
A Data-adaptive Trace Abstraction Approach to the
Prediction of Business Process Performances

Antonio Bevacqua1, Marco Carnuccio1, Francesco Folino2, Massimo Guarascio2 and Luigi Pontieri2
1DIMES Department, University of Calabria, via P. Bucci 41C, 87036, Rende, CS, Italy

2ICAR-CNR, National Research Council of Italy, via P. Bucci 41C, 87036, Rende, CS, Italy

Keywords: Data Mining, Regression, Clustering, Business Process Analysis.

Abstract: This paper presents a novel approach to the discovery of predictive process models, which are meant to support
the run-time prediction of some performance indicator (e.g., the remaining processing time) on new ongoing
process instances. To this purpose, we combine a series of data mining techniques (ranging from pattern min-
ing, to non-parametric regression and to predictive clustering) with ad-hoc data transformation and abstraction
mechanisms. As a result, a modular representation of the process is obtained, where different performance-
relevant variants of it are provided with separate regression models, and discriminated on the basis of context
information. Notably, the approach is capable to look at the given log traces at a proper level of abstraction,
in a pretty automatic and transparent fashion, which reduces the need for heavy intervention by the analyst
(which is, indeed, a major drawback of previous solutions in the literature). The approach has been validated
on a real application scenario, with satisfactory results, in terms of both prediction accuracy and robustness.

1 INTRODUCTION

The general aim of process mining tech-
niques (van der Aalst et al., 2003) is to extract
information from historical log “traces” of a business
process (i.e., sequences of events registered during
different enactments of the process), in order to
help analyze and possibly improve it. An emerging
trend in this field (see, e.g., (van Dongen et al.,
2008; van der Aalst et al., 2011; Folino et al., 2012))
concerns the prediction of performance indicators
(defined on each process instance), as a way to
help improve future process enactments, through,
e.g., recommendation or risk analysis. In general,
these approaches face the problem by inducing
some kind of prediction model for the given per-
formance indicator, based on some suitable trace
abstraction function (mapping, e.g., the trace onto
the set/multiset of process tasks appearing in it).
In particular, a non-parametric regression model
is used in (van Dongen et al., 2008) to build the
prediction for a new (possibly partial) trace, based on
its similarity towards a set of historical ones – where
the similarity between two traces is evaluated by
comparing their respective abstract views. However,
such an instance-based scheme is likely to take long
prediction times (unsuitable for many real run-time

environments), especially in the case of complex and
flexible processes, where a large amount of historical
traces should be kept (and retrieved) to capture ade-
quately its wide range of behaviors. A model-based
prediction scheme is conversely followed in (van der
Aalst et al., 2011), where an annotated finite-state
machine (FSM) model is induced from the input
log, with the states corresponding to abstract repre-
sentation of log traces. The discovery of such FSM
models was combined in (Folino et al., 2012) with
a context-driven (predictive) clustering approach,
in a way that different execution scenarios can be
discovered for the process, and equipped with distinct
(more specific and more precise) local predictors.

In general, a critical issue in the induction of such
prediction models, especially in the case of complex
business processes, concerns the definition of a suit-
able trace abstraction function, capable to focus on
the core properties of the events (happened in a pro-
cess instance) that impact the more on its performance
outcomes. In fact, as discussed in (van der Aalst
et al., 2011), choosing the right abstraction level is
a delicate task, where an optimal balance has to be
reached between the risks of overfitting (i.e., having
an overly detailed model, nearly replicating the train-
ing set, which will hardy provide accurate forecasts
over unseen cases) and of undefitting (i.e., the model

56 Bevacqua A., Carnuccio M., Folino F., Guarascio M. and Pontieri L..
A Data-adaptive Trace Abstraction Approach to the Prediction of Business Process Performances.
DOI: 10.5220/0004448700560065
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 56-65
ISBN: 978-989-8565-59-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

is too abstract and imprecise, both on the training
cases and on new ones).

Previous approaches mainly leave the responsibil-
ity to tune the abstraction level to the analyst, allow-
ing her/him to select the general form of trace abstrac-
tions (e.g., set/multiset/lists of tasks), and to possibly
fix a maximal horizon thresholdh — i.e., only the
properties of theh more recent events in a trace can
be used in its abstract view, so discarding older events.
On the other hand, FSM-like models cannot effec-
tively exploit non-structural (context-oriented) prop-
erties of the process instances, which might actually
impact on performances as well. In fact, the idea of
including such data (in addition to tasks) in the con-
struction of trace abstractions will clearly emphasize
the combinatorial explosion issue discussed above.

Core Idea and Contributions. We try to overcome
the above limitations, by devising a novel approach,
capable of both taking full advantage of “non struc-
tural” context data, and of finding a good level of ab-
straction over on the history of process instances, in a
pretty automated and transparent fashion.

Our core belief is that handy (and yet accurate
enough) prediction models can be learnt via vari-
ous existing model-based regression algorithms (ei-
ther parametric, such as, e.g., (Hardle and Mammen,
1993; Quinlan, 1992), or non-parametric, such as,
e.g., (Harlde, 1990; Witten and Frank, 2005)), rather
than resorting to an explicit representation of process
states (like in (van der Aalst et al., 2011; Folino et al.,
2012)) or to an instance-based approach, like in (van
Dongen et al., 2008). This clearly requires that an ad-
equate propositional representation of the given traces
is preliminary build, capturing both structural (i.e.,
task-related) and (“non-structural”) aspects. To this
end, we propose to convert each process trace into a
set or a multi-set of process tasks, and let the regres-
sion method decide automatically which and how the
basic structural elements in such an abstracted view
of the trace are to be used to make a forecast.

Moreover, we still leverage the idea of (Folino
et al., 2012), of combining performance prediction
with a predictive clustering technique (Blockeel and
Raedt, 1998), in order to distinguish heterogeneous
context-dependent execution scenarios (“variants”)
for the analyzed process, and eventually provide each
of them with a specialized regressor. In fact, such an
approach brings, in general, substantial gain in terms
of readability and accuracy, besides explicitly show-
ing the dependence of discovered clusters on context
features, and speeding up (and possibly parallelize)
the computation of regression models — which are
typically more compact, more precise and easier to

read/evaluate/validate than a single regression model
extracted out of the whole log. In fact, we believe
that (as confirmed by the empirical results in Sec-
tion 5) even very simple regression methods can fur-
nish robust and accurate predictions, if combined with
a properly devised clustering procedure. Moreover,
this can even allow for a scalable usage of instance-
based regression schemes (which are likely to take
prohibitive prediction times on real logs), seeing as
only the traces of a single cluster (selected on the ba-
sis of context features) would be scanned over.

We pinpoint that the target features used in the clus-
tering (where context features conversely act as de-
scriptive attributes) are derived from frequent struc-
tural patterns (still defined as sets or bags of tasks),
instead of directly using the abstract representations
extracted by the log, as done in (Folino et al., 2012).
These patterns will be discovered efficiently via an
ad-hoc a-priori-like (Agrawal and Srikant, 1994)
method, where the analyst is allowed to specify a min-
imum support threshold, and possibly an additional
(“gap”) constraint, both enforced in the very genera-
tion of the patterns. Notably, such an approach frees
the analyst from the burden of explicitly setting the
abstraction level (i.e., the size of patterns, in our case),
which is determined instead in a data-driven way.

Organization. The rest of the paper is structured as
follows. After introducing some handy notation and
core concepts in Section 2, we present the proposed
approach, in an algorithmic form, in Section 3. We
then discuss the implementation of the method in Sec-
tion 4, and an experimentation on a real data in Sec-
tion 5. Section 6 finally presents some concluding
remarks and future work directions.

2 FORMAL FRAMEWORK

2.1 Logs and Performances

As usually done in the literature, we assume that
for each process instance (a.k.a “case”) atrace is
recorded, storing the sequence ofeventshappened
during its unfolding. LetT be the universe of all (pos-
sibly partial) traces that may appear in any log of the
process under analysis. For any traceτ ∈ T , len(τ) is
the number of events inτ, while τ[i] is the i-th event
of τ, for i = 1 .. len(τ), with task(τ[i]) andtime(τ[i])
denoting the task and timestamp ofτ[i], respectively.
We also assume that the first event of each trace is al-
ways associated with a unique “initial” taskA0 (pos-
sibly added artificially before analyzing the log), and

A�Data-adaptive�Trace�Abstraction�Approach�to�the�Prediction�of�Business�Process�Performances

57

its timestamp registers the time when the correspond-
ing process instance started.

Let us also assume that, for any traceτ, a tuple
context(τ) of data is stored in the log to keep informa-
tion about the execution context ofτ — like in (Folino
et al., 2012), this tuple may gather both data prop-
erties and environmental features (characterizing the
state of the BPM system). For ease of notation, letAT

denote the set of all the tasks (a.k.a., activities) that
may occur in some trace ofT , andcontext(T) be the
space of context vectors — i.e.,AT = ∪τ∈T tasks(τ),
andcontext(T) = {context(τ) | τ ∈ T }.

Further,τ(i] is theprefix(sub-)trace containing the
first i events of a traceτ and the same context data
(i.e.,context(τ(i] = context(τ)), for i = 0 .. len(τ).

A log L is a finite subset ofT , while theprefix setof
L, denoted byP (L), is the set of all the prefixes ofL’s
traces, i.e.,P (L) = {τ(i] | τ ∈ L and 1≤ i ≤ len(τ)}.

Let µ̂ : T →R be an (unknown) function assigning
a performance value to any (possibly unfinished) pro-
cess trace. For the sake of concreteness, we will focus
hereinafter on the special case where the target per-
formance value associated with each trace is the re-
maining process time (measured, e.g., in days, hours,
or in finer grain units), i.e., the time needed to fin-
ish the corresponding process enactment. Moreover,
we assume that performance values are known for all
prefix traces inP (L), for any given logL. In fact, for
each traceτ, the (actual) remaining-time value ofτ(i]
is µ̂(τ(i]) = time(τ[len(τ)])− time(τ[i]).

A (predictive)Process Performance Model (PPM)
is a model that can estimate the unknown performance
value (i.e., the remaining time in our setting) of a pro-
cess enactment, based on the contents of the corre-
sponding trace. Such a model can be viewed as a
functionµ : T →R estimatingµ̂all over the trace uni-
verse — which also includes the prefix traces of all
possible unfinished enactments of the process. Learn-
ing a PPM hence amounts to solving a particular in-
duction problem, where the training set takes the form
of a logL, and the value ˆµ(τ) of the target measure is
known for each (sub-)traceτ ∈ P (L).

Recent approaches to this problem (van der Aalst
et al., 2011; van Dongen et al., 2008; Folino et al.,
2012) leverage all the basic idea of applying some
suitable abstraction function to process traces, with
the ultimate aim of capturing only those facets of the
registered events that influence the most process per-
formances — while disregarding minor details.

2.2 Trace Abstraction

An abstracted (structural) view of a trace gives a con-
cise description of the tasks executed during the cor-

responding process enactment. Two common ways of
building such a view consist in simply regarding the
trace as a multiset (a.k.a. bag) or as a set of tasks, are
formally defined below.

Definition 1 (Structural Trace Abstraction). Let T

be a trace universe andA0, . . . ,An be the tasks
in AT . A structural (trace-) abstraction func-
tion structmode : T → R mode

T
is a function map-

ping each traceτ ∈ T to an anabstract representa-
tion structmode(τ), taken from aabstractions’ space
R mode

T
. Two concrete instantiations of the above func-

tion, denoted bystructbag : T → N
n (resp.,structset :

T → {0,1}n), are defined next to which map each
trace τ ∈ T onto a bag-based (resp., set-based)
representation of its structure:(i) structbag(τ) =
〈count(A0,τ), . . . ,count(An,τ)〉, wherecount(Ai,τ) is
the number of times that taskAi occurs inτ; and
(ii) structset(τ) = 〈occ(A0,τ), . . . ,occ(An,τ)〉, where
occ(Ai,τ) = true iff count(Ai,τ)> 0. �

The two concrete abstraction “modes” (namely,
bagandset) defined above summarize any traceτ into
a vector, where each component corresponds to a sin-
gle process taskAi , and stores either the number of
times thatAi appears in the traceτ, or (respectively)
a boolean value indicating whetherAi occur inτ or
not. Notice that, in principle, we could define abstract
trace representations as sets/bags over another prop-
erty of the events (e.g., the executor, instead of the
task executed), or even over a combination of event
properties (e.g., the task plus who performed it).

Example 1. Let us consider a real-life case study
pertaining a transshipment process, used for the ex-
periments described in Section 5. Basically, for each
containerc passing through the harbor, a distinct log
traceτc is stored, registering all the tasks applied to
c, which may include: movingc by means of either
a straddle-carrier (MOV), swappingc with another
container (SHF), and loadingc onto a ship by way
of a shore crane (OUT). Let τ be a log trace stor-
ing a sequence〈e1,e2,e3〉 of three events such that
task(e1) = task(e2) = MOV and task(e3) = OUT.
With regard to the abstract trace representations intro-
duced in Def. 1, it is easy to see thatstructbag(τ) =
[2,0,1], andstructset(τ) = [1,0,1] — where the traces
are mapped into a vector space consisting of the di-
mensionsA1≡MOV, A2≡ SHF, A3≡OUT. ⊳

The structural abstraction functions in Def. 1 are
a subset of the ones used in previous approaches to
the discovery of predictive process models (van der
Aalst et al., 2011; van Dongen et al., 2008; Folino
et al., 2012). To be more precise, (van Dongen et al.,
2008) also considers the possibility to map a trace into
a vector of task durations, as well as to combine mul-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

58

tiple structural abstractions with data attributes of the
traces, while the other two approaches also allow for
abstracting a trace into the list of tasks appearing in it
(as an alternative to bag/set -oriented abstractions).

2.3 Clustering-based PPM

Like in (Folino et al., 2012), we here consider a spe-
cial kind of PMM model, relying on a clustering of
the process traces. Such a model, described below, is
indeed a predictive clustering model, where context
data play the role of descriptive attributes, whereas the
target variables are derived by specific performance
values, extracted out of the traces.

Definition 2 (Clustering-based Performance Predic-
tion Model (CB-PPM)). Let L be a log (overT), with
context featurescontext(T), andµ̂ : T →R, be a per-
formance measure, known for allτ ∈ P (L). Then
a clustering-based performance prediction model
(CB-PPM) for L is a pairM = 〈c,〈µ1, . . . ,µk〉〉, which
encodes the unknown performance function ˆµ in
terms of a predictive clustering model, withk de-
noting the associated number of clusters (found for
L). More specifically,c is a partitioning function,
which assigns any (possibly novel) trace to one of the
clusters (based on its context data), while eachµi is
thePPM of the i-th cluster — i.e.,c : context(T)→
{1, . . . ,k}, andµi : T → R, for i ∈ {1, . . . ,k}. The
performance ˆµ(τ) of any (partial) traceτ is eventually
estimated asµj(τ), where j=c(context(τ)). �

In this way, each cluster has its own PPM model,
encoding how ˆµ depends on the structure (and, possi-
bly, the context) of a trace, relatively that cluster. The
prediction for each trace is hence made with the pre-
dictor of the cluster it is assigned to (by functionc).

In general, such an articulated kind of PPM can be
built by inducing both a predictive clustering model
and multiple PPMs (as the building blocks imple-
menting c and all µi , respectively). In particular,
in (Folino et al., 2012), the latter task is accomplished
by using the method in (van der Aalst et al., 2011),
so that each cluster is eventually provided with an
A-FSM model. As mentioned in Section 1, in or-
der to develop an easier-to-use and data-adaptive ap-
proach, we will not use A-FSM models (which typi-
cally require a careful explicit setting of the abstrac-
tion level), and will rather employ one of the various
regression methods available for propositional data.
To this purpose, an ad-hoc view of the log will be pro-
duced, where both the context-oriented and structure-
oriented (cf. Def. 1) features of a trace are used as
descriptive attributes, whereas the target attributes are
derived by projecting the trace onto a space of struc-
tural patterns. These patterns, which will be com-

puted via an ad-hoc data mining method, are de-
scribed in detail in the following.

2.4 Structural Patterns

In our setting, structural patterns are meant to cap-
ture regularities in the structure of traces, abstracted
via sets or bags of tasks. In particular, these patterns
can be regarded as (constrained) sub-sets or sub-bag
of tasks that appear frequently in the (abstracted) log
traces. Letmode∈ {bag,set} denotes a given abstrac-
tion criterion,T be the reference trace universe, and
AT = {A0, . . . ,An} be its associated process tasks.
Then, a(structural) patternw.r.t. T andmodesim-
ply is an elementp of theabstractions’ spaceR mode

T
– over which the structural trace-abstraction function
structmode ranges indeed. The size ofp, denoted by
size(p), is the number of distinct tasks inp (i.e., the
number ofp’s components with a positive value.

Having a structural pattern the same form as a
(structural) trace abstraction, we can apply usual
set/bag containment operators to them both. Specifi-
cally, given two elementsp andp′ of R mode

T
(be each

a pattern or a full trace representation), we say thatp2
contains p1 (and symmetricallyp1 is contained inp2),
denoted byp1 � p2, if p1[j] ≤ p2[j], for j = 1,≤,n,
and for i = 1,2 — wherepi [j] is the i-th component
of pi , viewed as a vector inDn (cf. Def. 1).

As we want to eventually use such patterns for clus-
tering purposes, we are interested in those that capture
significant behavioral schemes. In particular, an im-
portant property required for such patterns is that they
occur frequently in the given log (otherwise, little,
low significant clusters are likely to be discovered),
as specified in the following notion of support.

Definition 3 (Pattern Support and Footprints). Let τ∈
T be a trace,modebe a given abstraction mode, and
p be pattern (w.r.t.T andmode).

Then, we say thatτ supports p, denoted byτ ⊢
p if its corresponding structural abstraction con-
tains p (i.e., p � structmode(τ)). In such a case,
a footprint of p on τ is subsetF = { f1, . . . , fk} ⊆
{1, . . . , len(τ)} of positions within τ, such that
structmode(〈τ[f1], . . . ,τ[fk]〉) = p. Moreover,gap(F)
is the number of events inτ which match no
position of F and appear in between a pair of
matching events — i.e.,gap(F) = maxfi∈F{ fi} −
minfi∈F{ fi} − |F | + 1. Finally, with little abuse
of notation, we denotegap(p,τ) = min {{∞} ∪
{ gap(F) | F is a footprint ofp onτ } }. �

In words, a footprintF of a patternp, on a traceτ
supporting it, identifies a subsequence ofτ which (i)
contains the events occurring inτ at one of the po-
sitions in F , and (ii) has a structural representation

A�Data-adaptive�Trace�Abstraction�Approach�to�the�Prediction�of�Business�Process�Performances

59

Input: A log L over a trace universeT , with associated tasksAS= A1, . . . ,An and target performance measure ˆµ
(known overP (L)), an abstraction modem∈ {set,bag} (cf. Def. 1), three thresholds,minSupp∈ [0,1),
maxGap∈ N∪{∞}, andKtop∈ N

+∪{∞}, and a base regression methodREGR

Output: A CB-PPM model forL (fully encodingµ̂ all overT).

Method: Perform the following steps:

1 Letcontext(τ) be the vector of context data associated with eachτ ∈ L;
2 Build astructural view SL of P (L), by replacing eachτ ∈ P (L) with a transaction-like representation ofstructm(τ);
3 RSP:= minePatterns(SL,m,minSupp,maxGap);
4 RSP: = filterPatterns(RSP,kTop);
6 LetRSP= {p1, . . . , ps};
7 Build a log sketch PL for L, by using both context data andRSP-projected performances;
8 Learn a PCTT, usingcontext(τ) (resp.,val(τ, pi), i=1..s) as descriptive (resp., target) features for eachτ ∈ L;
9 LetL[1], . . . ,L[k] denote the discovered clusters;

10 for each L[i] do
11 Induce a regression modelppmi out of P (L[i]), using methodREGR— regarding, for eachτ ∈ P (L[i]),

context(τ) andstructm(τ) as the input values, and the performance measurement ˆµ(τ) as the target value;
10 Storeppmi as the implementation of the prediction functionµi : T →M (for clusteri);
11 end
12 return 〈 c,{ µ1, . . . ,µk} 〉.

Figure 1:Algorithm AA-PPM Discovery.

coinciding withp. Clearly, if p is not supported byτ,
gap(p,τ) will take an infinite value.

3 SOLUTION ALGORITHM

Figure 1 illustrates the main steps of our approach to
the discovery of a CB-PPM model, in the form of an
algorithm, namedAA-PPM Discovery. Essentially,
the problem is approached in three main phases.

In the first phase (Steps 1-5), a set of (frequent)
structural patterns are extracted from the log, which
are deemed to capture the main behavioral schemes
of the process, as concerns the dependence of per-
formance on the execution of tasks. To this end, af-
ter converting the structure of each (possibly partial)
traceτ into an itemset (Step 2)1, we compute all the
structural patterns (i.e., sub-sets, of various sizes) that
occur frequently in the log and effectively summarize
the behaviors in the log. More precisely, we first com-
pute the set{p ∈ R m

T
| suppmaxGap(p,SL) ≥ minSupp}

(cf. Def.3), by using functionminePatterns, which
is stored inRSP— note that this set will never be
empty, since (as an extreme case) at least a singleton
pattern withA0 is frequent (no matter ofminSupp,
m andmaxGap). These patterns are then filtered by
function filterPatterns, which selects thekTop
most relevant patterns among them. Notably, we
can still use all the discovered patterns, by fixing
maxGap= ∞ (no real filter is applied in this case).

1In particular, as to bags, anys= structbag(τ) ∈ Nn is
turned into{(Ai ,k j) | 0≤ i ≤ n, s[i]> 0 and 1≤ j ≤ s[i] }.

Both these functions are explained in details later on.
In the second phase, the selected patterns are used

to associate a series of numerical variables with all
traces (Step 7), and to carry out a predictive clustering
of them (Step 8). To this end, a propositional view of
the log, here namedlog sketch, is produced by trans-
forming each trace into a tuple, where context prop-
erties play as are descriptive attributes and the projec-
tion onto the space of selected patterns are the target
numerical features. Specifically, any selected pattern
p gives rise to a target (performance) feature, such
that the valueval(τ, p) taken by it on any traceτ is be
computed as follows:(i) val(τ, p) = NULL, if τ 0 p,
or (ii) val(τ, p) = µ̂(τ(j∗]), wherej∗ is the biggest in-
dex j ∈ {1, . . . , len(τ)} such thatτ(j] ⊢ p. Like in
(Folino et al., 2012), the clustering is computed by in-
ducing a Predictive Clustering Tree (PCT) (Blockeel
and Raedt, 1998) from the log sketch (Step 8).

Finally, each cluster is equipped with a basic (not
clustering-based) PPM model, by using some suit-
able regression method (chosen through parameter
REGR), provided with a dataset encoding all the pre-
fixes that can be derived from the traces assigned to
the cluster. Specifically, each such prefixτ is en-
coded as a tuple wherecontext(τ) andstructm(τ) are
regarded as input values, while the associated perfor-
mance measurement ˆµ(τ) represents the value of the
numerical target variable that is to be estimated.

3.1 FunctionminePatterns

This function computes all the patterns, of any size,
that get a support equal to or higher thanminSupp

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

60

in a transactional view of trace structures. Notably,
the function does not require the analyst to specify
the size of each pattern (differently from the horizon
thresholdh used in previous methods), which is in-
stead determined automatically, in a data-driven way.
However, it allows for possibly fixing a finitemaxGap
threshold for the gaps admitted between patterns and
traces, in case she/he wants to keep some more details
on the actual sequencing of the tasks. Technically, this
constraint is used to introduce a refined support func-
tion, defined as follows:

suppmaxGap(p,L) =|{τ ∈ L | τ ⊢ p and
gap(p,τ)<maxGap+1}| (1)

Note that this function actually coincides with
the standard one whenmaxGap= ∞ (under the
usual convention that∞ + 1=∞). As a result,
minePatterns will return each patternp∈ R m

T
such

that suppmaxGap(p,L) ≥ minSupp. It can be proved
that this computation can be done in a level-wise way,
despite the fact that the support function does not en-
joy any (anti-)monotonicity property.

The basic computation scheme for the function
minePatterns, sketched in Figure 2, assumes that:
m is the chosen (structural) trace abstraction mode,
minSuppandmaxGapare the thresholds for specify-
ing support and gap requirements, respectively, andL
is the original log, taken from a reference trace uni-
verseT . In practice, the function actually works with
a transactional encoding ofL, storing a set-oriented
representation ofstructm(τ) for eachτ ∈ P (L)).

Function minePatterns (SL: transaction set;minSupp:
real; maxGap: integer;m : {set,bag}): a set of fre-
quent structural patterns (i.e., a subset ofR m

T
)

I1 := {x∈ AS|minSupp×|SL| ≤ |{t ∈ SL| x is in t}| };
Ik := I1;
F := I1;
while Ik 6= /0 do

C←{p′|p′ = p∪{x}∧ p∈ Ik∧x∈ I1∧x /∈ p};
for each τ ∈ P (L) do

Cτ←{p | p∈C∧ τ ⊢ p∧gap(p,τ)< maxGap+1}
for each p∈Cτ do

count[p]← count[p]+1;
end

end
Ik := { p | p∈C∧count[p]≥minSupp×|SL| };
F := F

⋃
Ik;

end
return F

Figure 2:Function minePatterns.

Clearly, all the above constraints (including the
gaps one) are enforced at each level of the pattern gen-

eration procedure, with the advantage of shrinking the
amount of patterns generated at each step (k), as well
as the overall computation time.

This can be done with no risk of endangering the
correctness and completeness of results, as informally
proven in the folllow.

Let us first consider the casemaxGap= ∞. As, in
this case, functionsuppmaxGap (cf. Eq. 3.1) is anti-
monotonic w.r.t. pattern size, when computing the
patterns of sizek we can safely filter out any patternp
of them such thatsupp(p)<minSupp– indeed, there
cannot be any patternp′ such thatsize(p′) = k+ 1,
p� p′ andsupp(p′)≥minSupp.

By converse, such a monotonicity property is not
enjoyed by gap constraints. Indeed, when remov-
ing an element from a pattern, the resulting pat-
tern may contain a higher number of spurious ac-
tivities (i.e., may get a higher gap score) on some
traces. For example, consider the patternp =
{a,b,c,d} (of size 4) and the traceτ encoding the se-
quencey1, . . . ,yq,a,b,x1,x2,c,x3,d,z1, . . . ,zs of task
labels. For the sake of simplicity, and w.l.o.g.,
let us assume that the tasksa,b,c,d do not occur
in any other parts of the traces (i.e.,{a,b,c,d} ∩
{y1, . . . ,yq,z1, . . . ,zs)} = /0), so that we can focus on
the subsequence of tasksa,b,x1,x2,c,x3,d — which
actually determines the gap score forp andτ.

Clearly, for every patternp′ obtained by removing
an “internal” element (i.e., different from botha and
d in the example) from a given patternp, it holds
gap(p′,τ) ≥ gap(p,τ) – e.g., gap({a,c,d},τ) =
gap({a,b,d},τ) = 4> 3= gap(p,τ).

However, the two patterns obtained by removing
one of the two “extreme elements” (i.e., eithera or
d) are guaranteed to have the same gap asp, or even
to lower it. For example,gap({b,c,d},τ) = 3 =
gap(p,τ), andgap({a,b,c},τ) = 2< gap(p,τ).

Consequently, in the computation scheme de-
picted above, for any relevant patternp of level
k > 1 (i.e., for any k-sized patternp such that
suppmaxGap(p,L) ≥minSupp), there are at least two
relevant sub-patterns of levelk−1 which will produce
p when merged together.

3.2 FunctionfilterPatterns

The function is meant to select a subset of mostly sig-
nificant and useful patterns, in order to allow for a
more effective and more scalable computation of pre-
dictive clustering models. In particular, we want to
prevent the case where the PCT learning algorithm
has to work in a sparse and high-dimensional tar-
get space, where low-quality will hardly be found,
while long computation times are likely to take place.

A�Data-adaptive�Trace�Abstraction�Approach�to�the�Prediction�of�Business�Process�Performances

61

Hence, we allow the analyst to ask for only keeping
thekToppatterns that seems to discriminate the main
performance profiles at best. To this end, we employ
a variant of the scoring functionφ proposed in (Folino
et al., 2012) (giving score 0 to every feature with no
positive correlation with context data), which is es-
sentially meant to give preference to patterns ensuring
a higher values of the following measures: (i) support,
(ii) correlation with the context attributes and (iii) and
variability of the associated performance values (i.e.,
val(p,τ), with τ ranging overL). Further details can
be found in (Folino et al., 2012).

4 IMPLEMENTATION

The prototype systemAA-TP (Adaptive-Abstraction
Time Prediction), specializes algorithmAA-PPMDis-
covery to the case where the remaining processing
time is the target performance. The logical architec-
ture of the system is sketched in Figure 3, where the
arrows between blocks stand for information flows,
while Log Datais a collection of process logs repre-
sented in the MXML (or XES) format (van der Aalst
andet al., 2007).

The Scenario Discoverymodule is responsible
for identifying behaviorally homogeneous groups of
traces, in terms of both context data and remaining
times. In particular, the discovery of different trace
clusters is carried out by thePredictive Clustering
submodule which groups traces sharing both simi-
lar descriptive and target values. This latter mod-
ule leverages the CLUS system (DLAI Group, 1998),
a predictive clustering framework for inducing PCT
models out of propositional data.

In this regard, theLog-View Generatorsubmod-
ule acts as a “translator” which converts all log traces
into propositional tuples, according to the ARFF for-
mat used in CLUS. As explained above, this mapping
relies on the explicit representation of both context
data and target attributes, derived from the original
log. In this process, each trace can be enriched with
additional (environmental) context features, such as
workload indicators and aggregated time dimensions,
in case they are not explicitly stored in the log.

These context-enriched traces are then mapped into
a transactional form and delivered to thePattern Min-
ing module. This latter, in its turn, will provide the
Log-View Generatorwith a set of frequent patterns,
which are to be eventually used as target features for
the predictive clustering step. Specifically, the extrac-
tion of frequent patterns is carried out by thePattern
Mining module in two steps: first patterns are first
mined (by thePattern Extractorsubmodule), and then

Log Data

Log-View
Generator

Predictive
Clustering

Prediction Error
Evaluator

REPTree
Regressor

Adaptive Abstraction – Time Predictor (AA-TP) Plugin

Scenario Discovery Time Predictors Learning

Evaluation
Evaluation

Report

CB-PPM
Model

Linear
Regressor

IB-k
Regressor

Pattern Mining

Pattern
Extractor

Pattern
Filter

Figure 3: Logical architecture of theAA-TP system.

the most relevant of them are selected (by thePattern
Filter submodule).

Once the predictive clustering procedure has been
completed, the traces (each labeled with a cluster ID)
are delivered to theTime Predictors Learningmod-
ule, which implements a range of classical regression
algorithms (including, in particular, IB-k, Linear Re-
gression, and RepTree). These algorithms are eventu-
ally used to induce the local predictor (i.e., PPM) of
each discovered cluster, which will compose (together
with the logical rules discriminating among the clus-
ters) the overallCB-PPM model, returned as the main
result. For inspection purposes and further analysis,
such a model is stored in a repository. Finally, the
Evaluationmodule helps the user assess the quality
of time predictions on a generic test set.

5 EXPERIMENTS

This section illustrates some experimental activities
that we conducted, on real data, with the prototype
systemAA-TP, implementing a specialized version of
AA-PPM Discoveryalgorithm, where the target per-
formance measure is the remaining processing time
(i.e., the time needed to complete a partial process in-
stance) — as explained in the previous section.

5.1 Testbed

The experiments were performed on the logs of a real
transshipment system, mentioned in Example 1 —
more precisely, on a sample of 5336 traces, corre-
sponding to all the containers that passed through the
system in the first third of year 2006.

The log stores a series of logistic activities applied
to each container passing through a maritime termi-
nal. Basically, each container is unloaded from a
ship and temporarily placed near to the dock, un-
til it is carried to some suitable yard slot for be-
ing stocked. Symmetrically, at boarding time, the
container is first placed in a yard area close to the

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

62

!"#$%

!"&!%

!"&$%

!"'!%

!"'$%

!"(!%

!"($%

!"$!%

!"$$%

!% (%)% *% !% (%)% *% !% (%)% *% !% (%)% *% !% (%)% *% !% (%)% *% !% (%)% *% !% (%)% *%

(% *% (% *% (% *% (% *%

!+#% !+&% !+'% !+(%

,-./-0%

%

1230%

%

,456700%

89:1%

;45<-=%

><02=<<%

(a) The effect of parameters onrmse results.

!"!!#

!"!$#

!"%!#

!"%$#

!"&!#

!"&$#

!"'!#

!"'$#

!# (#)# *# !# (#)# *# !# (#)# *# !# (#)# *# !# (#)# *# !# (#)# *# !# (#)# *# !# (#)# *#

(# *# (# *# (# *# (# *#

!+%# !+&# !+'# !+(#

,-./-0#

#

1230#

#

,456700#

89:1#

;45<-=#

><02=<<#

(b) The effect of parameters onmaeresults.

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

("!!#

("$!#

!# %# '#)# !# %# '#)# !# %# '#)# !# %# '#)# !# %# '#)# !# %# '#)# !# %# '#)# !# %# '#)#

%#)# %#)# %#)# %#)#

!*(# !*$# !*+# !*%#

,-./-0#

#

1230#

#

,456700#

89:1#

;45<-=#

><02=<<#

(c) The effect of parameters onmaperesults.

Figure 4: Sensitiveness of AA-TP w.r.t. parameters at varying of kind of regressor.

dock, and then loaded on a cargo. Different kinds
of vehicles can be used for moving a container, in-
cluding, e.g., cranes, “straddle-carriers”, and “multi-
trailers”. This basic life cycle may be extended with
additional transfers, devoted to make the container
approach its final embark point or to leave room for
other ones. Several data attributes are available for
each container as context data (of the correspond-
ing process instance), including: the origin and final

ports, its previous and next calls, various properties
of the ship unloading it, physical features (such as,
e.g., size, weight), and some information about its
contents. Like in (Folino et al., 2012), we also consid-
ered a few more (environment-oriented) context fea-
tures for each container: the hour (resp., day of the
week, month) when it arrived, and the total number of
containers that were in the port at that moment.

Considering the remaining processing time as the

A�Data-adaptive�Trace�Abstraction�Approach�to�the�Prediction�of�Business�Process�Performances

63

Table 1: Errors (avg±stdDev) made byAA-TP and its com-
petitors, when using thebagabstraction mode.

AA-TP

(IB-k)

AA-TP

(RepTree)

CA-TP FSM

rmse 0.205±0.125 0.203±0.082 0.291±0.121 0.505±0.059

mae 0.064±0.058 0.073±0.033 0.142±0.071 0.259±0.008

mape 0.119±0.142 0.189±0.136 0.704±0.302 0.961±0.040

Table 2: Errors (avg±stdDev) made byAA-TP and its com-
petitors, when using thesetabstraction mode.

AA-TP

(IB-k)

AA-TP

(RepTree)

CA-TP FSM

rmse 0.287±0.123 0.286±0.084 0.750±0.120 0.752±0.037

mae 0.105±0.061 0.112±0.035 0.447±0.077 0.475±0.009

mape 0.227±0.131 0.267±0.060 2.816±0.303 2.892±0.206

target performance measure, we will measure predic-
tion effectiveness by way of three classic error metrics
(computed via 10-fold cross validation):root mean
squared error (rmse), mean absolute error (mae), and
mean absolute percentage error (mape). For an easier
interpretation of results, the former two metrics will
be normalized w.r.t. theaverage dwell-time (ADT),
i.e., the average length of stay over all the containers
that passed through the terminal. In this way, all the
quality metrics will be dimensionless (and hopefully
ranging over [0,1]). Moreover, for the sake of sta-
tistical significance, all the error results shown in the
following have been averaged over 10 trials.

5.2 Test Results: Tuning of Parameters

We tried our approach (referred to asAA-TP here-
inafter) with different settings of its parameters, in-
cluding the base regression method (REGR) for in-
ducing the PPM of each discovered cluster. For the
sake of simplicity, we here only focus on the usage of
two basic regression methods: classicLinear regres-
sion (Draper and Smith, 1998), and the tree-based re-
gression algorithmRepTree(Witten and Frank, 2005).
In addition, we consider the case where each PPM
model simply encodes ak-NN regression procedure
(denoted byIB-k hereinafter), as a rough term of com-
parison with the family of instance-based regression
methods (including, in particular, the approach in (van
Dongen et al., 2008)). For all of the above regres-
sion methods, we reused the implementations avail-
able in the popular data-mining library Weka (Frank
et al., 2005). We remind that the other parameters
are:minSupp, (i.e., the minimum support for frequent
patterns),kTop(i.e., the maximal number of patterns
to keep, and then use in the clustering), andmaxGap
(i.e., the maximal number of spurious events allowed
to occur among those of a given pattern, in a trace that
supports this latter). Figure 4 allows for analyzing the

three kinds of errors varies, respectively, when using
different regression methods (distinct curves are de-
picted for them), and different values of the parame-
ters (namely,maxGap= 0,4,8,∞, kTop= 4,∞, and
minSupp= 0.1, . . . ,0.4).

Clearly, the underlying regression method is the
factor exhibiting a stronger impact on precision re-
sults. In particular, the disadvantage of using linear
regression is neat (no matter of the error metrics),
whereas bothIB-k and RepTreemethods performs
quite well, and very similarly. This is good news, es-
pecially for theRepTreemethod, which is to be pre-
ferred toIB-k for scalability reasons. Indeed, this lat-
ter may end up being too time-consuming at run-time,
when a large set of example traces must be kept – even
though, differently from pure instance-based methods
(like (van Dongen et al., 2008)), we do not need to
search across the whole log, but only within a single
cluster (previously selected, based on context data).

As the to remaining parameters, it is easily seen
that poorer results are obtained whenminSupp= 0.1
andkTop= 4, as well as whenminSupp= 0.4. As
a matter of fact, the former case epitomizes the cases
where we cut little (according to frequency) during
the generation of patterns, while trying to reduce their
number in the filtering phase; the latter, instead, is an
opposite situation where a rather high threshold sup-
port threshold is employed, at a higher risk of loos-
ing important pieces of information on process be-
haviour. In more detail, in the former case, the nega-
tive outcome is alleviated when settingmaxGap= 0,
i.e., the patterns are required to exactly match a seg-
ment (i.e., subsequence of contiguous elements) in
their supporting traces. It is worth noticing that, apart
from these extreme cases,AA-TP exhibits good stabil-
ity and robustness, over a wide range of parameter set-
tings. Remarkably, whenminSuppgets a value from
[0.2, . . . ,0.3], the remaining two parameters, namely
kTopandmaxGap, do not seem to affect the quality
of predictions at all. In practice, it suffices to choose
carefully the regression method (and a middling value
of minSupp) to ensure good and stable prediction out-
comes, no matter of the other parameters – which
would be, indeed, quite harder to tune in general.

5.3 Comparison with Competitors

Let us finally compare our approach with two other
ones, defined in the literature for the discovery of a
PPM: CA-TP (Folino et al., 2012) andFSM (van der
Aalst et al., 2011). Tables 1 and 2 reports the average
errors (and associated standard deviations) made by
systemAA-TP, while varying and the base regression
method (namely,Linear, RepTreeandIB-k). In par-

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

64

ticular, the first table regard the case when bag repre-
sentations are used for abstracting traces, whereas the
second corresponds to the usage of set abstractions.

These values were computed by averaging the ones
obtained with different settings of the parametersmin-
Supp, kTop, and maxGap. Similarly, for both of
the approachesCA-TP andFSM, we computed the av-
erage of the results obtained using different values
of the history horizon parameterh (precisely,h =
1,2,4,8,16), and the best-performing setting for all
the remaining parameters — which are of minor in-
terest here, since we mainly want to contrast our ab-
straction strategy to the classical ones of competitors.

Interestingly, the figures in Tables 1 and 2 indicate
that our approach is more accurate than both competi-
tors, irrespective of the abstraction strategy adopted.
It is worth noticing that the best results (shown in bold
in the tables), for all the error metrics, are obtained
whenAA-TP is used with thebag abstraction mode.
Indeed, when combining this abstraction mode with
the IB-k regressor,AA-TP manages to lower the pre-
diction error by about 55.9% on average w.r.t.CA-TP,
and by an astonishing 74.1% w.r.t. FSM, on average
(w.r.t. all the error metrics). Similar results are ob-
tained when usingRepTree(still with bag abstrac-
tions), where a reduction of 50.7% (resp., 70.6%) is
achieved w.r.t. toCA-TP (resp.,FSM).

6 CONCLUSIONS

We have presented a new predictive process-mining
approach, which fully exploits context information,
and determines the right level of abstraction on
log traces in data-driven way. Combining several
data mining and data transformation methods, the
approach allows for recognizing different context-
dependent process variants, while equipping each of
them with a separate regression model.

Encouraging results were obtained on a real appli-
cation scenario, showing that the method is precise
and robust, and it yet requires little human interven-
tion. Indeed, it suffices not to use extreme values for
the support threshold to have low prediction errors,
no matter of the other parameters (i.e.,maxGapand
kTop) — which would, indeed, harder to tune.

As future work, we plan to explore the usage of
sequence-like patterns (e.g., k-order subsequences)
— possibly combined with those already considered
here — in order to capture the structure of a process
instance in a more precise (but still abstract enough)
manner, as well as to fully integrate our approach into
a real Business Process Management platform, in or-
der to offer advantage run-time services.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules in large databases. InProc. of
20th Int. Conf. on Very Large Data Bases (VLDB’94),
pages 487–499.

Blockeel, H. and Raedt, L. D. (1998). Top-down induction
of first-order logical decision trees.Artificial Intelli-
gence, 101(1-2):285–297.

DLAI Group (1998). CLUS: A predictive clustering sys-
tem. Available athttp://dtai.cs.kuleuven.be/clus/.

Draper, N. R. and Smith, H. (1998).Applied Regression
Analysis. Wiley Series in Probability and Statistics.

Folino, F., Guarascio, M., and Pontieri, L. (2012). Discover-
ing context-aware models for predicting business pro-
cess performances. InProc. of 20th Int. Conf. on
Cooperative Information Systems (CoopIS’12), pages
287–304.

Frank, E., Hall, M. A., Holmes, G., Kirkby, R., and
Pfahringer, B. (2005). Weka - a machine learning
workbench for data mining. InThe Data Mining and
Knowledge Discovery Handbook, pages 1305–1314.

Hardle, W. and Mammen, E. (1993). Comparing nonpara-
metric versus parametric regression fits.The Annals
of Statistics, 21(4):1926–1947.

Harlde, W. (1990). Applied NonParametric Regression.
Cambridge University Press.

Quinlan, R. J. (1992). Learning with continuous classes. In
In Proc. of 5th Australian Joint Conference on Artifi-
cial Intelligence (AI’92), pages 343–348.

van der Aalst, W. M. P. andet al. (2007). ProM 4.0: Com-
prehensive support for real process analysis. InProc.
of 28th Int. Conf. on Applications and Theory of Petri
Nets and Other Models of Concurrency (ICATPN’07),
pages 484–494.

van der Aalst, W. M. P., Schonenberg, M. H., and Song,
M. (2011). Time prediction based on process mining.
Information Systems, 36(2):450–475.

van der Aalst, W. M. P., van Dongen, B. F., Herbst,
J., Maruster, L., Schimm, G., and Weijters, A. J.
M. M. (2003). Workflow mining: a survey of is-
sues and approaches.Data & Knowledge Engineer-
ing, 47(2):237–267.

van Dongen, B. F., Crooy, R. A., and van der Aalst, W.
M. P. (2008). Cycle time prediction: When will this
case finally be finished? InProc. of 16th Int. Conf. on
Cooperative Information Systems (CoopIS’08), pages
319–336.

Witten, I. H. and Frank, E. (2005).Data Mining: Practi-
cal Machine Learning Tools and Techniques, Second
Edition. Morgan Kaufmann Publishers Inc.

A�Data-adaptive�Trace�Abstraction�Approach�to�the�Prediction�of�Business�Process�Performances

65

