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Abstract: Incremental Process Mining is a recent research area that brings flexibility and agility to discover process 
models from legacy systems. Some algorithms have been proposed to perform incremental mining of 
process models. However, these algorithms do not provide all aspects of evolutionary learning, such as 
update and exclusion of elements from a process model. This happens when updates in the process 
definition occur, forcing a model already discovered to be refreshed. This paper presents new techniques to 
perform incremental mining of execution logs. It enables the discovery of changes in the process instances, 
keeping the discovered process model synchronized with the process being executed. Discovery results can 
be used in various ways by business analysts and software architects, e.g. documentation of legacy systems 
or for re-engineering purposes. 

1 INTRODUCTION 

Extraction of business processes from legacy 
systems can become a very complex task when the 
continuous evolution of business processes is 
required. Business processes usually translate the 
current business needs of a company and they are 
made up of business rules, activities, control flows, 
roles and systems. When these business needs 
change, it is likely that the structure of the process 
will also change. Consequently, the process models 
discovered during the mining task, either partial or 
complete, should also reflect these changes. So, in 
this case the extraction of business processes cannot 
be done in one step, but several incremental ones.  
Moreover, this scenario could be even more 
complex when the re-engineering process must 
handle large legacy system with constant 
maintenance. In this case incremental discovery 
helps to keep the system maintenance lives while it 
is modernized. 

To overcome these limitations, incremental 
process mining techniques (Kalsing, 2010a), 
(Kalsing, 2010b), (Ma, 2011), (Sun, 2007) are 
designed to allow continuous evolution of the 
discovered process models. Evolution means that 
new events executed and recorded in the log can 
generate new dependencies among activities or 
remove old ones. Thus, using these techniques we 

can significantly improve the discovery process 
from legacy allowing an iterative approach and also 
more accurate results. 

1.1 Problem Statement 

Although some techniques for incremental process 
mining have already been proposed, there are still 
aspects to be improved. The main aspect is the better 
support for update operations during incremental 
mining of logs, such as removing elements from 
previously discovered process model when they are 
considered obsolete elements (e.g. tasks and 
transitions removed from process definition).  

After the discovery of a partial or complete 
process model from legacy system, any changes 
contained in modified process instances (e.g. 
modified business rules in source code) must be 
merged in those models. Those kinds of changes can 
be seen in the example of the execution logs shown 
in Fig. 1 and described next. The logs were 
generated by the execution of a legacy information 
system which the source code is partially 
represented in Fig. 2 and 3. These logs are divided 
into three logical parts: Initial Traces, New Traces 
and Updated Traces (see Fig. 1). We can check that 
the generation of the Initial Traces and the New 
Traces log occur when users (i.e. Mary, Paul and 
Mark) execute specific use cases scenarios within an 
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information system (e.g. cases A, B and C) 
presented in Fig. 2. The logs are composed by 
business rules instances executed and recorded as 
presented in lines 2, 5, 8, 11, 14, 18 and 20. 

 
Figure 1: Information System Logs Generation. 

The final log (i.e. Updated Traces) represents new 
executions of previously scenarios, but this time 
generating modified process instances (i.e. see 
changes highlighted in Fig. 1-c). We can see in this 
log modified traces, where task BR3 was replaced 
by task BR4. These changes were generated by the 
modified version of source code, presented in Fig. 3. 
It shows that the business rule presented in lines 7-9 
of Fig. 2 was removed from the system. In addition, 
case C, which was originally executed by user Mark, 
is now performed by Paul. This specific kind of 
change is usually not present in source code and can 
be represented by an organizational change. 
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/* MORE CODE HERE */ 
WriteLog(currentUser, “BR1”, traceId);   
printf("PRODUCT/QTY/CUSTOMER: "); //execs business rule 1 
scanf("%s", product); scanf("%s",qty); scanf("%s", customer);
WriteLog(“finApp”, “BR2” , traceId); 
approved = fin.creditAnalysis(customer); //business rule 2 
if (approved && price >1000) { 
      WriteLog(“orderapp”, “BR3” , traceId);  
     newPrice =   price ‐ (price * 0.10); // execs business rule 3 
} else if  (approved) { 
      WriteLog(“orderapp”, “BR4” , traceId);  
     newPrice =   price ‐ (price * 0.05); // execs business rule 4 
} else { 
     WriteLog(“sendMail”, “BR5” , traceId);  
    sendMail.Send(customer,"credit refused!"); // exec rule 5 
     return;      
} 
WriteLog(“stockApp”, “BR6” , traceId) 
stock.Update(product,  qty); // execs business rule 6 
WriteLog(“Db”, “BR7” , traceId); 
query.execute (“INSERT INTO orders VALUES (customer, 
product, qty)”);  // executes business rule 7 
/* MORE CODE HERE */ 

Figure 2: Example of instrumented source code. 
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/* ORIGINAL SOURCE CODE HERE */ 
if  (approved) { 
       WriteLog(“orderapp”, “BR4” , traceId);  
        newPrice =   price ‐ (price * 0.05); //execs business rule 4
} else { 

WriteLog(“sendMail”, “BR5” , traceId); 
sendMail.Send(cust, "credit refused!"); //exec bus. rule 5
return;      

} 
/* ORIGINAL SOURCE CODE HERE */ 

Figure 3: Modified version of legacy source code of Fig. 
2. 

1.2 Contribution 

In our previous work (Kalsing, 2010b) we propose 
an incremental algorithm which is able to perform 
the incremental mining of process logs (i.e. only the 
discovery of new process elements) generated from 
legacy systems or any other kind of system. In this 
article, we are proposing new algorithms and 
improving the original ones to detect new and also 
obsolete elements on discovered process models. We 
use new heuristics to analyze new and modified 
process instances recorded in the log in order to 
incrementally discovery process models and mainly 
update previous discovered process models. This 
distinguishes our approach from all previous works. 
Thus, the main contribution of this work is the 
creation of algorithms that introduce new mining 
techniques, capable to i) add new discovered 
activities to an existing model and ii) remove 
obsolete activities and transitions from the 
discovered model. As a complementary contribution 
we introduce a statistical method to measure the 
quality of discovered models on incremental mining.  

The next sections are organized as follow: 
Section 2 introduces the operations supported by the 
incremental algorithm. Section 3 introduces details 
of the incremental mining algorithm and how it 
performs the creation and update of process models. 
Experiments using a real legacy system and also 
simulated logs are presented in section 4. Section 5 
introduces the related work and how techniques 
presented here include considerable improvements 
over them. In the last section, we present the 
conclusions and future work. 

2 BASIC CONCEPTS 

This section introduces the basic concepts related to 
process mining, which are used in our approach.  
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2.1 Basic Relations 

The techniques presented here mine the control-flow 
perspective of a process model from logs. In order to 
find a process model on the basis of an event log, it 
must be analyzed for causal dependencies, e.g., if an 
activity is always followed by another, a dependency 
relation between both activities is likely to exist.  

On our previous work (Kalsing, 2010a) we 
define the basic relations used by incremental 
mining algorithm. Here we introduce a new relation 
to represent obsolete relations in a log, where:  
1)  ][ wca wba   if and only if there is a log of 

events W= σ1σ2σ3…σn and i < j and i, j{1, …, n-1} 
and a trace σ = t1t2t3…tn, where ti = a and ti+1= (b or 
c) and σi  wca  and σj  wba  . The relation 

w  represents the sibling relation of w derived 
from log of events W, where the relation 

w represents a relation older than (i.e. that occurs 
chronologically before in the log) the sibling 
relation w . 

2.2 Update Operations 

In this section we introduce the update operations 
that may occur during incremental mining. The first 
operations (i.e. rows a-d of Table 1) represent the 
insertion of structures in a process model, such as 
the inclusion of tasks, gateways and participants. 
These operations were already supported by our 
previous algorithm and will be complemented here 
with new removal operations (i.e. rows e-h of Table 
1). 

3 INCREMENTAL MINING 

We consider two main phases to extract business 
process models from legacy: i) identification and 
annotation of business rules in the source code and 
ii) incremental mining process. The steps are shown 
in Fig. 4. First, the source code of the system is 
analyzed by static methods (Sneed, 1996), (Wang, 
2008) to identify business rules in the source. After 
identified, the business rule is annotated to enable 
the output of its behavior to log (i.e. as show in fig. 2 
and 3). So, the main objective of the identification of 
business rules is to generate log information about 
its behavior as input for the next step. Thus, all 
business process models extracted from legacy 
systems will be composed by business rules (i.e. 
tasks) extracted from the source code. The last main 
step in the process is the incremental process mining 

approach. It is used to extract dynamic behavior 
from the system based on execution of business 
rules recorded in log data. This phase output is a set 
of business process structures and task participants, 
similar to the structures in Fig. 5. 

Table 1: Update Operations of Incremental Mining. 

Operation When it occurs 
(a)  Add a new task to the model It occurs when 

wba  introduces a new 
transition into the graph, 
where b (task D) is a new 
task. 

(b) Add a new participant to the 
model 

 

It occurs when a 
participant (human or 
system) starts executing a 
new task. 

(c) Add a new gateway (control flow) 
to the model 

 

It occurs when wba   
introduces a new 
transition into the graph, 
where a (task B) has two 
causal relations (e.g. 
B C and B D). 

(d) Add a new transition to the model 

 

It occurs when 
wba  introduces a 

new transition into the 
graph, where a and b were 
already in the graph. 

(e) Remove transition from the model It occurs when wba   
represents a transition that 
does not belong more to 
the graph anymore, but a 
(C) e b (C) must be kept 
in the graph; 

(f) Remove a participant from the 
model 

 

It occurs when a 
participant (human or 
system) does not execute 
some task anymore. 

(g) Remove a gateway from the 
model 

It occurs when wba   
represents a transition that 
does not belong to the 
graph anymore, where a 
(B) has now just one 
causal relation (task C). 

(h) Remove a task from the model 

 

It occurs when 
wba  represents a 

transition that does not 
belong more to the graph 
anymore, where b (D) 
must be removed from the 
graph. 

The next sections describe the details of the 
incremental mining algorithm (i.e. step 5 of Fig. 4) 
and how it handles incremental knowledge 
discovery from legacy systems. More details about 
the whole process described by Fig. 4 can be found 
in (Kalsing, 2010b). 
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Figure 4: Knowledge Extraction Process. 

3.1 Mining of Execution Traces 

Our mining algorithm uses a heuristic approach to 
extract the dependency relations from logs. These 
heuristics use a frequency based metric to indicate 
how certain we are that there is a truly dependency 
relation between two events. The main algorithm is 
presented in Algorithm 1 (i.e. see Fig. 8) and can be 
divided in three main steps: 1) mining of 
dependency graph (i.e. mining of relations w ,║w 
and >>w) and control-flow semantics; 2) discovery 
of obsolete relations and 3) mining of participants. 
The first step discovers all dependency relations 
from events log, such as sequences, loops, 
parallelism and control-flows (i.e. see item 2.a.iv of 
algorithm 1). It is performed applying the heuristics 
defined in this work and it is covered by the 
algorithm 2 (i.e. ProcessRelation). Then, in the next 
step, the algorithm discovers obsolete dependency 
relations from log. These relations represent 
elements removed from process definition and must 
be excluded from previous discovered model.  In the 
last main step, we mine the task participants. It is a 
simple step to discovery and to manage the set of all 
participants that perform one task. This behavior is 
covered by algorithm 7 (i.e. ProcessParticipant). 

3.2 Starting the Mining of Logs 

The IncrementalMiner algorithm uses three basics 
information from logs to perform the mining: Task 
Id, Participant and Trace Id (i.e. log in Fig. 1). To 
exemplify how the mining of logs is performed, 
consider the partial log W = {BR1BR2BR3BR6BR76, 
BR1BR2BR4BR6BR75} (i.e. column Act. ID values 
of the log shown in Fig. 1-a). IncrementalMiner 
starts iterating on each process instance in the log. 
Each instance is composed by a set of events (i.e. an 
execution trace). For each pair of events (i.e. e1 and 
e2) in this trace, we apply a set of heuristics to  

 

Figure 5: Process model generated from the log in Fig. 1. 

discover likely relations (i.e. ProcessRelation 
algorithm). Considering the pair of two first events 
(e.g. BR1 and BR2) in the log, the first heuristic to 
be applied is heuristic (1) named Dependency 
Relation heuristic. It verifies if a dependency 
between the two elements in the trace exists. Let W  
be an event log onT , and Tba , . Then || wba   

is the partial number of times wba   occurs inW , 
and: 














1||||

||||

wabwba

wabwba
wba  (1)

The Dependency Relation heuristic calculates the 
Partial Confidence (i.e. the Confidence value at 
some point of the algorithm) of this relation, using 
the support of wba   (e.g. partial number of times 
that BR1 comes before BR2) and the support of 

wab  (e.g. partial number of times that BR2 comes 
before BR1). In this example,  wba (11-0) / 
(11+0+1) = 0.916 is the partial confidence for the 
relation BR1→BR2. After calculated, this value and 
all the associated data of dependency relation are 
inserted in the Dependency Tree. Dependency tree is 
an AVL tree that keeps the candidate relations (i.e. 
relations that could be considered in the final 
process graph) together with their confidence and 
support values, respectively. Fig. 6 shows the 
Dependency Tree for the heuristic 

wba  calculated above (i.e. see node BR2, in the 
dependency tree BR1) and all further dependency 
relations. IncrementalMiner uses AVL trees because 
of satisfactory time for searching, insertion and 
removal operations, which is required by the 
incremental approach.  
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The result of this and all other heuristics of 
IncrementalMiner has values between -1 and 1, 
where values near to 1 are considered good 
confidences. The next two heuristics below (i.e. 
heuristics 2 and 3) verify the occurrence of short 
loops in the trace. That is, it checks the existence of 
iterations in the trace. Heuristic (2) calculates the 
confidence of short loops relations with size one (i.e. 
only one task, e.g. BR1BR1) and heuristic (3) 
considers loops of size two (i.e. two tasks, e.g. 
BR1BR2BR1). Let W be an event log over T, and a, 
b   T. Then |a >W a| is the number of times a >wa 
occurs in W, and |a >>W b| is the number of times a 
>>W b occurs in W: 














1||

||

waa

waa
waa  

 
(2)
















1||||

||||

wabwba

wabwba
wb2a  

The heuristic (4) is used to verify the occurrence 
of non-observable activities in the log (i.e. 
AND/XOR-split/join semantic elements). Let W be 
an event log over T, and a, b, c   T, and b and c are 
in dependency relation with a. Then: 














1||||

||||
^

wcawba

wbcwcb
cwba 




|||| wcawba   represents the partial 

number of positive observations and 
|||| wbcwcb   represents the partial number 

of times that b and c appear directly after each other. 
Considering the partial event log W = {…, 
BR1BR2BR3…, BR1BR2BR4…} extracted from 
Fig. 1-a, the value of cwba ^ = (0 + 0) / (6 + 5 + 
1) = 0.0 indicates that BR3 and BR4 are in a XOR-
relation after BR2. High values to 

cwba ^ usually indicate a possible parallel 
AND-relation and low values a XOR-relation. 

The above defined heuristics are used to calculate 
the candidate relations that can be added to the final 
dependency graph. In order to select the best 
relations, we used the best relations trees (see Fig. 7). 
These trees keep the best dependency and the best 
causal relations (i.e. relations with the highest 
confidence value, as presented in Fig. 6) of each 
dependency tree. Like the dependency tree, the best 
relations trees are updated after the evaluation of 
each dependency relation, calculated by heuristics 
(1), (2) and (3).  

 

 
Figure 6: Dependency trees. 

The first step to update the best relation tree is to 
update the best dependency tree for the current 
relation. Considering the current relation of the 
example (i.e. BR1→BR2), we first check if the 
confidence value of this relation (i.e. 0.916) is lower 
than the confidence value of the relations in the best 
dependency tree of BR1 (i.e. see tree BR1 in Fig. 7-
a). If it is the case, we remove it from the final 
dependency graph (i.e. see algorithm 
UpdateBestRelation). Besides, we check if its 
confidence value is greater than the one of the 
current best relations in the dependency tree of BR1 
and remove all the older relations from it (i.e. the 
older relations have confidence values smaller than 
the one of the current relation). Finally, we add the 
current relation to the end of the best dependency 
tree of BR1. The same process is carried out for the 
second element (i.e. BR2). Instead we use the best 
causal tree of BR2 (see Fig. 7-b). All the elements of 
the dependency tree are considered best 
dependencies in this simple example. So, the two 
trees (Fig. 7-a and Fig 6) are very similar to each 
other. At the end, we discovered the partial process 
model (i.e. dependency graph), as shown in Fig. 5-a. 

 

Figure 7: The best relations trees extracted from 
dependency tree of Fig. 6. 

3.3 Adding New Elements to the Model 

In an incremental discovery of process models, 
adding new entries to the log (e.g, new process 
instances) may reveal additional behavior that should 
be incorporated into the process model already 

BR1

0.916

BR2

BR2

0.857

BR3

0.833

 BR4 

BR3

0.857

 BR6 

BR6

0.916

 BR7 

BR4

0.833

 BR6 

(b) Best Causal Trees 

BR2 

0.916 

 BR1 

BR3 

0.857 

 BR2 

BR6 

0.857 

 BR3 

0.833 

 BR4 

BR7

0.916

 BR6 

BR4

0.833

BR2

(a) Best Dependency Trees 

BR1

0.916 11

BR2

BR1→BR2

BR3 

0.857 6 

BR6 

BR3→BR6 

BR2

0.857 6

BR3

BR2→BR3

0.833 5

BR4

BR2→BR4 

BR4 

0.833  5 

BR6 

BR4→BR6 

BR6

0.916 11

BR7

BR6→BR7

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

62



discovered. Thus, after process the log of initial 
traces as described in the previous section (i.e. log of 
Fig. 1-a), we still need to process the complementary 
log traces of Fig. 1-b, represented by the log set W = 
{BR1BR2BR510}. After running IncrementalMiner 
over this log, we will obtain the final dependency 
graph of Fig. 5b. The dependency graph shows 
additional structures extracted from the new traces 
(i.e. BR5 activity and participants Mark and 
sendMail). 

Algorithm 1. IncrementalMiner 
Input w: Log, g1:DependencyGraph Out g2: 
DependencyGraph 

1. g2← g1 
2. For each new instance  W 

(a) For each event ei   

(i) e1 ← ei 
(ii) e2 ←ei+1 
(iii) e3 ←ei+2 
(iv) ProcessRelation(e1, e2, e3) 
(v) CheckOldSiblingRelations(e1) 
(vi) ProcessParticipant (e1) 

Algorithm 2. ProcessRelation 
Input e1, e2, e3: Event 

1. r12 ← CreateRelation(e1, e2). 

2. confidence ←  wba  , where a = e1 e b = e2. 

3. IF e1 = e2 then 
(a) loop1 ← waa  , where a = e1 e a = e2
(b) IF loop1 > LOOP1_THSLD then 
(i) AddRelationToGraph(e1, e2). 

4. Else IF e1 = e3 then 

(a) loop2 ← wba 2 , where a = e1  e b = e3. 

(b) IF loop2 > LOOP2_THSLD then 
(i) AddRelationToGraph(e3, e1). 

5. n1←UpdateDependencyTree(r12 , confidence) 

6. andSemantic ← cwba ^ , where a=e1,b=e2 e 

c=e3 
7. amd←get best relations tree of e1 
8. amc← get best causes tree of e2 
9. UpdateBestRelation(n1, amd) 
10. UpdateBestCause (n1, amc) 
11. n3← get the root of amd tree 
12. n1←amd.getNode(e2) 
13. n2←amc. getNode(e1) 
14. IF ( (n1 = Ø)   (n2 = Ø)  confidence > 
DEPENDENCY_THSLD) support(r12) > 
POSITIVEOBSERVATION_THSLD   confidence – 

n3.confidenceRELATIVETOBEST_THSLD then 
(a) AddRelationToGraph(e1, e2). 

15. ComputeOldSiblingRelation(e1, e2). 

Algorithm  3. UpdateBestRelation 
Input n1: Node, a1: Tree 

1. value←CheckConfidence(n1.confidence, a1) 
2. IF value = ‐1 then //smaller value 

(a) RemoveRelationFromGraph(n1.relation). 
3. Else IF value = 1 then //higher value 
(a) For each node n2  a1
(i) Remove n2 from a1
(ii) RemoveRelationFromGraph(e1, e2) 
(b) Add n1 to a1
5. Else IF value = 0  then //equal value 
(a) Add n1 to a1 

Algorithm 4. CheckOldSiblingRelations 
Input e1: Event
1. bestRelations←Ø //create a temporary set 
2. worstRelations←Ø   // create a temporary set 
3. ve1←get vertex related to e1 from graph g2 
4. outve1←get output vertices set related to ve1 
5.  For each vertex vi   outve1 
(a) r12 ←GetRelation(e1, vi.event). 
(b) sibvi←get sibling relations set of vi 
(c) For each sibling relation ri1sibvi 
(i) IF ri1.confidenceOBSOL_THSLD then 
(x) Add ri1 to bestRelations 
(ii) Else 
(x) Add ri1 to worstRelations 
(d) IF sibvi  bestRelations then 
(i) RemoveRelationFromGraph(r12) 
(e) Else
(i) For each relation r1 worstRelations 
(x) For each sibling relation ri1  r1 

a. IF ri.confidence>OBSOL_THSLD then 
i.exclude←ri1bestRelationsexclude =true 
(ii) IF ( bestRelations=Ø) exclude=true then 
(x) For each relation r1  worstRelations 

a. RemoveRelationFromGraph(r1) 
(y) RemoveRelationFromGraph(r12) 
Algorithm 5. ComputeOldSiblingRelation 
Input e1, e2: Event
1. ve1←Get vertex related to e1 from graph g2 
2. r12 ← GetRelation(e1, e2). 
3. sibr←get sibling relations set related to r12 
4. For each sibling relation ri1  sibr 
(a)  IF ri1 = r12 then 
(i) confidence← cwba  , where  wba  = 

support of r12,  wca  = support of r and 
][ wca wba  = support of ri1 

(ii) ri1.confidence←confidence 

Algorithm 6. CheckConfidence 
Input conf: Number, a1: Tree Output: v: Number 
1. n1←get root node of a1
2. IF confidence > n1.confidence then 
(a)  v←1 
3. Else IF n1.confidence = confidence then 
(b)  v← 0 
4. Else 
(c)  v← ‐1 
 
Algorithm 7. ProcessParticipant 
Input e1: Event
1. ve1←Get vertex related to e1 from graph g2 
2. IF  e1.participant   ve1.participants 
(a). Add e1.participant to ve1.participants 

Figure 8: Pseudocode of Incremental Mining Algorithms. 
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3.4 Removing Elements from Model 

A process model is considered complete when it 
replays all events recorded in a complete log (van 
der Aalst, 2004). In this case, new traces added to 
the log will not change and neither will add new 
behavior to the model. However, this definition 
could not be true when changes occur in the process 
structure, recording possibly modified instances in 
the log. 

The problem in identifying modified process 
instances is that this information is often not 
recorded in the log. What happens in this case is the 
empirical analysis to check the likelihood of 
obsolete events (events related to elements that are 
not longer in the process definition, and 
consequently they also no longer occur). Thus, the 
main goal of the algorithms presented in this section 
and also one of the main contributions of this work 
is the ability to identify and remove obsolete 
dependency relations from discovered process 
models during the incremental mining. 

To demonstrate how these algorithms work, we 
shall return to the log presented in Fig. 1-c. This log 
contains modified versions of initial process 
instances and it was recorded by the execution of 
modified source code presented in Fig. 3. The first 
change can be observed in the log generated by case 
A (i.e. executed by the user Mary). This case 
generates 18 occurrences of trace 
BR1BR2BR4BR6BR7. However, we can see in Fig. 
1-a that this case originally used to record the trace 
BR1BR2BR3BR6BR7. The change in this case is 
the replacement of task BR3 by task BR4.  

Process instances changes as described above 
can be often imperceptible during the mining task, 
because they depend on several factors such as 
frequency of related events (i.e. events related to 
task BR4), incidence of noise, etc. Thus, 
ComputeOld SiblingRelation and 
CheckOldSiblingRelation enable the identification of 
obsolete relations based on previous discovered 
model, modified process instances and its frequency. 
An obsolete relation is basically a dependency 
relation w  presented in the dependency graph 
which is not executed anymore. The algorithm 
ComputeOldSiblingRelation is responsible for 
calculating the confidence of the candidate obsolete 
relations and it is used by the algorithm 
ProcessRelation (i.e. see item 15 of algorithm 2). To 
perform this, it uses the heuristic (5) defined bellow. 
The heuristic calculates the confidence of relation 

w  to be an obsolete relation against its sibling 
relations w . To demonstrate this, we can see the 

relation BR2→BR3 in Fig. 9-a. The sibling relations 
of BR2→BR3 are BR2  BR4 and BR2  BR5 
(i.e. dashed transitions). Thus, we need to apply the 
heuristic for each sibling relation of BR2→BR3. So, 
let W be a log of events T , and Tcba ,, . So 

|| wba   is the partial number of times that 

wba   occurs in W , || wca   is the partial 

number of times that wca   occurs in W , 
|][| wca wba 
 is the partial number of times that 

][ wca wba 
 occurs in W and: 
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(5)

Another important point of heuristic (5) 
presented above is that as more events are available 
in the log greater is the confidence of obsolete 
relations. This behavior is introduced by the partial 
expression )/(1  wcawba  presented in 

(5). It is used as a factor to maximize the value 
calculated by cwba  .  

Considering the log with modified instances (i.e. 
log generated from the execution of a modified 
source code) W = {..., BR1BR2BR4BR6BR718, 
BR1BR2BR518}, presented in Fig. 1-c, we can check 
that the task BR3 was replaced by BR4. All 
dependency relations in the dependency graph which 
have task BR3 as a causal relation is likely to be an 
obsolete relation. In the example, the relation 
BR2→BR3 is the only relation having task BR3 in 
the causal relation. To confirm if it is an obsolete 
relation, we need to analyze it from the sibling 
relations perspective (i.e. BR2  BR4 e 
BR2 BR5). Thus, we apply the heuristic (5) for 
each of them. The first sibling relation BR2→BR4 
has the support of wba   as the partial number of 
times that BR2→BR4 occurs in the log (i.e. 23 
times), the support of wca  as the partial number 
of times that BR2→BR3 occurs in the log (i.e. 6 
times), and ][ wca wba   as the support of 

sibling relation BR2  BR4 before the last 
occurrence of BR2→BR3. Fig. 9-a shows that the 
support of sibling relation BR2  BR4 was zero 
(i.e. no occurrences) in the last time that BR2→BR3 
occurs. After that, we can calculate the confidence 
of BR2→BR3 to be an obsolete relation against 
BR2 BR4 as cwba  = ((1 + 23 / 6) x (23 – 
0)) / (((1 + 23 / 6) x (23 – 0)) + 1) = 0.991. We 
repeated the same process to the next sibling relation 
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BR2 BR5, where cwba  = ((1 + 28 / 6) x 
(28 – 0)) / (((1 + 28 / 6) x (28 – 0)) + 1) = 0.993. As 
result of the execution of ComputeOldSibling 
Relation for both sibling relations BR2 BR4 and 
BR2  BR5 we have obtained values 0.991 and 
0.993, respectively. 

 

Figure 9 : Calculating the candidate obsolete relations. 

To check if the relation above (i.e. BR2→BR3) 
can really be defined as an obsolete dependency 
relation, we execute the algorithm 4 (i.e. see 
CheckOldSiblingRelation at item 2.a.v of 
IncrementalMiner). The algorithm checks the 
confidence of each sibling relation w of 
dependency relation w  calculated by 
ComputeOldSiblingRelation. To set the minimum 
acceptable value calculated by the heuristic (5), the 
threshold Obsolete Relation was created and used by 
the following definition: 

Definition 1 (Obsolete Relation). Let w  be a 
relation with two or more sibling relations w , a 
dependency relation is considered obsolete if and 
only if all sibling relations have cwba   result 
above threshold Obsolete Relation.  

The definition above is followed by algorithm 4, 
as presented at item 5.c and 5.d. Moreover, we set 
the threshold Obsolete Relation value to 0.990 to get 
only obsolete relation candidates with high 
confidence. So, if all sibling relations w of 

w reach heuristic results above threshold, then we 
need to remove w  from dependency process 
graph, as presented in items 5.d and 5.e.ii of 
algorithm 6. Back to the example, we can see that 
relation BR2→BR3 presented in Fig. 9-a has both of 
sibling relations with heuristic result above 0.990 
(i.e. 0.991 for BR2  BR4 and 0.993 for 
BR2  BR5). Thus, it means that we need to 
remove the relation from dependency graph, such as 
presented in the final discovered model in Fig. 5-c. 

 

4 EXPERIMENTS 

The experiments in this section were implemented in 
Java language and divided into two groups. The first 
group shows the quality of models mined from logs 
generated by a process execution simulator (i.e. see 
section 4.1). The second group demonstrates the 
quality of models mined from logs of a real legacy 
system.  

4.1 Experiments on Simulated Data 

Obtaining practical data for incremental mining is 
not a trivial task. Therefore, we have used a 
simulation tool (Burattin, 2010) to generate data 
about process models definitions and their execution 
logs. The models are generated in a recursive way. 
First n parts are generated. Each part is a task (with 
probability 50%), a parallel structure (20%), an 
alternative structure (20%) or a loop (10%). We also 
included noise in 5% of all traces in the log. 
Additionally, each task has a performer that 
represents a process participant. For a parallel or an 
alternative structure the simulation randomly 
generates b branches. Usually there are no more than 
100 tasks in a workflow model (Weijters et al, 
2006), so we set n = 4 and 2 ≤ b ≤ 4 to limit the 
scale. Each model has at least one loop and at most 
three alternative structures and at most three parallel 
structures. The simulation randomly generates each 
task’s waiting time and execution time. At the 
choice point it enters each branch with the same 
probability. Each generated model has also a 
modified version. It was used to simulate the 
evolution of the process model and to perform the 
incremental mining with modified process instances. 
At the end, we generated 400 models (i.e. 200 
original process models and 200 modified versions 
of them) and 200 log files, with an average of 47.6 
tasks. In each log dataset there are 500 simulated 
instances made up by 300 new process instances (i.e. 
from original process model) and 200 modified 
process instances, generated from the modified 
version of these processes. 

4.2 Quality of Non Incremental Mining 

For measuring the correctness (i.e. accuracy) of our 
method in a non-incremental scenario, we have used 
the conformance checking metrics for models and 
logs (Rozinat, 2007). The result is evaluated from 
aspects of Token Fitness (i.e. which evaluates the 
extent to which the workflow traces can be 
associated with valid execution paths specified in the 

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

65



model), Behavioral Appropriateness (i.e. which 
evaluates how much behavior is allowed by the 
model but is never observed in the log) and 
Structural Appropriateness (i.e. which evaluates the 
degree of clarity of the model). We use the 
conformance checker plug-in of ProM 5.2 (van 
Dongen, 2005). The average results from the mining 
of 200 datasets (i.e. considering just original process 
instances without changes from the logs) are shown 
in Table 2. 

The Token Fitness and the Structural Fitness 
metric values suggest that our method has nearly the 
same precision as α-algorithm (van der Aalst, 2004) 
and Behavioral Appropriateness slightly lower than 
α-algorithm and the method proposed by Ma et al 
(Ma, 2011). 

Table 2: Quality metrics values. 

Metric Our Method α-algorithm Ma et al [5]

Token Fitness 0.998 0.882 0.953 
B. Appropriateness 0.851 0.865 0.854 
Structural Fitness 1.000 1.000 0.901 

4.3 Quality of Incremental Mining 

Because of a lack of techniques to measure the 
models conformance during the incremental mining 
with modified process instances, it was necessary to 
use an alternative technique. Kappa (Cohen, 1960) 
was used to give a quantitative measure of 
agreement between the input process models which 
generate the log records (i.e. observer 1) and the 
process model mined by the IncrementalMiner (i.e. 
observer 2). Here, this measure of agreement defines 
the level of similarity between the process structures 
of both models. The reason to use Kappa to check 
process graph similarity instead other methods like 
(Dijkman, 2009) is that we must also consider the 
organizational aspects of process such as 
participants of process, which is not part of the 
graph structure. 

The values obtained from Kappa range from -1 
(i.e. complete disagreement or low similarity) to +1 
(i.e. perfect agreement or full similarity). The 
statistic formula is presented by equation (6), where 
P(A) is the empirical probability of agreement 
between two observers for one aspect of the process, 
and P(E) is the probability of agreement between 
two observers who performed the classification of 
that aspect randomly (i.e. with the observed 
empirical frequency of each mapping aspect). Thus, 
high Kappa values suggest high similarity between 
the input and output models. In this work, the 

agreement measure is applied to six different 
aspects, as shown in Table 3. 

)(1
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The first aspect checks the mapping of activities 
in the model. It identifies whether all activities 
presented in the mined models belongs to the 
process definition and are also arranged in the 
process graph appropriately. The second aspect 
refers to the mapping of participants to the tasks of 
the process. It defines whether the participant 
associated with a task actually performs the activity 
in the process. The next two aspects define the 
mapping of incoming and outgoing transitions of an 
activity. These aspects define if all input and output 
transitions associated with an activity are correct. 
The last two aspects evaluate whether the semantics 
of input and output activities (e.g. AND/XOR-
split/join) are correct. So, we can check whether 
control flows associated to the process are correct. 

Table 3: Kappa results for real and simulated data. 

Aspect 
Precision with 

Simulated Logs 
Precision with Real 
Legacy System Logs

Activity Mapping 1.000 0.920 
Participants Mapping 0.710 1.000 
Input Transitions 0.950 0.930 
Output Transitions 0.910 0.900 
Output Semantics 1.000 1.000 
Input Semantics 1.000 1.000 

The Kappa verification of models is divided into 
three main steps which are represented in Fig. 10. 
First, we perform the mining of initial log (i.e. new 
traces without changes, generated by simulator, as 
described in Section 4.1) through IncrementalMiner 
to generate the intermediate models. After that, we 
submit to IncrementalMiner both intermediate model 
(i.e. generated in first step) and the log with 
modified instances of processes, also generated by 
simulator. The result is a set of updated process 
models containing all new dependencies and the 
updated ones. As the last step, we submit both 
modified process definition and updated discovered 
process model to Kappa for similarity verification. 
In column Precision with Simulated Logs of Table 3, 
we can check the results. We have obtained high 
values for Kappa in the majority of aspects (i.e. 
values above 0.8 are considered good agreement 
(Landis, 1977)), what suggests that the discovered 
models and the designed models that generate the 
logs are similar. This means that the incremental 
mining of logs was conducted efficiently for the 
main aspects.  
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Figure 10: Incremental Mining Verification Process.  

4.4 Experiments on Real Legacy 
System 

To demonstrate how effective this approach on a real 
scenario is, we use a real legacy system. So, the 
process logs were generated from successive 
executions of an ERP legacy system written in 
COBOL language. It has more than 2,000,000 lines 
of source code and several modules (i.e. Financial 
Management, Sales Management, etc). Moreover, 
each module implements several implicit (i.e. no 
formal process models defined) and interrelated 
business processes, represented in source code as 
business rules, and illustrated in Fig. 11.  

In order to start the discovery of business 
processes from legacy system, we followed the 
process defined in Fig. 4. On this experiment each 
module of legacy system was annotated and 
recompiled to generate trace events to the log. They 
were instrumented in such a way that each executed 
business rule (i.e. task) records an event into the log. 
Moreover, use case scenarios were defined to 
coordinate both the system execution and the log 
generation.  

 

 

Figure 11: Legacy ERP system and related modules. 

We have split and executed the user scenarios in 
seven groups. Each group represented all the 
scenarios related to one specific user of legacy 
system. Following the successive execution of these 
system scenarios, seven incremental dataset (i.e. one 
per user) with approximately 30,000 trace instances 
were generated. The datasets were named 
respectively as A, B, C, D, E, F and G. The datasets 
A, B recorded incremental logs related to execution 
of Financial Management module. Therefore, dataset 
C recorded process instances from execution of 
Sales Management. Dataset D recorded process 
instances of Service Management module. The next 
two datasets E and F recorded process instances of 
modules Production Management and Warehouse 
Management, respectively.  The last dataset (i.e. G) 
perhaps introduce modified process instances, 
generated from execution of modified version of 
Sales Management module (i.e. version 2 as 
illustrated in Fig. 11). 

Table 4: Elements Extracted from Legacy. 

 Log file  

Element A B C D E F G Total 

Biz Processes 
Structures 

+2 +1 +2 +1 +4 +3 - 13 

System Participants +3 +1 +1 +1 +1 +1 - 8 
Human Participants +1 +1 +1 +1 +1 +1 +1 7 
Tasks (Business 
Rules) 

+20 +8 +15 +11 
+24 +1 +2 (-4) 77 

XOR-split/join +10 +5 +5 +1 +3 +3 +3 (-2) 28 
AND-split/join +1       1 

The results can be seen in Table 4. It shows the 
complete list of elements extracted from the 
incremental mining of execution logs. All elements 
listed are part of business process model structure. 
Incremental mining reveals new elements after each 
mined dataset of instances, gradually generating a 
more complete model. On the other hand, the last 
dataset log (i.e. G) revel obsolete elements that were 
removed from process models (i.e. see negative 
values on rows Tasks and XOR-split/join).  Thus, 
these results can demonstrate that we can extract 
process models from legacy in an incremental way 
even on those situations where the system have to be 
modified during the mining process. 

To measure the quality of models extracted from 
legacy, we have also used Kappa statistic. The same 
aspects considered on Section 4.3 and shown on 
Table 3 were used. Here, these aspects were used to 
demonstrate the level of business analysts agreement 
on the business process structures obtained from 
legacy. So, in experiments using two different 
business analysts, Kappa values between 0.90 and 
1.00 were obtained, as shown in column Precision 

Evolutionary�Learning�of�Business�Process�Models�from�Legacy�Systems�using�Incremental�Process�Mining

67



with Real Legacy System Logs of Table 3. That 
means the business analysts agree with most of 
process models structures mined from legacy, during 
the incremental discovery. 

5 RELATED WORK 

Gunther (Gunther et al, 2008) introduced the mining 
of ad-hoc process changes in adaptive Process 
Management Systems (PMS). This technique 
introduces extension events in the log (e.g. insert 
task event, remove task event, etc) that record all 
changes in a process instance. So change logs must 
be interpreted as emerging sequences of activities 
which are taken from a set of change operations. It is 
different from conventional execution logs where 
the log content describes the execution of a defined 
process. The problem here is that sometimes legacy 
information systems and WfMS do not generate 
process change information into the log. Thus, it is 
very hard to discovery process changes from these 
systems. Bose (Bose et al, 2011) although, 
introduced concept drift applied to mining processes. 
He applied techniques for detection, location and 
classification of process modifications directly in the 
implementation log without the need for specialized 
log containing such modifications as proposed by 
Gunter. After that, Luengo (Luengo et al, 2012) 
proposed a new approach using clustering 
techniques. He uses the starting time of each process 
instance as an additional feature to those considered 
in traditional clustering approaches. 

The work presented here supports the main 
operations of evolutionary learning (e.g. insert and 
exclusion operations) using an incremental mining 
approach. Moreover, our technique does not require 
extra information in the log to detect process 
changes. Thus, it makes possible to avoid the 
reprocessing of the complete set of logs, reducing its 
total processing time. 

6 SUMMARY AND OUTLOOK 

This paper proposed an incremental process mining 
algorithm for mining of process structures in an 
evolutionary way from legacy systems. This is an 
important step for the incremental legacy 
modernization because it keeps the system 
maintenance live while the system is modernized. 
The algorithm enables the discovery of new and 
obsolete relations from log as new or modified 

traces are executed and recorded in the log. Thus, we 
can keep all process models discovered updated with 
the process definition when it changes.  

In quality experiments using non-incremental 
simulated data and conformance metrics, the models 
discovered by IncrementalMiner present good 
accuracy. Regarding the incremental approach, 
IncrementalMiner also shows good precision for the 
models discovered from logs with modified process 
instances. During the discovery of process models 
from real legacy system and also simulated logs, the 
algorithm shows good results on the extracted 
models (i.e. Kappa values above 0.900). Thus, our 
approach could be an effective alternative for 
incremental mining of process models during the re-
engineering of legacy systems.  

Altogether, the main contribution of this work 
was the creation of a mechanism that introduces the 
incremental mining of logs with support to i) the 
discovery of new dependency relations (i.e. new 
tasks) and participants in order to complement a 
partial or complete process model, and ii) the 
identification and removal of obsolete dependency 
relations in order to update an existent process 
model. We also introduced an alternative way to 
measure the quality of models generated during the 
incremental process mining. 

As future work we include the improvement of 
the identification of obsolete participants in the 
model (i.e. see low kappa value in simulate data of 
Table 3) and the integration of algorithm and the 
incremental approach in ProM tool. 
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