
Table 3) and the integration of algorithm and the
incremental approach in ProM tool.

REFERENCES

Kalsing, A. C., Iochpe, C., Thom, L. H.: “An Incremental
Process Mining Algorithm”. In ICEIS (1), pp. 263-
268 (2010).

Kalsing, A. C., Nascimento, G. S., Iochpe, C., Thom, L.
H.: “An Incremental Process Mining Approach to
Extract Knowledge from Legacy Systems”. In 14th
IEEE EDOC 2010, pp. 79-88 (2010b).

Cohen, J., “A coefficient of agreement for nominal scales,
Educational and Psychological Measurement”. Vol. 20
(1), pp. 37–46 (1960)

Van Dongen, J., Medeiros, A. K., Verbeek, H., Weijters,
A. J. M. M., van der AALST, W. M. P.: “The ProM
framework: A new era in process mining tool
support”. Applications and Theory of Petri Nets, pp.
1105-1116, Springer (2005)

Ma, H., Tang, Y., Wu, L.: “Incremental Mining of
Processes with Loops”. International Journal on
Artificial Intelligence Tools, Vol. 20, Number 1, pp.
221-235 (2011)

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

68

Sun, W., Li, T., Peng, W. Sun, T.: “Incremental Workflow
Mining with Optional Patterns and Its Application to
Production Printing Process”. International Journal of
Intelligent Control and Systems, Vol. 12, Number 1,
pp. 45-55 (2007)

Van der Aalst, W. M. P., Weijters, A. J. M. M., Maruster,
L.: “Workflow Mining: discovering process models
from event logs”. IEEE Transactions on Knowledge
and Data Engineering, 16 (9), pp. 1128-1142 (2004)

Gunther, C.W., Rinderle-Ma, S., Reichert, M., Van der
Aalst, W.M.P.: “Using process mining to learn from
process changes in evolutionary systems. International
Business Process Integration and Management”, Vol.
3, N 1, pp. 61-78, Inderscience (2008)

Weijters, A. J. M. M., Van der Aalst, W.M.P., Medeiros,
A. K.: “Process Mining with the Heuristics Miner
Algorithm”. Eindhoven, Tech. Rep. WP, vol. 166
(2006).

Rozinat, A., Medeiros, A. K., Gunther, C.W., Weijters, A.
J. M. M., Van der Aalst, W.M.P.: “Towards an
evaluation framework for process mining algorithms”.
BPM Center Report BPM-07-06, BPMcenter. Org
(2007)

Burattin, A., Sperduti, A.: “PLG: a Framework for the
Generation of Business Process Models and their
Execution Logs”. In Proceeding BPI Workshop 2010.
Stevens Institute of Technology; Hoboken, New
Jersey, USA; September 13 (2010)

Dijkman, R., Dumas, M., García-Bañuelos, L.: “Graph
matching algorithms for business process model
similarity search”. Business Process Management
Journal, pp. 48-63, Springer (2009)

Sneed, H. M., Erdos K., “Extracting business rules from
source code,” Proceeding of the Fourth IEEE
Workshop on Program Comprehension, pp. 240-247,
1996.

Wang C., Zhou, Y., Chen, J., “Extracting Prime Business
Rules from Large Legacy System,” International
Conference on Computer Science and Soft.
Engineering, vol 2, pp. 19–23, 2008.

Bose, R. P., Van der Aalst, W. M. P., Zliobaité, I.,
Pechenizkiy, M.: “Handling concept drift in process
mining”. Conference on Advanced Information
Systems Engineering, CAISE’11, pp 391-405. London,
UK, 2011.

Landis, J. R., Koch, G. G., “The measurement of observer
agreement for categorical data,” International
Biometric Society, vol. 33. pp. 159-174, 1977.

Luengo, D., Sepúlveda, M., “Applying clustering in
process mining to find different versions of a business
process that changes over time”, Business Process
Management Workshops, pp 153-158, Springer, 2012.

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

69

