
Automating the Architecture Evaluation of Enterprise Information
Systems

Felipe Pinto1,2, Uirá Kulesza1 and Eduardo Guerra3

1Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
2Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Natal, Brazil

3National Institute for Space Research (INPE), São José dos Campos, Brazil

Keywords: Scenario-based Evaluation, Architecture Evaluation, Annotation, Quality Attribute, Scenario.

Abstract: Traditional scenario-based architectural analysis methods rely on manual review-based evaluation that
requires advanced skills from architects and evaluators. They are applied when the architecture has been
specified, but before its implementation has begun. The system implementation is one additional and
fundamental element that should be considered during the software architecture evaluation. In this paper, we
propose an approach to add information, which ideally should come from traditional evaluation methods,
about scenarios and quality attributes to the source code using metadata in order to allow the automatic
analysis producing a report with information about scenarios, quality attributes, source code assets and
potential tradeoff points among quality attributes. The paper also presents the preliminary results of the
approach application to an enterprise web information system and an e-commerce web system.

1 INTRODUCTION

Over the last decade several software architecture
evaluation methods based on scenarios and quality
attributes have been proposed (Clements, 2002)
(Bengtsson, 2004). These methods use scenarios in
order to exercise the software architecture what
allow the gain of architectural-level understating and
of predictive insight to achieve desired quality
attributes (Kazman, 1996).

Traditional scenario-based methods produce a
report as output which contains information about
risk analysis regarding architecture decisions.
ATAM (Clements, 2002), produce information
about tradeoff points. A tradeoff point is an
architectural decision that affects more than one
quality attribute. For example, changing the level of
encryption could have impact on both security and
performance.

All these methods are applied manually and rely
on manual review-based evaluation that requires
advanced skills from architects and evaluators. They
are classically applied when the architecture has
already been specified, but before implementation
has begun. The system implementation is one
additional element that can be useful when suitably
analyzed, for example, if the software evolves

causing critical architectural erosion (Silva, 2012)
implying on the need of executing the process of
evaluation again because the architecture designed
has several differences to the architecture
implemented (Abi-Antoun, 2009).

We believe that the usage of system
implementation during the architecture evaluation
can enable the automation of this process and the
reuse of architectural information and tests. In this
context, we propose an approach that introduces
additional information, which ideally should come
from traditional architecture evaluation methods,
about scenarios and quality attributes to the
application code using metadata. Further, it executes
an automated tool to perform the analysis producing
a report with relevant information about scenarios,
quality attributes and code asset, such as: (i) the
scenarios affected by particular quality attributes;
and (ii) the scenarios that potentially contain tradeoff
points and should have more attention from the
architecture team

The rest of this paper is organized as follows:
Section 2 introduces the approach; Section 3
presents the tool developed; Section 4 shows two
case studies where we have applied our approach;
Section 5 discusses some related works and, finally,
Section 6 concludes the paper.

333Pinto F., Kulesza U. and Guerra E..
Automating the Architecture Evaluation of Enterprise Information Systems.
DOI: 10.5220/0004452103330340
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 333-340
ISBN: 978-989-8565-61-7
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 APPROACH OVERVIEW

This section presents an overview of our approach.
The main goal is to automate the architecture
evaluation by adding extra information with
metadata to the application source code. The
approach presented here is independent of
programing language or platform. Figure 1
summarizes the approach steps.

Figure 1: Approach overview.

In Figure 1, the column “Steps” presents the step
description and the column “How” shows an
example of how it is accomplished on our developed
tool. Next subsections detail each one of the steps
which are presented considering the developed tool
that uses annotation to define metadata information.
In languages that do not support annotations, the
metadata can be defined externally, such as on
databases or XML files.

2.1 Choosing Evaluation Scenarios

The first step of our approach is to choose the
scenarios from the target architecture to be
evaluated. In order to perform this step, we can reuse
information produced by previous activities from the
development process. In particular, the elicited
relevant scenarios gathered during the application of
traditional architecture evaluation methods, such as
ATAM or others (Muhammad, 2004), can be reused
during this step.

2.2 Identifying Scenarios

In this step we identify the starting points of the
execution of the chosen scenarios in the application
source code under evaluation. A scenario execution
defines paths of execution which can be abstracted
to a call graph where each node represents a method
and each edge represents possible invocations.

Our challenge in this step is to define how
identifying scenarios or paths of execution in the
application source code. A simple solution is just
identify the method which represents the call graph
root node and after that based on the invocations of
this node to identify the complete call graph related
to this root node.

In order to allow the introduction of this
information in the source code, our tool defines an
annotation named @Scenario which defines an
attribute to identify it uniquely. Figure 2 shows an
example of this annotation.

2.3 Identifying Quality Attributes

The identification of quality attributes in the
application source code is similar to the
identification of starting methods. We have to add
the metadata to the element that we are interested.
The tool currently defines method annotations
considering the following quality attributes:
@Performance, @Security and @Reliability. These
annotations are the ones implemented by the
developed tool, the approach can be generalized to
evaluate other quality attributes.

Figure 2 shows the annotations and their
respective attributes. Performance annotation has
two attributes: name and time limit. Name is a string
that uniquely identifies it and time limit is a long
integer that specifies a maximum time expected in
milliseconds. The annotated method must complete
its execution in a shorter time compared to the time
limit value. As a consequence, we can monitor if an
annotated method has improved or decreased its
performance in the context of an evolution among
different releases of the system.

Figure 2: Approach annotations.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

334

Security annotation has currently one attribute, a
string that uniquely identifies it. It is useful because
allows determining which execution paths of
scenarios have potential to contain tradeoff points.
For example, increasing the level of encryption
could improve the security of the system, but on the
hand it requires more processing time. That is, if a
path of scenario execution is associated to more than
one quality attribute, we need to observe and
monitor it carefully because it has potential to
contain tradeoff points.

Similarly to performance, the reliability
annotation has a unique string attribute and a double
attribute that specifies the failure rate. It represents
the maximum failure rate expected for an annotated
method from zero to one. Zero means that it never
fails and one that fails in all the cases. Currently, it is
used to check if a particular scenario has potential
tradeoff points.

2.4 Static and Dynamic Analysis

The last step of our approach involves the execution
of static and dynamic analysis implemented in a
tool. This tool parses the metadata from the source
code and performs analysis automatically in order to
enable the automate architecture evaluation based on
the configured scenarios and quality attributes.

During the static analysis the tool parses the
annotations and builds a call graph of the methods
involved in the execution paths of the system
scenarios. After that, using this information, the tool
can: (i) discover the quality attributes associated to a
particular scenario or which one has potential to
have tradeoff points; (ii) discover which methods,
classes or scenarios could be affected due to a
particular quality attribute; (iii) perform traceability
of scenarios and quality attributes in the source code.

The dynamic analysis also benefits from our
code annotations in order to perform the architecture
evaluation during the system execution. It allows
monitoring the quality attributes and, also, dynamic
reflective calls are capture only by dynamic analysis.
The following analysis can be currently
accomplished using our approach: (i) calculating the
performance time or failure rate from a particular
annotated method or from a complete path of
scenario execution; (ii) verifying if the constraints
defined by quality attribute annotations are respected
over the different evolution releases of the system;
(iii) logging of several information captured during
the runtime; (iv) adding more useful information to
detect and analyze tradeoff points.

3 APPROACH TOOL SUPPORT

This section introduces a tool that we have
developed to support our approach. It has been
accomplished as two independent components: (i)
the static analysis is implemented as an Eclipse
plugin; and (ii) the dynamic analysis is made
available as an executable JAR file.

3.1 Tool Support for Static Analysis

The static analysis tool allows executing the
architecture evaluation over Eclipse projects. It
currently parses source code from Java projects.
Figure 3 shows a partial class diagram.

Figure 3: UML class diagram showing tool processors.

The JavaProjectProcessor class calls other
classes in order to build the call graph of the system
under architectural evaluation. We have used the
CAST (Common Abstract Syntax Tree) front-end of
WALA (Watson Libraries for Analysis) static
analysis framework (WALA, 2012) to build the call
graph of the scenarios of interest.
AnnotationProcessor class aggregates a set of
different concrete strategy classes to process the
different quality attribute annotations. Each one of
them is responsible for the processing of a particular
kind of annotation. During the annotation parsing,
the AnnotationProcessor class also builds the list
of scenarios annotated to complement the data
structures built previously.

JavaProjectProcessor class also uses the
JDTWALADataStructure to access and manipulate
the application call graph and the indexes. The
JDTWALADataStructure class uses ElementIndexer
to build indexes of methods, classes and annotations
to be used during the analysis. Actually, the
annotation index is created by the
AnnotationVisitor class that reads the source code
looking for annotations.

Automating�the�Architecture�Evaluation�of�Enterprise�Information�Systems

335

Figure 4 summarizes the static analysis process.
JavaProjectProcessor uses
JDTWALADataStructure to build the call graph and
the indexes. ElementIndexer is used to build the
method index and the annotation index, but it creates
an object AnnoationVisitor that parsers the source
code looking for annotations. Then,
AnnotationProcessor processes the scenario
annotations and builds a list of scenarios. Finally, it
processes each quality attribute annotation calling
every AbstractProcessorQA specializations.

Figure 4: UML sequence diagram to static analysis.

Our static analysis tool uses a model to represent
the relationships among the system assets, such as
classes, methods, scenarios and quality attributes.
Figure 5 shows a partial class diagram of this model.
The ScenarioData has a starting root method and
MethodData has a declaring class. Each quality
attribute is a specialization of the AbstractQAData
which in turn keeps a reference to its related method.
Finally, every MethodData instance has also an
attribute signature that references the method node
in the WALA call graph.

Figure 5: Class diagram of the static analysis model.

3.2 Tool Support for Dynamic Analysis

Our dynamic analysis tool has been implemented
using AspectJ language by defining aspects that
monitor the execution of annotated methods.
Essentially, the tool builds a dynamic call graph
during application execution intercepting the
approach annotations. In this way, if an annotated
method is called, a specific aspect for each kind of
annotations is automatically invoked. When a
method is intercepted, the aspects register and
monitor the method execution by gathering
information about their name, the current execution
thread and the parameters values. These information
is then stored in the dynamic call graph in order to
help the decision making about what to do when
something is wrong, for example, logging the
@Reliability annotated methods who has thrown or
handled an exception.

The current version of our tool has implemented
aspects to intercept scenarios and quality attributes
annotations (performance, security and reliability).
These aspects use concrete strategy objects, which
have a common interface in order to make possible
the aspects to call them. In that way the developers
can define their own strategies for dealing with the
quality attribute which are generally dependent on
the domain and application.

In our tool, we have implemented default
strategies to gather and store information about the
execution of the relevant architecture scenarios. In
addition, we have also implemented specific
strategies for our case studies, which will be
presented in Section 4.

4 APPROACH EVALUATION

We have applied our approach in two different
systems. In the first one, we have explored the static
analysis in an academic enterprise large-scale web
system developed for our institution, and in the
second one the dynamic analysis in an e-commerce
web system. Our main goal was to conduct an initial
evaluation of the approach in order to verify its
feasibility and how the developed tool behaves in
practice.

4.1 Static Analysis in Action

We have applied the static analysis tool of our
approach to enterprise web systems from
SINFO/UFRN. SINFO is the Informatics
Superintendence at Federal University of Rio

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

336

Grande do Norte (UFRN) in Brazil. It has developed
several enterprise large-scale information systems
(SINFO, 2012) which perform full automation of
university management activities. Due to the quality
of these systems, several Brazilian federal
institutions have licensed and extended them to their
needs.

Our main goal was to verify the approach
feasibility of static analysis in practice. In this sense,
the tool should extract useful information in order to
help developers answering some questions, such as:
(i) what scenarios does a specific method belong to?
(ii) what kinds of quality attributes can affect a
specific scenario? (iii) what are the scenarios that
contain potential tradeoff points among quality
attributes?

4.1.1 Choosing Evaluation Scenarios

In the first step we have chosen some specific
scenarios: (i) sending message – scenario used for
sending messages (emails); (ii) authenticated
document generation – scenario used to generate
authenticated documents; (iii) user authentication –
scenario used to authenticate users in the web
application; (iv) mobile user authentication –
scenario used to authenticate users from a mobile
device.

4.1.2 Identifying Scenarios

In this step the starting execution method for each
chosen scenario were identified. They are,
respectively: (i) sendMessage(); (ii) execute(); (iii)
userAuthentication(); (iv)
mobileUserAuthentication().

4.1.3 Identifying Quality Attributes

The methods and quality attributes selected were: (i)
getJdbcTemplate() with @Performance – it was
considered to be relevant for performance
requirements because it is accessed by several
database operations; (ii) enqueue()with @Security
– it is used by the system to enqueue messages that
will be sent over the network; (iii)
createRegistry()with @Security – it is used to
create the registry of an authenticated document to
ensure its legitimacy; (iv) toMD5() with @Security
– it is used to create an MD5 hashing of strings, for
example, passwords; (v) initDataSourceJndi()

with @Reliability – it is used to initialize the
access to the database and was considered critical
for reliability because if the database initialization
fails, the system is not going to work adequately.

4.1.4 Executing the Static Analysis Tool:
Preliminary Results

The tool execution has extracted useful and
interesting information in order to help us answering
the questions highlighted on section 4.1.

Considering the first question – (i) what
scenarios does a specific method belong to? – the
tool can determine that the getJdbcTemplate()
method, for example, belongs to the following
scenarios: user authentication, mobile user
authentication and authenticated document
generation. This is possible because the tool builds a
static call graph of each scenario and calculates if a
call to a particular method exists in some of the
possible paths of execution.

Regarding the second question – (ii) what kinds
of quality attributes can affect a specific scenario? –
the tool verifies all the paths for a specific scenario
checking which ones have any quality attribute. Our
tool has identified, for example, all the quality
attributes related to the User Authentication
scenario: (i) performance quality attribute – because
the method getJdbcTemplate() belongs to a
possible path; (ii) the reliability quality attribute
because the method initDataSourceJndi() also
belongs to a possible path; and (iii) finally, the
security quality attribute for the same reason, the
method toMD5() is used to encrypt the user
password.

Finally, for answering the third question – (iii)
what are the scenarios that contain potential
tradeoff points among quality attributes? – the tool
looks for scenarios affected by more than one
quality attribute because they contain potentially
tradeoff points among their quality attributes. The
tool has identified that: (i) user authentication and
mobile user authentication are potential scenarios to
have tradeoff because they are affected by
performance, security and reliability; (ii)
authenticated document generation is another
potential tradeoff point because it addresses the
reliability and security quality attributes; on the
other hand (iii) the sending message does not
represent a tradeoff point because it is only affected
by the security quality attribute. These results are
summarized in Table 1.

The information identified automatically by our
tool is useful to indicate to the architects and
developers which specific scenarios and code assets
they need to give more attention when evaluating or
evolving the software architecture through the
conduction of code inspections or the execution of
manual or automated testing. In that way, our

Automating�the�Architecture�Evaluation�of�Enterprise�Information�Systems

337

preliminary evaluation in large-scale enterprise
systems has allowed us to answering the expected
questions previously highlighted and demonstrated
the feasibility of our static analysis approach.

Table 1: Some information about tradeoffs in scenarios.

Scenario: User Authentication
Performance: getJdbcTemplate()
Security: toMD5()
Reliability: initDataSourceJndi()
Tradeoff: Potential
Scenario: Mobile User Authentication
Performance: getJdbcTemplate()
Security: toMD5()
Reliability: initDataSourceJndi()
Tradeoff: Potential
Scenario: Authenticated Document Generation
Performance: -
Security: createRegistry()
Reliability: initDataSourceJndi()
Tradeoff: Potential
Scenario: Sending Message
Performance: -
Security: enqueue()
Reliability: -
Tradeoff: No

4.2 Dynamic Analysis in Action

The evaluation of the dynamic analysis was
performed by applying our tool to the
EasyCommerce web system (Torres, 2011);
(Aquino, 2011) which is an e-commerce web system
that has been developed by graduate students at our
institution. It implements a concrete product of an e-
commerce software product line described in (Lau,
2006).

The main aim of our evaluation was to extract
execution context information in order to analyze the
aspects behaviour in practice to achieve the
following dynamic analysis: (i) monitoring of
scenario execution and the annotated methods; (ii)
calculation of the performance time (timeSpent) of
methods and scenarios; and (iii) detection of
executed paths with potential tradeoff points.

4.2.1 Choosing Evaluation Scenarios

We have chosen some of the scenarios that represent
the main features of EasyCommerce: (i) registration
of login information – it records the user information
about login, such as user name and password; (ii)
registration of personal information – it records
personal information about the user, such as name,

address, birthday, document identification; (iii)
registration of credit card information – it records
information about users credit card such as card
number and expiration date; (iv) search for products
– It allows searching for products by its name, type
or features; (v) include product item to cart – it
allows users adding a product item to their shopping
cart.

4.2.2 Identifying Scenarios

In this step the starting execution method for each
chosen scenario were identified. They are,
respectively: (i) registerLogin(); (ii)
registerUser(); (iii) registerCreditCard(); (iv)
searchProducts(); (v) includeItemToCart().

4.2.3 Identifying Quality Attributes

We have chosen some methods belonging to the
scenarios that appear to have potential to be relevant
to specific quality attributes. The selected ones were:
(ii) save() with @Performance – it is used by the
system to save all its objects, because of that it
should run as fast as possible; (ii) save() with
@Reliability – considering that this method is
executed many times and it represents a critical
action is fundamental to analyze its robustness. (iii)
registerLogin(), registerUser(), and
registerCreditCard() with @Security – these
methods manipulate user confidential information
and they are in some way related to security.

4.2.4 Executing the Aspects of Dynamic
Analysis: Preliminary Results

We have executed the selected scenarios of
EasyCommerce web system together with the
aspects of dynamic analysis in order to perform the
evaluation of the results and benefits which are
discussed next.

Our approach defines a specific strategy to
analyze the annotated scenarios through an aspect.
For such cases, our aspect builds a dynamic call
graph structure used: (i) to monitor de scenarios
execution; (ii) to calculate the time to execute
completely the scenario or a particular method; (iii)
to get some information about the system execution
context, such as the date and time of execution.

The current stored information provided by our
scenario aspect can help architects and developers to
identify: (i) all the cases where a method has taken
more time to execute than the specified value in the
@Performance annotation; (ii) the execution time for

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

338

a given scenario; and (iii) the quality attributes
addressed in particular methods or scenarios.

Table 2 shows information collected by scenario
aspect which shows some obtained results from the
execution of the scenarios register of login, register
of personal information and register of credit card
information. Executing these scenarios we have one
occurrence of performance in save(), three
occurrences of security in registerLogin(),
registerUser() and registerCreditCard() and
one occurrence of reliability in save().

Table 2: Sample of data collected by dynamic analysis.

Registration of login information
Execution time (ms): 3
Performance: -
Security: registerLogin()
Reliability: -

Registration of personal information
Execution time (ms): 2
Performance: -
Security: registerUser()
Reliability: -

Registration of credit card information
Execution time (ms): 150
Performance: save()
Security: registerCreditCard()
Reliability: save()

Analyzing the dynamic call graph generated the
tool can inform which scenarios contain potential
tradeoff points. For example,
registerCreditCard() calls record() that calls
save(). The save() method has been annotated with
the performance and reliability quality attributes.
The registerCreditCard() method has been
annotated with the security quality attribute. Thus,
we have a scenario with three quality attributes
involved and because of that a potential tradeoff
points among them.

The dynamic analysis process in this study has
met our expectations because it has allowed us
extracting useful information of the execution
context, such as, monitoring of scenarios and quality
attributes, calculating the performance of scenarios
and specific methods and last, but not least,
detecting executed paths with potential tradeoff
points.

5 RELATED WORK

To the best of our knowledge, there is no existing
proposal that looks for the automation of
architecture evaluation methods in the same way of
ours and we have not found approaches really close

to ours. In this section, we summarize some research
work that address architectural evaluation or propose
analysis strategies similar to ours.

Over the last years, several architecture
evaluation methods, such as ATAM, SAAM, ARID
(Clements, 2002) and ALMA (Bengtsson, 2004)
have been proposed. They rely on manual reviews
before of the architecture implementation. Our
approach complements these existing methods by
providing automated support to static and dynamic
analysis over the source code of the software system.
It contributes to the continuous evaluation of the
software architecture during the system
implementation and evolution.

Also, some recent research work have proposed
adding extra architectural information to the source
code with the purpose of applying automated
analysis or document the software architecture.
(Christensen, 2011) uses annotations to add
information about components and design patterns
with the purpose of document the architecture.
(Mirakhorli, 2012) presents an approach for tracing
architecturally significant concerns, specifically
related to architectural tactics which are solutions for
a wide range of quality concerns. These recent
research work, however, do not explored the
combined usage of adding information related to
scenarios or quality attributes.

6 CONCLUSIONS

We presented an approach to automating the
software architecture evaluation using the source
code as input of this process that consists on adding
metadata to the source code providing extra
information, such as, scenarios and quality
attributes. It provides support to the execution of
static and dynamic analysis that aims the automatic
evaluating of the software architecture. Finally, it
has been applied in two systems: a large-scale
enterprise information system and an e-commerce
web system. The preliminary obtained results of the
approach usage have allowed us to provide and
quantifying several and useful information about
architecture evaluation based on scenarios and
quality attributes.

The approach presented is still under
development and we are currently evolving it in
order to apply to other large-scale enterprise
information systems. We have also identified several
possibilities for future work, for example, it is
possible to detect which paths of execution are more
often followed and their performance to suggest to

Automating�the�Architecture�Evaluation�of�Enterprise�Information�Systems

339

the developers or architects team try to improve
them. Another possibility is to verify if all the
possible paths of execution for all scenarios
prioritized on the architecture evaluation have been
effectively executed and tested. It is also possible to
check missing paths (Liu, 2011) when a path exists
in the static call graph and it does not exist in the
dynamic call graph meaning a not tested path or
dead code.

REFERENCES

Abi-Antoun, M., Aldrich, J. 2009. Static extraction and
conformance analysis of hierarchical runtime
architectural structure using annotations. SIGPLAN
Not. 44, 10 (October 2009), 321-340.

Aquino, H. M. (2011). A Systematic Approach to Software
Product Lines Test. 2011. MSc Dissertation, Federal
University of Rio Grande do Norte (UFRN), Natal,
Brazil, 2011.

Bengtsson, P., Lassing, N., Bosch, J., Vliet, H. (2004).
Architecture-level modifiability analysis (ALMA).
Journal of Systems and Software. 69, 1-2 (January
2004).

Christensen, H. B., Hansen, K, M. 2011. Towards
architectural information in implementation (NIER
track). In Proceedings of the 33rd International
Conference on Software Engineering (ICSE '11).
ACM, New York, NY, USA, 928-931.

Clements, P., Kazman, R., Klein, M. 2002. Evaluating
Software Architectures: Methods and Case Studies,
Addison-Wesley.

Kazman, R., Abowd, G., Bass, L., Clements, P. 1996.
Scenario-Based Analysis of Software Architecture.
IEEE Softw. 13, 6 (November 1996), 47-55.

Lau, S. Q. 2006. Domain Analysis of E-Commerce
Systems Using Feature-Based Model Templates,
MASc Thesys, University of Waterloo.

Liu, S., and Zhang, J. 2011. Program analysis: from
qualitative analysis to quantitative analysis (NIER
track). In Proceedings of the 33rd International
Conference on Software Engineering (ICSE '11).

Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M..
2012. A tactic-centric approach for automating
traceability of quality concerns. In Proceedings of the
2012 International Conference on Software
Engineering (ICSE 2012).

Muhammad and Ian Gorton. 2004. Comparison of
Scenario-Based Software Architecture Evaluation
Methods. In Proceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC '04).

Silva, L., Balasubramaniam, D., 2012. Controlling
software architecture erosion: A survey. J. Syst. Softw.
85, 1 (January 2012), 132-151.

SINFO. (2012). Informatics Superintendence, UFRN:
http://www.info.ufrn.br/wikisistemas, May 2012.

Torres, M. 2011. Systematic Assessment of Product
Derivation Approaches. MSc Dissertation, Federal
University of Rio Grande do Norte (UFRN), Natal,
Brazil, 2011.

WALA, T. J. Watson Libraries for Analysis:
http://wala.sourceforge.net, December 2012.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

340

