
A Delta Oriented Approach to the Evolution and Reconciliation of
Enterprise Software Products Lines

Gleydson Lima2,3, Jadson Santos1,3, Uirá Kulesza1, Daniel Alencar1 and Sergio Vianna Fialho2

1Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, RN, Brazil
2Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal, RN, Brazil

3Informatics Superintendence (SINFO), Federal University of Rio Grande do Norte, Natal, RN, Brazil

Keywords: Software Product Line Engineering, Software Product Evolution, Software Reconciliation.

Abstract: Over the last years, software product line engineering has been applied and adopted by different companies.
Existing software product line approaches promote the development of a centralized infrastructure of core
assets that addresses the common features and provides variation points to the integration of the variable
features of the SPL. In the context of distributed development of enterprise information systems, there are
several scenarios where the adoption of these centralized approaches is not enough to accommodate the
several requests for the integration of new features and maintenance of existing ones. In such scenarios, the
SPL engineering team needs to fork the SPL core assets in order to address the customer needs and due to
the marked pressure. In this paper, we propose a delta-oriented approach that promotes the reconciliation of
software product lines that are independently evolved. Our approach allows: (i) the automated detection of
feature conflicts of the SPLs independently evolved; and (ii) the resolution and merge of such feature
conflicts.

1 INTRODUCTION

Over the last years, software product line
engineering has been applied and adopted by
different companies (Product Line - Hall of Fame,
2005). Existing software product line approaches
(Weiss and Lai, 1999); (Clements and Northrop,
2001); (Czarnecki and Eisenecker, 2000);
(Greenfield and Short, 2005) promote – during
domain engineering – the development of a
centralized infrastructure of core assets that
addresses the common features and provides
variation points to the integration of the variable
features of the SPL. In application engineering, these
reusable assets are reused and customized in order to
produce and generate specific applications
(products). The evolution of the SPL involves to
apply changes directly to its core assets, which
implement the common features (commonalities)
and respective variation points. This development
strategy promotes a better way to manage
variabilities and contribute to facilitate the evolution
of the independent products in terms of changes
applied to a centralized infrastructure that addresses
all of them. If on one hand this SPL development

strategy is very useful and has been used in many
companies in the software industry, on the other
hand there are many existing scenarios where it does
help to cope with the great demand for changing
requirements from different companies that are
benefited by SPLs (Krueger, 2006); (Rubin et al,
2012); (Mende et al., 2009); (Ernst et al., 2010).

In the context of enterprise information systems,
there are several scenarios where the adoption of
existing SPL approaches is not enough to
accommodate the requests for the integration of new
features and maintenance of existing ones. In such
scenarios, the SPL engineering team needs to fork
the core assets in order to address the customer
needs and due to the marked pressure. In addition,
each different version created during the SPL
forking need to be maintained by different teams,
thus bringing more difficulties to the SPL evolution
activities. Recent research works (Rubin et al., 2012)
(Nunes et al., 2010) have proposed preliminary
approaches for dealing with this challenge.
However, there are no existing concrete automated
approaches that support the development and
reconciliation of SPLs independently evolved from
the same reusable code assets. In particular, none of

255Lima G., Santos J., Kulesza U., Alencar D. and Vianna Fialho S..
A Delta Oriented Approach to the Evolution and Reconciliation of Enterprise Software Products Lines.
DOI: 10.5220/0004453102550263
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 255-263
ISBN: 978-989-8565-59-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

the existing research work reflects about this
problem in the context of enterprise web information
systems.

In this paper, we propose a delta-oriented
approach that promotes the reconciliation of
software product lines that are independently
evolved from the same reusable code assets. Our
approach promotes: (i) the automated detection of
feature conflicts of the SPLs independently evolved;
and (ii) the resolution and merge of such feature
conflicts in terms of changes to be applied to the
code assets with the aim of reconciling the SPLs.
We have implemented an initial version of our
approach for the context of SPLs of enterprise web
information systems. It has been developed using
model-driven and code analysis tools available in the
Eclipse platform. Our work also describes
preliminary results from the application of our
approach to the context of a product line of an
enterprise academic web information system
developed in our institution. This SPL has been
independently evolved by other 15 federal
universities in Brazil.

The remainder of this paper is organized as
follows. Section 2 details the challenges of
reconciling SPLs independently evolved by
presenting an example. Section 3 gives an overview
of our approach and describes the technologies used
in its implementation. Section 4 illustrates the
application of our approach to the reconciliation of

enterprise information product lines. Section 5
discusses related work. Finally, Section 6 concludes
the paper and indicates directions for future work.

2 PROBLEM STATEMENT

In the section, we describe a real scenario of
development related to the challenge of
reconciliation of a same SPL evolved independently
by different institutions. The Informatics
Superintendence (SINFO) from Federal University
of Rio Grande do Norte (UFRN) has been facing this
challenge during the development of enterprise
information systems. The SINFO/UFRN is currently
responsible for the development of different
enterprise information systems (SINFO, 2013). The
three main ones are: (i) SIGAA – enterprise
information system responsible for the management
of academic activities; (ii) SIPAC – enterprise
information system responsible for the management
of the finance, property and contracts of the
university departments; and (iii) SIGRH - enterprise
information system responsible for management of
human resources. Given their quality, these systems
have been licensed by different federal institutions
of Brazil, including 15 federal universities, and the
Federal Justice, Police, Culture and Planning
Brazilian Departments.

Figure 1: Feature model and code assets evolution.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

256

The deployment of these enterprise information
systems from SINFO/UFRN at different institutions
demanded their adaptation to address new
requirements and features, which implement specific
business rules and needs of our partners. In order to
deal with this scenario, each enterprise information
system has been adapted (Santos et al., 2012); (Sena
et al., 2012) to become a SPL that: (i) provides a
common infrastructure of code assets that can be
reused by different institutions; and (ii) defines
variation points that can be extended to address
specific needs. However, due to the dynamic
environment of those institutions, specially
regarding the occurrence of new demanding
requirements, there is always a need to adapt the
infrastructure to accommodate adequately all these
new requirements. The existing variation points are
not enough to address all the demanding
requirements in many cases. In such scenario, the
solution has been to create a separate branch of the
SPL to each institution, which can freely extend and
modify the implementation of the core and variation
point assets. Similar strategies have been reported by
other existing research work (Rubin, 2012); (Nunes,
2010). This approach is also known as clone-and-
own.

Figure 1 illustrates the development and
evolution scenario of the SIGAA – the enterprise
information system responsible for the management
of academic activities of the UFRN. First, the initial
version of SIGAA/UFRN SPL – called the Original
SPL – is made available to other partners, such as
Federal University of Sergipe (UFS). Every
institution then creates a fork/copy of the original
SPL – named the Target SPL. After that, they can
extend or modify the classes that implement the SPL
core and variation point assets, or even the default
variable features made available by UFRN. At the
same time, the UFRN team also independently
evolve the SPL thus generating the Source SPL
(Figure 1).

Figure 1 also details an example of how UFRN
and UFS have independently evolved one version of
SIGAA. It presents the feature models of both
universities that reflect these changes. It shows that
UFRN has introduced a new feature Reservation as
part of the Library feature. On the other hand, the
UFS has modified the Suspension feature to include
the Punishment and Fine features. The Suspension
feature becomes a subfeature of Punishment feature.

After the parallel evolution of the SPLs, the UFS
can request from UFRN the integration of the new
Reservation feature to its SPL code assets. The
reconciliation of the two independently evolved

SPLs involves the resolution and merge of new
source code developed for each of them. In
particular, in this scenario, there is a need to
integrate the features from Source SPL (UFRN) to
the Target SPL (UFS). Different and several classes
are introduced and modified during the evolution of
the SPLs. The reconciliation of them involves
identifying conflicting features in terms of
introduction, modification and deletion of existing
code assets. Figure 1 shows, for example, that the
Reservation and Punishment features have
demanded the creation of new classes
(RequestReservationLibraryMaterialMBean,
LibraryUserPunishment) and the modification of
existing ones (LoanProcessor).

Our research problem is related to the incapacity
and inefficiency of existing software engineering
techniques and tools to promote the seamless
integration and reconciliation of the evolved features
from the source SPL to the target SPL. Existing
configuration management systems only provide
code merge low-level mechanisms that give all the
responsibility to the engineers to perform a safe
integration and reconciliation of the SPL features.
On the other hand, existing SPL approaches are
founded on the development of a centralized
infrastructure. They do not provide advanced
techniques or tools to deal with this problem.

3 EVOLVING AND
RECONCILING SOFTWARE
PRODUCT LINES

This section presents our delta-oriented approach to
support the evolution and reconciliation of software
product lines. Section 3.1 gives an overview of the
approach by describing its main components.
Section 3.2 illustrates the main technologies used in
its implementation.

3.1 Approach Overview

The main aim of our approach is to promote the
reconciliation of SPLs that are independently
evolved. In order to address this aim, our approach
allows: (i) the automated detection of feature
conflicts of the SPLs evolved independently; and (ii)
the resolution and merge of such feature evolution
conflicts. Figure 2 shows an overview of the main
components of our approach. Next we explain and
detail each one of them.

A�Delta�Oriented�Approach�to�the�Evolution�and�Reconciliation�of�Enterprise�Software�Products�Lines

257

Figure 2: Approach overview.

3.1.1 Feature Extractor Module

The first step is executed using the feature extractor
module. The main goal of this module is to extract
the features and code of the SPLs that are being
reconciled and integrated – named target and source
SPLs. This information will be used to support the
comparison and automatic detection of conflicts
between the SPLs evolved independently. The
following strategies are used to extract the
information of interest during this approach step: (i)
the SPL features can be obtained from existing
variability management tools, such as CIDE
(Kästner, 2013), GenArch (Cirilo, 2008); (Cirilo,
2012), and pure::variants (pure::variants, 2013); and
(ii) the information regarding code assets are
extracted as abstract syntax trees of each different
asset using existing code parsing tools. This module
produces as output models that maintain the
information regarding the features, code assets, and
respective mapping between features and code assets
for each investigated SPL, which is also called
configuration knowledge (Czarnecki and Eisenecker,
2000).

3.1.2 Evolution Mining Module

The second step involves the mining of the evolution
of features and code assets from the SPLs target and
source. It is supported by the evolution mining
module, which interacts with existing change request
and configuration management systems, in order to
extract information related to the evolution of the
features and code assets from each SPL
independently evolved. Thus, this module extracts
all the changes applied to the features and code
assets of the SPLs. This information will also be
useful to allow the automatic detection of feature
conflicts between the source and target SPLs during

their evolution. It produces as output historical
change logs about the evolution of features and code
assets for each SPL analyzed.

3.1.3 Feature Conflict Analysis Module

This module is responsible for the automatic
detection of conflicts of features that evolve
independently along the SPLs target and source. It
uses as input the information generated by the
feature extractor and evolution mining modules,
which are, respectively, the source and target
models, and the historical change logs.

The module executes an algorithm that compares
the source and target models searching for changes
applied to the features and code assets of the SPLs.
It produces as output a delta model containing: (i)
the new features created in the source SPL that can
be integrated to the target; (ii) the modified features
in the source SPL compared to the target; and (iii)
the removed features in the source SPL compared to
the target.

3.1.4 Merge Engine Module

Once identified the feature conflicts from the
integration between the source and target SPLs, our
approach is prepared to analyze these conflicts in
order to promote the merge of them.

During this last step, the merge engine module
first asks to the engineer, which feature changes
from the source SPL he/she is interested to integrate
to the target SPL. After that, the module analyzes the
dependencies between the features and code assets
in order to verify if the merge of the selected
features from the source SPL can be applied
automatically, semi-automatically or manually to the
target SPL.

After this analysis, the tool can recommend and
apply specific merge actions to integrate feature
changes from the source to the target SPL. The
merge actions are implemented according to the
existing variability implementation technologies
involved in the modularization of the SPL. Finally,
the merge engine module is also responsible to
indicate which specific features (or use cases) should
be retested in order to verify that everything is
working well after the SPL integration.

3.2 Approach Implementation

Our approach has been implemented as an Eclipse
plugin using existing model-driven and code
manipulation technologies available in this platform.
Figure 3 shows the infrastructure of our tool by

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

258

illustrating the technologies used in its
implementation. It was developed based on the
Squid (Vianna et al, 2012) – an extensible
infrastructure for analyzing software product line
implementations.

Figure 3: Tool infrastructure.

The Feature Extractor module is implemented as
an extension of the Squid, which is responsible for
parsing the code assets and annotations embedded in
these code assets that indicate the implementation of
specific variable features. This parsing functionality
is implemented using the Java Developing Tooling
(JDT) API. As a result of the parsing, the module
produces Squid models as output, which maintain
information regarding the features, code assets and
mappings between these elements. Every Squid
model is implemented and manipulated using
Eclipse Modeling Framework (EMF) technology.

The current implementation of the Evolution
Mining module integrates with an in-house change
request system – called iProject – developed at
SINFO/UFRN, and the Subversion configuration
management system. The module obtains
information regarding: (i) the evolution of every
code asset from Subversion; and (ii) the change
feature request from iProject.

The Feature Conflict Analysis module
manipulates as input two Squid models and the
historical change logs (XML files), in order to
produce the delta model that indicates the changes
applied to the source SPL that are not part of the
target SPL. The delta model is also manipulated and
implemented using the EMF plugin. Finally, the
Merge Engine module is currently implemented to
manipulate the abstract syntax tree (AST) of the SPL
code assets using the JDT API. Different changes
and refactorings can be applied to the source code of
the target SPL, depending on the recommended
merge actions of this module.

4 APPROACH IN ACTION

This section describes how our approach is used in
practice by illustrating its application to the SIGAA
software product line. Next sections describe how
the different approach modules can be applied to the
resolution and merge of conflicts from SIGAA.

4.1 Extracting Feature and Code
Assets from the SPLS

The Feature Extractor module is responsible for
processing the feature annotations and for generating
the Squid target and source models as output that
contain their respective features, code assets, and
mapping between them. Our current implementation
uses the feature annotations from GenArch product
derivation tool (Cirilo, 2008); (Cirilo, 2012).

Figures 4 and 5 show a partial view of the
extracted models for the SIGAA SPL. It considers
the evolution of the Library feature (Section 2) for
the UFRN and UFS universities, respectively. It
shows how the sub-features of Library have been
evolved. Figure 4 shows, for example, that the
UFRN SIGAA SPL has introduced the Reservation
feature and associated code assets, such as
verifyExistingMaterialForReservation()
and verifyMaximumAmountOfReservation()
methods. On the other hand, Figure 5 illustrates that
the UFS SIGAA SPL has included the Punishment
feature and associated code assets, such as the
PunishmentLoanDelayStrategyFactory and
PunishmentLoanDelayStrategy classes. It is
interesting to notice that the Squid models also
include information about the mappings between
features and code assets. For example, the
verifyUserLibraryPunishment() method is
mapped to the Punishment feature (Figure 5).

Figure 4: Extracted model of the source SPL (UFRN).

A�Delta�Oriented�Approach�to�the�Evolution�and�Reconciliation�of�Enterprise�Software�Products�Lines

259

Figure 5: Extracted model of the target SPL (UFS).

4.2 Feature Evolution Mining

The second step consists on mining the evolution of
the features and code assets from the source and
target SPLs. The historical data of the change
request and configuration management systems from
each SPL are mined in order to generate as output
historical change logs for the source and target
SPLs.

Figure 6: Source SPL historical evolution file.

Figures 6 and 7 show a partial view of the
historical change log files produced as output for the
UFRN and UFS SPLs, respectively. As you can see,
every change log file contains a root tag called
historychangelog that has several changelogs
siblings. Each changelog specifies: (i) the feature;
(ii) the nature of the feature (UPGRADING,
NEW_USE_CASE, BUG_FIX); (iii) the version and
revision submitted to the Subversion system; (iv) a
brief description of the change; and (v) the code

assets that have been modified. For instance, Figure
6 shows that the LoanProcessor class and the
verifyLoanUserEqualsReservationUser()
method of the Reservation feature were modified in
the revision 124300 of the Subversion system.

Figure 7: Target SPL historical evolution file.

4.3 Detecting Feature Conflicts
between Source and Target SPLs

The third step of our approach consists on
automatically generating the delta model, which
shows the feature conflicts from the evolution of
source and target SPLs. In order to generate this
model, the Feature Conflict Analysis module
receives as input the information generated in the
previous steps for the source and target SPLs, which
are: (i) the Squid models; and (ii) historical change
logs. The module processes this information to
identify the feature conflicts in terms of changes
applied to the code assets and stores this information
in the delta model.

Figure 8: Delta model.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

260

Figure 8 illustrates the resulted delta model of
the UFRN source and UFS target SPLs. The delta
model shows if there are conflicts in terms of code
assets between the features independently created or
modified in the SPLs. For every feature presented,
the model indicates the kind of change that has been
applied to the code assets from the source to the
target SPL. Figure 8 shows, for example, that the
LoanProcessor class has been modified in the
source SPL, when compared to the target. The
Properties View indicates the conflict in this class
for the Reservation feature that represents a
NEW_USE_CASE change.

4.4 Merging Source and Target SPLs

In the final step of our approach, the Merge Engine
module is used and the conflicts identified between
the source and target SPLs are prepared to be
handled. The engineer informs which feature
changes from the source SPL he/she is interested to
apply to the target SPL. The dependencies between
the features and code assets are then analyzed to
verify which strategy – automatic, semi-automatic or
manual - of merge can be applied.

Figure 9 shows examples of the different merge
strategies executed by our tool in the context of the
Reservation feature. The
RequestReservationLibraryMaterialMBean
class is a new asset created in the UFRN source SPL
that need to be added to the UFS target SPL. This
class only has a dependency to the LibraryUser
class of the original SPL, which has not changed
during the evolution of both SPLs. Thus, the Merge
Engine module can automatically move this class to
the target SPL, after calculating and recognizing that
it has no dependency to any existing class.

Figure 9: Examples of merge strategies.

Figure 9 also exhibits the
MaterialDetailsMBean class that has been
modified in the source SPL to address specific needs

of the Reservation feature. The modifications of this
class only involve the introduction of new
independent methods. On the other hand, the
MaterialDetailsMBean class has not been
modified during the evolution of the target SPL. But
there is a dependent class – called LoanDAO – that
was modified in the target SPL. Because of that, the
Merge Engine can merge the new methods of the
MaterialDetailsMBean class from the source
into the target SPL, but it cannot guarantee that the
integration is going to work adequately, due to the
changes applied to the LoanDAO class. In those
scenarios, the module uses a semi-automatic merge
strategy, where it indicates explicitly which classes
will be merged to the target SPLs, but it also notifies
the engineers about the specific needs to inspect or
re-test the merged classes due to changes in the
dependent classes, such as the LoanDAO class, in our
example. We are currently extending the
implementation of this merge strategy to allow the
automatic recommendation of automated testing
classes to be re-executed over the merged classes
that have modified dependent classes.

Finally, the last merge strategy currently
available in our Merge Engine module is the manual
one. It only indicates the code assets conflicts to the
software engineers during the integration of specific
features. The engineers are then responsible for
deciding the best strategy to integrate them based on
the information provided regarding the changes
applied to the existing features. Figure 9 shows that
the LoanProcessor class has been modified in
both source and target SPLs in order to address the
Reservation and Punishment features, respectively.
Due to the large amount of conflicting changes over
similar methods of the LoanProcessor class, our
Merge Engine module uses the manual merge
strategy to highlight to the engineers the changes
applied to the code assets that are associated to each
new feature (Reservation and Punishment). The
information is then used to help the developers
during the manual merge of the features.

5 RELATED WORK

(Rubin et al., 2012) propose the improvement of the
efficiency of forking practices in the context of
SPLs, while mitigating their disadvantages. The
work defines the Product Line Change Set
Dependency Model (PL-CDM), which captures the
necessary information required for managing forked
product variants. PL-CDM contains information

A�Delta�Oriented�Approach�to�the�Evolution�and�Reconciliation�of�Enterprise�Software�Products�Lines

261

about the entire product line, such as: its products,
features of these products, and relationships between
the features. This model contributes to keep
information about the SPL that will aid the
developer to manage the fork product variants. The
authors also demonstrate their approach for the
management and evolution of forked product
variants using a real example. However, the authors
have not developed a concrete implementation of
PL-CDM that automates the forking variants
management. In contrast, our work proposes a delta-
oriented approach that helps the merging of SPLs
independently developed. In this paper, we have also
presented the tool support that automates our
approach.

(Nunes et al., 2010) propose the analysis of
historical evolution of family members in order to
classify the implementation elements according to
their variability nature. The work proposes history-
sensitive heuristics for feature recovering in the code
of degenerated program families. The historical
evolution analysis considers: (i) the history of each
member of the program family, called horizontal
history; and (ii) all the family members, called
vertical history. Through the usage of such
heuristics, the authors verify how features change
considering the vertical and horizontal perspectives
and classify them. Although the authors deal with
the problem of SPL evolution by identifying how
each feature has evolved, their research work has not
proposed concrete solutions to repair the feature
degeneration in SPLs.

(Ferreira et al., 2012) propose the
implementation and evaluation of four testing based
approaches and their implementations for checking
SPL refinement. Their work considers that a SPL is
safely evolved, when it addresses at least the same
products of the previous version. The first testing
approach – called All Product Pairs – checks all
products generated by the SPL after the evolution
against all products before evolution. It verifies if
the SPL continues generating at least all products
generated before evolution. However, how this
strategy is very onerous, they have proposed and
assessed three other approaches – called All
Products, Impacted Products and Impacted Classes
– which are optimization of the first one that have
lower precision, but it improves the execution
performance. Their approach only deals with the
evolution of the same SPL. In our work, we focus on
the reconciliation of SPLs independently evolved
after they are forked from the same initial version.
The testing approaches proposed by (Ferreira, 2012)
can be used to verify if the final reconciled target

SPL is a safe evolution of the target SPL. This is an
interesting research work that we are planning to
consider in the future.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a delta-oriented approach
that provides support for the reconciliation of SPLs
independently evolved by different teams. Our
approach allows: (i) the automated detection of
feature conflicts in terms of code assets of the SPLs
evolved independently; and (ii) the resolution and
merge of such feature evolution conflicts. The
preliminary tests and results of our current
implementation show the potential of our approach
to deal with such the SPL reconciliation challenge
during the evolution of SPLs.

We are currently refining its implementation to
apply it to a case study of large-scale reconciliation
scenarios using the enterprise information SPLs
from SINFO/UFRN, independently evolved by
several federal Brazilian institutions. In particular,
new extensions are being developed to support: (i)
the automatic and semi-automatic merge of XML
template documents, such as Java Server Faces
(JSF) pages – that are usually used to implement
web pages; (ii) to automatically identify which
manual or automated testing cases needs to be re-
executed to verify the behavior preservation of the
reconciled features.

ACKNOWLEDGEMENTS

This work was partially supported by the National
Institute of Science and Technology for Software
Engineering (INES) - CNPq under grants
573964/2008-4 and CNPQ 560256/2010-8.

REFERENCES

Cirilo, E., Kulesza, U., Lucena, C. J. P., 2008. A Product
Derivation Tool Based on Model-Driven Techniques
and Annotations. Journal of Universal Computer
Science, vol. 14, no. 8.

Cirilo, E., Nunes, I., Kulesza, U., Lucena, C. J. P., 2012.
Automating the Product Derivation Process of Multi-
Agent Systems Product Lines. Journal of Systems and
Software (JSS), pp 258-276, vol. 85, number 2,
February 2012 .

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

262

Clements, P. and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,
2001.

Greenfield, J., and K. Short. Software Factories:
Assembling Applications with Patterns, Frameworks,
Models and Tools. John Wiley and Sons, 2005.

Czarnecki, K. and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

Ernst, N. A., Easterbrook, S. M. and Mylopoulos, J. Code
Forking in Open-Source Software: a Requirements
Perspective. CoRR, abs/1004.2889, 2010.

Ferreira, F., et al. 2012. Making Software Product Line
Evolution Safer. 6th Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS
2013), Natal, Brazil, IEEE Computer.

Kästner, C. CIDE: Virtual Separation of Concerns
retrieved at http://wwwiti.cs.uni-magdeburg.de/
iti_db/research/cide/, February 2013.

Krueger, C. W. “New Methods in Software Product Line
Development.” SPLC. 2006, IEEE , 95-102.

Mende, T., Koschke, R. and Beckwermert, F. An
Evaluation of Code Similarity Identification for the
Grow-and-Prune Model. Journal of Software
Maintenance and Evolution: Research and Practice.
21(2):143–169. 2009.

Nunes, C. et al. 2010. History-Sensitive Heuristics for
Recovery of Features in Code of Evolving Program
Families. Proceedings of the Software Product Line
Conference (SPLC 2012), September 2–7, Salvador,
Brazil.

Product Line - Hall of Fame. 2005. Product Line - Hall of
Fame. Product Line - Hall of Fame. [Online]
September 2005. [Cited: 14 January 2013.]
http://splc.net/fame.html.

Pure::Variants, retrieved at
http://www.pure-systems.com/, February 2013.
Rubin, J. et al. 2012. Managing Forked Product Variants.

Proceedings of the Software Product Line Conference
(SPLC 2012). Salvador. Brazil.

Santos, J. et al. 2012. Conditional Execution: A Pattern for
the Implementation of Fine-Grained Variabilities in
Software Product Lines. Proceedings of 9th Latin-
American Conference on Pattern Languages of
Programming (SugarLoafPLoP 2012) (in Portuguese).

Sena, D. et al. 2012. Modularization of Variabilities from
Web Information Systems Software Product Lines.
Proceedings of 9th Latin-American Conference on
Pattern Languages of Programming (SugarLoafPLoP
2012) (in Portuguese).

SINFO. 2013. Informatics Superintendence of the Federal
University of Rio Grande do Norte. Available at:
http://www.info.ufrn.br/wikisistemas/doku.php

Vianna, A. et al. 2012. Squid: An Extensible Infrastructure
for Analyzing Software Product Line
Implementations. SPLC’12-Workshops. September 2–
7, Salvador, Brazil.

Weiss, D. and C. Lai. Software Product-Line Engineering:
A Family-Based Software Development Process.
Addison-Wesley Professional, 1999.

A�Delta�Oriented�Approach�to�the�Evolution�and�Reconciliation�of�Enterprise�Software�Products�Lines

263

