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Abstract: This paper presents a novel approach to the discovery of predictive process models, which are meant to support
the run-time prediction of some performance indicator (e.g., the remaining processing time) on new ongoing
process instances. To this purpose, we combine a series of data mining techniques (ranging from pattern min-
ing, to non-parametric regression and to predictive clustering) with ad-hoc data transformation and abstraction
mechanisms. As a result, a modular representation of the process is obtained, where different performance-
relevant variants of it are provided with separate regression models, and discriminated on the basis of context
information. Notably, the approach is capable to look at the given log traces at a proper level of abstraction,
in a pretty automatic and transparent fashion, which reduces the need for heavy intervention by the analyst
(which is, indeed, a major drawback of previous solutions in the literature). The approach has been validated
on a real application scenario, with satisfactory results, in terms of both prediction accuracy and robustness.

1 INTRODUCTION environments), especially in the case of complex and
flexible processes, where a large amount of historical

The general aim of process mining tech- fraces should be kept (and retrieved) to capture ade-

niques (van der Aalst et al., 2003) is to extract quatgly its wide range of behaviors. A mpdel—based
information from historical log “traces” of a business Prediction scheme is conversely followed in (van der
process (i.e., sequences of events registered during®alst et al., 2011), where an annotated finite-state
different enactments of the process), in order to Mmachine (FSM) model is induced from the input
help analyze and possibly improve it. An emerging log, w!th the states correspondmg to abstract repre-
trend in this field (see, e.g., (van Dongen et al., Sentation of log traces. _The d_|scovery of such F_SM
2008; van der Aalst et al., 2011; Folino et al., 2012)) Models was combined in (Folino et al., 2012) with
concerns the prediction of performance indicators @ context-driven (predictive) clustering approach,
(defined on each process instance), as a way toin & way that different execution scenarios ca_m_be
help improve future process enactments, through,mscovered _f(_)r the process,and equipped W!th distinct
e.g., recommendation or risk analysis. In general, (More specific and more precise) local predictors.
these approaches face the problem by inducing In general, a critical issue in the induction of such
some kind of prediction model for the given per- prediction models, especially in the case of complex
formance indicator, based on some suitable tracebusiness processes, concerns the definition of a suit-
abstraction function (mapping, e.g., the trace onto able trace abstraction function, capable to focus on
the set/multiset of process tasks appearing in it). the core properties of the events (happened in a pro-
In particular, a non-parametric regression model cess instance) thatimpact the more on its performance
is used in (van Dongen et al.,, 2008) to build the outcomes. In fact, as discussed in (van der Aalst
prediction for a new (possibly partial) trace, based on et al., 2011), choosing the right abstraction level is
its similarity towards a set of historical ones — where a delicate task, where an optimal balance has to be
the similarity between two traces is evaluated by reached between the risks of overfitting (i.e., having
comparing their respective abstract views. However, an overly detailed model, nearly replicating the train-
such an instance-based scheme is likely to take longing set, which will hardy provide accurate forecasts
prediction times (unsuitable for many real run-time over unseen cases) and of undefitting (i.e., the model

56 Bevacqua A., Carnuccio M., Folino F, Guarascio M. and Pontieri L..
A Data-adaptive Trace Abstraction Approach to the Prediction of Business Process Performances.
DOI: 10.5220/0004448700560065
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 56-65
ISBN: 978-989-8565-59-4
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)



A Data-adaptive Trace Abstraction Approach to the Prediction of Business Process Performances

is too abstract and imprecise, both on the training read/evaluate/validate than a single regression model
cases and on new ones). extracted out of the whole log. In fact, we believe
Previous approaches mainly leave the responsibil-that (as confirmed by the empirical results in Sec-
ity to tune the abstraction level to the analyst, allow- tion 5) even very simple regression methods can fur-
ing her/him to select the general form of trace abstrac- nish robust and accurate predictions, if combined with
tions (e.g., set/multiset/lists of tasks), and to possibly a properly devised clustering procedure. Moreover,
fix a maximal horizon threshold — i.e., only the this can even allow for a scalable usage of instance-
properties of thér more recent events in a trace can based regression schemes (which are likely to take
be used in its abstract view, so discarding older events.prohibitive prediction times on real logs), seeing as
On the other hand, FSM-like models cannot effec- only the traces of a single cluster (selected on the ba-
tively exploit non-structural (context-oriented) prop- sis of context features) would be scanned over.
erties of the process instances, which might actually =~ We pinpointthat the target features used in the clus-
impact on performances as well. In fact, the idea of tering (where context features conversely act as de-
including such data (in addition to tasks) in the con- scriptive attributes) are derived from frequent struc-
struction of trace abstractions will clearly emphasize tural patterns (still defined as sets or bags of tasks),
the combinatorial explosion issue discussed above. instead of directly using the abstract representations
extracted by the log, as done in (Folino et al., 2012).
These patterns will be discovered efficiently via an
ad-hoc a-priori-like (Agrawal and Srikant, 1994)

the above limitations, by devising a novel approach, e qq, where the analyst is allowed to specify a min-
capable of both taking full advantage of “non struc- ;.\ m support threshold, and possibly an additional

tural” context data, and of finding a good level of ab- (“gap”) constraint, both enforced in the very genera-

straction-over on the history of process.instances, INation of the patterns. Notably, such an approach frees
pretty automated and transparent fashion. the analyst from the burden of explicitly setting the
Our core belief is that handy (and yet accurate apsiraction level (i.e., the size of patterns, in our case),

enough) prediction models can be learnt via vari- \yhich is determined instead in a data-driven way.
ous existing model-based regression algorithms (ei-

ther parametric, such as, e.g., (Hardle and Mammen,
1993; Quinlan, 1992), or non-parametric, such as, Organization. The rest of the paper is structured as
e.g., (Harlde, 1990; Witten and Frank, 2005)), rather follows. After introducing some handy notation and
than resorting to an explicit representation of process core concepts in Section 2, we present the proposed
states (like in (van der Aalst et al., 2011; Folino et al., approach, in an algorithmic form, in Section 3. We
2012)) or to an instance-based approach, like in (vanthen discuss the implementation of the method in Sec-
Dongen et al., 2008). This clearly requires that an ad- tion 4, and an experimentation on a real data in Sec-
equate propositional representation of the given tracestion 5. Section 6 finally presents some concluding
is preliminary build, capturing both structural (i.e., remarks and future work directions.
task-related) and (“non-structural”) aspects. To this
end, we propose to convert each process trace into a
set or a multi-set of process tasks, and let the regres-o FORMAL FRAMEWORK
sion method decide automatically which and how the
basic structural elements in such an abstracted view
of the trace are to be used to make a forecast. 2.1 Logs and Performances

Moreover, we still leverage the idea of (Folino
et al., 2012), of combining performance prediction As usually done in the literature, we assume that
with a predictive clustering technique (Blockeel and for each process instance (a.k.a “case™)race is
Raedt, 1998), in order to distinguish heterogeneousrecorded, storing the sequence efentshappened
context-dependent execution scenarios (“variants”) duringits unfolding. LetZ” be the universe of all (pos-
for the analyzed process, and eventually provide eachsibly partial) traces that may appear in any log of the
of them with a specialized regressor. In fact, such an process under analysis. For any trace 7, len(t) is
approach brings, in general, substantial gain in termsthe number of events in, while t[i] is thei-th event
of readability and accuracy, besides explicitly show- of t, fori =1 ..len(t), with taskt[i]) andtime(t]i])
ing the dependence of discovered clusters on contextdenoting the task and timestampTif, respectively.
features, and speeding up (and possibly parallelize) We also assume that the first event of each trace is al-
the computation of regression models — which are ways associated with a unique “initial” taglg (pos-
typically more compact, more precise and easier to sibly added artificially before analyzing the log), and

Core Idea and Contributions. \We try to overcome
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its timestamp registers the time when the correspond-responding process enactment. Two common ways of
ing process instance started. building such a view consist in simply regarding the

Let us also assume that, for any tragea tuple trace as a multiset (a.k.a. bag) or as a set of tasks, are
contextT) of data is stored in the log to keep informa- formally defined below.

tion aboutthe ex_ecutlon contextof— like in (Folino Definition 1 (Structural Trace Abstraction)Let T
et gl., 2012), t_h|s tuple may gather both dat_a_prop— be a trace universe andy,...,A, be the tasks
erties and environmental features (characterizing the; " 27 A structural (trace-) abstraction func-

state of the BPM system). For ease of notationdlét tion strucfode: g _ qu—mde is a function map-

denote the.set of all the tasks (a.k.a., activities) that ping each traca € T to an anabstract representa-
may occur in some trace of, andcontex(T) be the strucf™991), taken from aabstractions’ space

e _ o C
space of context vectors —i.e4,” = UrcrtasksT), R.M°de Two concrete instantiations of the above func-

andcontex(7) = {contex(t) | € T}. . tion, denoted bytruct’®: 7 — N" (resp. struct®:
Further,t(i] is theprefix (sub-)trace containing the 7 = {0,1}"), are defined next to which map each

first | ev?nts of itrac:e and trf'e ;eimoe clontext data yacet e 7 onto a bag-based (resp., set-based)
(i.e., contex{t(i] = contex(t)), fori =0 .. len(t). representation of its structure(i) struct®(t) =

A log Lis afinite subset of, while theprefix seof cadn 7). coun 1)), wherecount(A, ) is
L, denoted byP(L), is the set of all the prefixes bfs 'Ehe nll}rélok;eivof }imest({?lna;t )té\sk. 0CCUrS itr(ﬁ;’ ;nd
traces, i.e.P(L) = {t(i] |[te Land 1<i < len(1)}. (i) structs®(t) = (ocq(Ao,T), ...,0cqAn,T)), where

Letfi: 7 — R be an (unknown) function assigning OCHA,T) =t r ue iff count(A;,T) > 0. 0
a performance value to any (possibly unfinished) pro-

cess trace. For the sake of concreteness, we will focus The two concrete abstraction “modes” (namely,
hereinafter on the special case where the target per-2@gandse) defined above summarize any tradato
formance value associated with each trace is the re-a Vector, where each component corresponds to a sin-
maining process time (measured, e.g., in days, hours dl€ process tasky, and stores either the number of
or in finer grain units), i.e., the time needed to fin- {iMes thatA; appears in the trace or (respectively)
ish the corresponding process enactment. Moreover,& boolean value indicating whethar occur int or
we assume that performance values are known for all not. Notice that, in principle, we could define abstract
prefix traces inP(L), for any given logd_. In fact, for trace representations as sets/bags over another prop-
each trace, the (actual) remaining-time value off] erty of the events (e.g., the executor, mgtead of the
is (t(i]) = time(t[len(t)]) — time(t|i]). task ex_ecuted), or even over a combination Qf event
A (predictive)Process Performance Model (PPM)  Properties (e.g., the task plus who performed it).
is amodel that can estimate the unknown performanceExample 1. Let us consider a real-life case study
value (i.e., the remaining time in our setting) of a pro- pertaining a transshipment process, used for the ex-
cess enactment, based on the contents of the correperiments described in Section 5. Basically, for each
sponding trace. Such a model can be viewed as acontainerc passing through the harbor, a distinct log
functionu: 7 — R estimatinglall over the trace uni-  tracert is stored, registering all the tasks applied to
verse — which also includes the prefix traces of all ¢, which may include: moving by means of either
possible unfinished enactments of the process. Learn-a straddle-carrierNOV), swappingc with another
ing a PPM hence amounts to solving a particular in- container 8HF), and loadingc onto a ship by way
duction problem, where the training set takes the form of a shore craneQUT). Let 1t be a log trace stor-
of aloglL, and the valugu(T) of the target measure is  ing a sequencée;, e;,e3) of three events such that
known for each (sub-)tracec P(L). taske;) = taske;) = MOV andtaskes) = OUT.
Recent approaches to this problem (van der Aalst With regard to the abstract trace representations intro-
et al., 2011; van Dongen et al., 2008; Folino et al., duced in Def. 1, it is easy to see thatuct®d(t) =
2012) leverage all the basic idea of applying some [2,0,1], andstruct®®(t) = [1,0, 1] — where the traces
suitable abstraction function to process traces, with are mapped into a vector space consisting of the di-
the ultimate aim of capturing only those facets of the mensionsA; = MOV, A, = SHF, A3 = OUT. <
registered events that influence the most process per-

T ) . ) The structural abstraction functions in Def. 1 are
formances — while disregarding minor detalils.

a subset of the ones used in previous approaches to
. the discovery of predictive process models (van der
2.2 Trace Abstraction Aalst et al., 2011; van Dongen et al., 2008; Folino
et al., 2012). To be more precise, (van Dongen et al.,
An abstracted (structural) view of a trace gives a con- 2008) also considers the possibility to map a trace into
cise description of the tasks executed during the cor- a vector of task durations, as well as to combine mul-
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tiple structural abstractions with data attributes of the puted via an ad-hoc data mining method, are de-
traces, while the other two approaches also allow for scribed in detail in the following.

abstracting a trace into the list of tasks appearing in it

(as an alternative to bag/set -oriented abstractions). 2.4 Structural Patterns

2.3 Clustering-based PPM In our setting, structural patterns are meant to cap-
ture regularities in the structure of traces, abstracted
Like in (Folino et al., 2012), we here consider a spe- via sets or bags of tasks. In particular, these patterns
cial kind of PMM model, relying on a clustering of can be regarded as (constrained) sub-sets or sub-bag
the process traces. Such a model, described below, iof tasks that appear frequently in the (abstracted) log
indeed a predictive clustering model, where context traces. Lemodec {bag set} denotes a given abstrac-
data play the role of descriptive attributes, whereas thetion criterion,Z” be the reference trace universe, and
target variables are derived by specific performance 47 = {Ao,...,A,} be its associated process tasks.

values, extracted out of the traces. Then, a(structural) patternw.r.t. 7 andmodesim-

i i ’ mode
Definition 2 (Clustering-based Performance Predic- P!V iS an elemenp of the abstractions’ spacet; ™"
tion Model (C8- PPM). Let L be a log (overT), with — over which the structural trace-abstraction function

context featuresontext7), andii: 7 — R, be a per- sFructmof’eranges indeed. The size pf denoted by
formance measure, known for alle #(L). Then  SiZ&P), is the number of distinct tasks j(i.e., the
a clustering-based performance prediction model NUMber ofp's components with a positive value.

(CB-PPM for L is a pairM = (¢, (i, ..., 1)), which Having a structural pattern the same form as a
encodes the unknown performance functipnin’ (structural) trace abstraction, we can apply usugl
terms of a predictive clustering model, with de- set/bag containment operators to them both. Specifi-

- d
noting the associated number of clusters (found for Cally; given two elementp andp’ of R7'°°(be each
L). More specifically,c is a partitioning function, & Patternor afull trace representation), we say fhat
which assigns any (possibly novel) trace to one of the CONtains p (and symmetrically, is contained irpy),
clusters (based on its context data), while epcts  denoted bypy <pa, if pu[j] < pp[j], for j =1,<,n,
the PPM of thei-th cluster — i.e.c: contex{T) —  andfori = 1,2 —wherepi[j] is thei-th component
{1,...k}, andp : T — R, fori e {1,....k}. The  Of pi,viewed as avector id" (cf. Def. 1).
performanceu(t) of any (partial) trace is eventually As we want to eventually use such patterns for clus-

estimated ag; (1), wherej=c(context)). = tering purposes, we are interested in those that capture
e significant behavioral schemes. In particular, an im-

In this way, each cluster has its own PPM model, 5rtant property required for such patterns is that they
encoding howt'depends on the structure (and, possi- occyr frequently in the given log (otherwise, little,

bly, the context) of a trace, relatively that cluster. The |4 significant clusters are likely to be discovered),

p_rediction for each trace is.hence made With_ the pre- 4 specified in the following notion of support.
dictor of the cluster it is assigned to (by function o )

In general, such an articulated kind of PPM can be Definition 3 (Pattern Supportand Footprintd)ett €
built by inducing both a predictive clustering model 7 P€ @ tracemodebe a given abstraction mode, and
and multiple PPMs (as the building blocks imple- P P€ pattern (w.r.tZ andmods.
mentingc and all |, respectively). In particular, Then, we say that supports p denoted byt -
in (Folino et al., 2012), the latter task is accomplished P If its corresponding igructural abstraction con-
by using the method in (van der Aalst et al., 2011), f@ins p (i.e., p < struct™?q1)). In such a case,
so that each cluster is eventually provided with an @ footprint of p on 1 is subsetr = {fy,..., f} C
A-FSM model. As mentioned in Section 1, in or- {17"'7|%”(T)} of positions within T, such that
der to develop an easier-to-use and data-adaptive apStruct™*(t(fa],...,[f])) = p. Moreover,gap(F)
proach, we will not use A-FSM models (which typi- 1S the number of events i which match no
cally require a careful explicit setting of the abstrac- POSition of F and appear in between a pair of
tion level), and will rather employ one of the various Matching events — i.e.gap(F) = maxer{fi} —
regression methods available for propositional data. Minfier{fi} — |[F[ 4+ 1. Finally, with little abuse
To this purpose, an ad-hoc view of the log will be pro- ©f notation, we denotegap(p,t) = min {{e} U
duced, where both the context-oriented and structure-{ 9&P(F) | F is a footprintofpont } }. O
oriented (cf. Def. 1) features of a trace are used as In words, a footprinF of a patternp, on a trace
descriptive attributes, whereas the target attributes aresupporting it, identifies a subsequence afhich (i)
derived by projecting the trace onto a space of struc- contains the events occurring inat one of the po-
tural patterns. These patterns, which will be com- sitions inF, and (ii) has a structural representation
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(known over?(L) ), an abstraction mod® € {set bag} (cf. Def. 1), three thresholdsinSuppe [0, 1),
maxGape NU {eo}, andKtop € N U{eo}, and a base regression mettREGR

Output: A CB- PPMmodel forL (fully encodingiiall overT).
Method: Perform the following steps:

Input:  Alog L over a trace universg, with associated tasksS= Aq, ..., An and target performance measwre ~

1 LetcontextT) be the vector of context data associated with eaeh;
Build astructural view $ of (L), by replacing each € (L) with a transaction-like representationsfuct™(t);
RSP:=ni nePat t er ns(S_,m,minSuppmaxGap);
RSP: =filterPatterns(RSPkTop);
LetRSP={ps,...,ps};
Build alog sketch P for L, by using both context data afSPprojected performances;
Learn a PCTT, usingcontex{t) (resp.,val(t, p;), i=1.s) as descriptive (resp., target) features for emeh.;
LetL[1],...,L[k] denote the discovered clusters;
for eachL[i] do
Induce a regression modepm out of P(L[i]), using metho®RE GR— regarding, for each € P(L[i]),
contex{t) andstruct™(t) as the input values, and the performance measurepienas the target value;
10  Storeppm as the implementation of the prediction functign 7 — M (for clusteri);
11 end

12 return (c,{ H1,..., ) )-

POV NOMWN

e

Figure 1:Algorithm AA- PPM Di scovery.

coinciding withp: Clearly, if pis not supported by, Both these functions are explained in details later on.

gap(p,T) will take an infinite value. In the second phase, the selected patterns are used
to associate a series of numerical variables with all
traces (Step 7), and to carry out a predictive clustering
of them (Step 8). To this end, a propositional view of

3 SOLUTION ALGORITHM the log, here nameldg sketchis produced by trans-

i i _ forming each trace into a tuple, where context prop-
Figure 1 illustrates the main steps of our approach to grtjes play as are descriptive attributes and the projec-
the discovery of a CB-PPM model, in the form of an  tjon onto the space of selected patterns are the target
algorithm, named\A- PPM Di scovery. Essentially,  numerical features. Specifically, any selected pattern
the problem is approached in three main phases. p gives rise to a target (performance) feature, such

In the first phase (Steps 1-5), a set of (frequent) that the valueval(t, p) taken by it on any traceis be
structural patterns are extracted from the log, which computed as follows(i) val(t, p) = NULL, if T¥ p,
are deemed to capture the main behavioral schemesyr (i) val(t, p) = fi(t(j*]), wherej* is the biggest in-
of the process, as concerns the dependence of pergex j ¢ {1,...,len(t)} such thatt(j] + p. Like in
formance on the execution of tasks. To this end, af- (Folino et al., 2012), the clustering is computed by in-
ter converting the structure of each (possibly partial) ducing a Predictive Clustering Tree (PCT) (Blockeel
tracet into an itemset (Step ) we compute all the  gnd Raedt, 1998) from the log sketch (Step 8).
structural patterns (i.e., sub-sets, of various sizes) tha Finally, each cluster is equipped with a basic (not
occur frequently in the log and effectively summarize clustering-based) PPM model, by using some suit-
the behaviors in the log. More precisely, we first com- gpje regression method (chosen through parameter
pute the setp e R | supp"™“*Rp,§.) > minSupp REGR, provided with a dataset encoding all the pre-
(cf. Def.3), by using functiomi nePat terns, which  fixes that can be derived from the traces assigned to
is stored iNRSP— note that this set will never be he cluster. Specifically, each such prefixs en-
empty, since (as an extreme case) at least a singletonygged as a tuple whemntextt) andstruct™(t) are
pattern withAo is frequent (no matter ofinSupp regarded as input values, while the associated perfor-
m andmaxGap. These patterns are then filtered by mance measuremeptt) represents the value of the
functionfilterPatterns, which selects th&Top  ymerical target variable that is to be estimated.
most relevant patterns among them. Notably, we

can still use all the discovered patterns, by fixing : .
maxGap= o (no real filter is applied in this case). 3.1 Functionm nePat t er ns

Lin particular, as to bags, ars= struct29(t) € N is This function computes all the patterns, of any size,
turned into{ (A,kj) | 0<i <n,sfi] >0and 1< j <sli] }. that get a support equal to or higher th@mSupp
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in a transactional view of trace structures. Notably, eration procedure, with the advantage of shrinking the
the function does not require the analyst to specify amount of patterns generated at each skgpag well
the size of each pattern (differently from the horizon as the overall computation time.

thresholdh used in previous methods), which is in-

This can be done with no risk of endangering the

stead determined automatically, in a data-driven way. correctness and completeness of results, as informally

However, it allows for possibly fixing a finitmaxGap

proven in the folllow.

threshold for the gaps admitted between patterns and et us first consider the caggaxGap= . As, in
traces, in case she/he wants to keep some more detailghis case, functiosupp"©ap(cf. Eq. 3.1) is anti-

on the actual sequencing of the tasks. Technically, this monotonic w.r.t. pattern size, when computing the
constraint is used to introduce a refined support func- patterns of siz& we can safely filter out any pattem

tion, defined as follows:

supp"™©@Rp L) =|{teL |T+ pand
gap(p,1) <maxGapt+1}| (1)
Note that this function actually coincides with
the standard one whemaxGap= o« (under the
usual convention thako + 1=w). As a result,
m nePat t er ns will return each patterp € &' such
that supg"®©aR p,L) > minSupp It can be proved

that this computation can be done in a level-wise way, |apels.

of them such thadupf p) < minSupp- indeed, there
cannot be any patterp’ such thatsize p') = k+1,
p=p andsupgp’) > minSupp

By converse, such a monotonicity property is not
enjoyed by gap constraints. Indeed, when remov-
ing an element from a pattern, the resulting pat-
tern may contain a higher number of spurious ac-
tivities (i.e., may get a higher gap score) on some
traces. For example, consider the pattgn=
{a,b,c,d} (of size 4) and the traceencoding the se-
quenceys,...,Yq,a,0b,X1,%2,¢,%3,d, 71, ...,Zs Of task
For the sake of simplicity, ;and w.l.0.g.,

despite the fact that the support function does not en-|ot 1s assume that the tasksb,c,d do not occur

joy any (anti-)monotonicity property.

in any other parts of the traces (i.€ab,c,d} N

The basic computation scheme for the function {Y1,....Ya.21,---,25)} = 0), so that we can focus on

m nePatterns, sketched in Figure 2, assumes that: e subsequence of tasash, xq, %2, ¢, X3, d — which
m is the chosen (structural) trace abstraction mode, actually determines the gap score fpandr.

minSuppandmaxGapare the thresholds for specify-

ing support and gap requirements, respectively,land
is the original log, taken from a reference trace uni-

verse7 . In practice, the function actually works with
a transactional encoding &f, storing a set-oriented
representation astruct™(t) for eacht € P(L)).

Function m nePat terns (S_: transaction setminSupp
real; maxGap integer;m: {setbag}): a set of fre-
quent structural patterns (i.e., a subseRgh)

I1:={x€ AS| minSupp< |S| < [{t€ S| xisint}| };
I = 11;
F =l
while Iy # 0 do
C+—{p|p=pu{x}ApelkAxeliAx¢ p};
foreacht e (L) do
C«{p|peCAtk pAagapp,1) < maxGap+ 1}
foreachpe C; do
countp] < countp|+ 1;
end
end
Ix:={p|peCAcounip] > minSuppx |S| };
F=FUl;
end
return F

Figure 2:Function ni nePat t er ns.

Clearly, for every patterp’ obtained by removing
an “internal” element (i.e., different from bothand
d in the example) from a given patteim it holds
gamplv-[) > gaqpat) - e.g., gaq{aacvd}v-[) =
gap({a,b,d},T)=4>3=gapp,1).
However, the two patterns obtained by removing
one of the two “extreme elements” (i.e., eitteor
d) are guaranteed to have the same gap,as even
to lower it. For examplegap({b,c,d},T) =3 =
gap(p,1), andgap({a,b,c},1) =2 < gap(p,1).
Consequently, in the computation scheme de-
picted above, for any relevant pattem of level
k > 1 (i.e., for anyk-sized patternp such that
supp"®CaRp L) > minSupp, there are at least two
relevant sub-patterns of level 1 which will produce
p when merged together.

3.2 FunctionfilterPatterns

The function is meant to select a subset of mostly sig-
nificant and useful patterns, in order to allow for a
more effective and more scalable computation of pre-
dictive clustering models. In particular, we want to
prevent the case where the PCT learning algorithm
has to work in a sparse and high-dimensional tar-

Clearly, all the above constraints (including the get space, where low-quality will hardly be found,
gaps one) are enforced at each level of the pattern genwhile long computation times are likely to take place.
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Hence, we allow the analyst to ask for only keeping
thekToppatterns that seems to discriminate the main
performance profiles at best. To this end, we employ
a variant of the scoring functiapproposed in (Folino

et al., 2012) (giving score 0O to every feature with no
positive correlation with context data), which is es-
sentially meant to give preference to patterns ensuring
a higher values of the following measures: (i) support,
(ii) correlation with the context attributes and (iii) and
variability of the associated performance values (i.e.,
val(p, 1), with T ranging ovelL). Further details can
be found in (Folino et al., 2012).

4 |MPLEMENTATION

The prototype systemA- TP (Adaptive-Abstraction
Time Prediction), specializes algorithiv\- PPMDis-
coveryto the case where the remaining processing
time is the target performance. The logical architec-
ture of the system is sketched in Figure 3, where the
arrows between blocks stand for information flows,
while Log Datais a collection of process logs repre-
sented in the MXML (or XES) format (van der Aalst
andet al,, 2007).

The Scenario Discoverymodule is responsible
for identifying behaviorally homogeneous groups of
traces, in terms of both context data and remaining
times. In particular, the discovery of different trace
clusters is carried out by thBredictive Clustering
submodule which groups traces sharing both simi-
lar descriptive and target values. This latter mod-
ule leverages the CLUS system (DLAI Group, 1998),
a predictive clustering framework for inducing PCT
models out of propositional data.

In this regard, thd.og-View Generatoisubmod-
ule acts as a “translator” which converts all log traces
into propositional tuples, according to the ARFF for-
mat used in CLUS. As explained above, this mapping
relies on the explicit representation of both context
data and target attributes, derived from the original
log. In this process, each trace can be enriched with
additional (environmental) context features, such as
workload indicators and aggregated time dimensions,
in case they are not explicitly stored in the log.

Adaptive Abstraction — Time Predictor (AA-TP) Plugin \

Log-View
Generator

!

Pattern Mining

Pattern

!xtractor [

Scenario Discovery

Predictive
Clustering

Pattern
Filter

—

Time Predictors Learning

1B-k
Regressor

Linear
Regressor

REPTree
Regressor

Evaluation

Prediction Error
Evaluator

J

==

Figure 3: Logical architecture of th\- TP system.

the most relevant of them are selected (byRa#gern
Filter submodule).

Once the predictive clustering procedure has been
completed, the traces (each labeled with a cluster ID)
are delivered to thdime Predictors Learningnod-
ule, which implements a range of classical regression
algorithms (including, in particular, 1B-k, Linear Re-
gression, and RepTree). These algorithms are eventu-
ally used to induce the local predictor (i.e., PPM) of
each discovered cluster, which will compose (together
with the logical rules discriminating among the clus-
ters) the overalCB- PPM model, returned as the main
result. For inspection purposes and further analysis,
such a model is stored in a repository. Finally, the
Evaluationmodule helps the user assess the quality
of time predictions on a generic test set.

5 EXPERIMENTS

This section illustrates some experimental activities
that we conducted, on real data, with the prototype
systemAA- TP, implementing a specialized version of
AA- PPM Discoveryalgorithm, where the target per-
formance measure is the remaining processing time
(i.e., the time needed to complete a partial process in-
stance) — as explained in the previous section.

5.1 Testbed

The experiments were performed on the logs of a real
transshipment system, mentioned in Example 1 —
more precisely, on a sample of 5336 traces, corre-

These context-enriched traces are then mapped intosponding to all the containers that passed through the

a transactional form and delivered to thattern Min-

ing module. This latter, in its turn, will provide the
Log-View Generatowith a set of frequent patterns,
which are to be eventually used as target features for
the predictive clustering step. Specifically, the extrac-
tion of frequent patterns is carried out by thattern
Mining module in two steps: first patterns are first
mined (by thePattern Extractoisubmodule), and then
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system in the first third of year 2006.

The log stores a series of logistic activities applied
to each container passing through a maritime termi-
nal. Basically, each container is unloaded from a
ship and temporarily placed near to the dock, un-
til it is carried to some suitable yard slot for be-
ing stocked. Symmetrically, at boarding time, the
container is first placed in a yard area close to the
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Figure 4: Sensitiveness of AA-TP w.r.t. parameters at vayyif kind of regressor.

dock, and then loaded on a cargo. Different kinds ports, its previous and next calls, various properties
of vehicles can be used for moving a container, in- of the ship unloading it, physical features (such as,
cluding, e.g., cranes, “straddle-carriers”, and “multi- e.g., size, weight), and some information about its
trailers”. This basic life cycle may be extended with contents. Like in (Folino et al., 2012), we also consid-
additional transfers, devoted to make the container ered a few more (environment-oriented) context fea-
approach its final embark point or to leave room for tures for each container: the hour (resp., day of the
other ones. Several data attributes are available forweek, month) when it arrived, and the total number of

each container as context data (of the correspond-containers that were in the port at that moment.

ing process instance),

including: the origin and final
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Table 1: Errors (avgistdDev) made bypA- TP and its com- three kinds of errors varies, respectively, when using
petitors, when using thieag abstraction mode. different regression methods (distinct curves are de-
picted for them), and different values of the parame-

TP A TP TP FsM ters (namelymaxGap= 0,4,8,, kTop= 4,, and
(1B-k) (RepTree) .
rmse | 0.205:0.125 | 0.203:0.082 | 0.291£0.121 | 0.505:0.059 minSupp=0.1,...,0.4).
me | 0.064:0.058 | 0.073:0.033 | 0.142+-0.071 | 0.259+0.008 Clearly, the underlying regression method is the
mape | 0.119+0.142 | 0.189:0.136 | 0.704:0.302 | 0.961:0.040 factor exhibiting a stronger impact on precision re-
sults. In particular, the disadvantage of using linear
Table 2: Errors (avgstdDev) made byA- TP and its com- regression is neat (no matter of the error metrics),
petitors, when using theetabstraction mode. whereas botHB-k and RepTreemethods performs
quite well, and very similarly. This is good news, es-
AATP TP cTe Fsu pecially for theRepTreemethod, which is to be pre-
il (RepTr ee) ferred tolB-k for scalability reasons. Indeed, this lat-
rmse | 0.287:0.123 | 0.286:0.084 | 0.750£0.120 | 0.752:0.037 ; . . ’ .
mee | 0.105:0.061 | 0.112£0.035 | 0.447:0.077 | 0.475:0.009 ter may end up being too time-consuming at run-time,
mape | 0.227:0.131 | 0.267:0.060 | 2.816£0.303 | 2.892:0.206 when a large set of example traces must be kept —even

_ . though, differently from pure instance-based methods
target performance measure, we will measure predic- (like (van Dongen et al., 2008)), we do not need to

tion effectiveness by way of three classic error metrics gearch across the whole log, but only within a single
(computed via 10-fold cross validationjoot mean ¢y ster (previously selected, based on context data).
e St (TseTesn sbsole T (TANC, st o remaiing parameters 1 1 easy seer
interpretation of results, the former two metrics will that poorer results gfe obtained yvhemSupp: 0.1

’ andkTop= 4, as well as wheminSupp=0.4. As

ibg n&rem:\l'ezg;:’igﬁg:ﬂ%‘;i&gﬂeosgreg”ut?: éoAr:Dt;\r’iZlersa matter of fact,_ the former case epitomizes the cases
that passed through the terminal. In this way, all the where we cut " (accordlng 0 fr.equency) durlng
quality metrics will be dimensionfess (and hobefully the generation 9f patterns, while trying 0 reduce Fhelr
ranging over [0,1]). Moreover, for the sake of sta- numbgr |n_the f_||ter|ng phase; the Ia_tter, instead, is an
tistical significarilce' all the erroyr results shown in the Opposite situation where a rather h_|gh thr_eshold Sup-
following have beer’I averaged over 10 trials port.threshold is employ_ed, ata _hlgher risk of loos-

: ing important pieces of information on process be-
haviour. In more detail, in the former case, the nega-
tive outcome is alleviated when settintaxGap= 0,

i.e., the patterns are required to exactly match a seg-
ment (i.e., subsequence of contiguous elements) in
their supporting traces. It is worth noticing that, apart

5.2 Test Results: Tuning of Parameters

We tried our approach (referred to 8- TP here-
inafter) with different settings of its parameters, in-

cluding the base regression meth®EGR for in- 4 these extreme caseéy TP exhibits good stabil-
ducing the PPM of each discovered cluster. For the j, 504 rohustness, over a wide range of parameter set-
sake of simplicity, we here only focus on the usage of tings. Remarkably, wheminSupmets a value from

two basic regression methods: cladsicear regres- 0.2,...,0.3], the remaining two parameters, namely
sion (Draper and Smith, 1998), and the tree-based re'kTo’paFIdmaxGap do not seem to affect the quality
gression algorithriRepTregWitten and Frank, 2005). ¢ predictions at all. In practice, it suffices to choose
In addition, we consider the case where each PPM .5 efly the regression method (and a middling value
model simply encodes NN regression procedure o minsyppto ensure good and stable prediction out-
(denoted byB-k hereinafter), as arough term of Com- ., 1o matter of the other parameters — which

parison with the_ family of _instance—based regr_ession would be, indeed, quite harder to tune in general.
methods (including, in particular, the approachin (van

Dongen et al., 2008)). For all of the above regres- . . .

sion methods, we reused the implementations avail-5-3 Comparison with Competitors

able in the popular data-mining library Weka (Frank

et al., 2005). We remind that the other parameters Let us finally compare our approach with two other
are:minSupp(i.e., the minimum support for frequent ones, defined in the literature for the discovery of a
patterns)kTop(i.e., the maximal number of patterns PPM: CA- TP (Folino et al., 2012) an@SM (van der

to keep, and then use in the clustering), amakGap Aalst etal., 2011). Tables 1 and 2 reports the average
(i.e., the maximal number of spurious events allowed errors (and associated standard deviations) made by
to occur among those of a given pattern, in a trace thatsystemAA- TP, while varying and the base regression
supports this latter). Figure 4 allows for analyzing the method (namelyi.inear, RepTreeandIB-k). In par-
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As future work, we plan to explore the usage of
sequence-like patterns (e.g., k-order subsequences)
— possibly combined with those already considered
here — in order to capture the structure of a process
instance in a more precise (but still abstract enough)
manner, as well as to fully integrate our approach into
a real Business Process Management platform, in or-
der to offer advantage run-time services.
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