
Experimental Studies in Software Inspection Process
A Systematic Mapping

Elis Montoro Hernandes1, Anderson Belgamo2 and Sandra Fabbri1
1LaPES - Software Engineering Research Lab, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil

2IFSP - São Paulo Federal Institute of Education, Science and Technology, Piracicaba, SP, Brazil

Keywords: Systematic Mapping, Software Inspection Process, Experiments, Empirical Software Engineering,
Experimental Software Engineering.

Abstract: Background: The interest in produce experimental knowledge about verification and validation techniques
increases over the years. This kind of knowledge can be useful for researchers who develop studies in that
area as well as for industry that can make decisions about verification and validation activities (V&V) on
the basis of experimental results. Aim: This paper aims to map the empirical studies conducted in the
software inspection process area. Method: Each step of the Systematic Mapping (SM) process was
performed with the support of the StArt tool, and the papers from major databases, journals, conferences,
and workshops were covered. Results: Seventy nine papers were accepted in this mapping and helped
identifying the inspection processes, techniques and tools commonly referenced in that papers, as well as the
artifacts usually inspected and the research groups and universities frequently involved in these papers.
Conclusion: Different inspection processes have been investigated through experimental studies, and the
Fagan’s process is the most investigated of them. To evaluate these different processes requirements
document and source code were the artifacts more used. Besides, different tools and techniques have been
used to support these processes. Some important lessons were learned, which are in accordance to
explanations of others authors.

1 INTRODUCTION

The inspection activity is a systematic approach that
aims to detect defects in software artifacts as soon as
they are committed. Since it was introduced in IBM
around 70's, by Michael Fagan, the inspection
activity is considered one of the best software
engineering practices to identify defects (Anderson
et al., 2003).

One of the inspection activity advantages is that
it can be applied on many kinds of software artifacts,
as soon as these are constructed, decreasing defects
transfer to other artifacts. besides the possibility of
being applied them before the testing activities
(Boogerd and Moonen, 2006).

The software inspection process proposed by
Fagan (1976) has been modified and adapted,
generating other versions such as Fagan (1986),
Humphrey (1989), NASA (1993), Gilb and Graham
(1993), Murphy and Miller (1997), Sauer et al.,
(2000), Halling et al., (2003), and Denger and
Elberzhager (2007).

Although each different version of the software

inspection process has proposed new and different
roles and activities, all of them share the same goal:
allow inspectors identifying defects, analyzing them
and establishing the real defects for correction.

When an enterprise decides to adopt an
inspection process, it is necessary to identify which
process and which techniques fit better for its
development process and team.

A way to search for evidence about what process
or technique to use, is to look for experimental
studies related to them. According to Travassos et
al., (2002), software engineering experimental
studies aim to characterize, evaluate, foresee, control
and improve products, process, resources, models
and theories. In addition, Basili et al., (1996) argue
that "the only way to discover how applicable a new
method, technique, or tool is in a given environment
is to experiment with its use in that environment".

Thus, the importance of experimental studies is
clear for software engineering researchers and
enterprises that want to adopt or adapt processes and
techniques in their business environment. Well-
known techniques to find this kind of knowledge are

66 Montoro Hernandes E., Belgamo A. and Fabbri S..
Experimental Studies in Software Inspection Process - A Systematic Mapping.
DOI: 10.5220/0004454000660076
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 66-76
ISBN: 978-989-8565-59-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Systematic Review (SR) (a.k.a. Systematic
Literature Review (SLR)) and Systematic Mapping
(SM).

Although the research process is benefited by
these techniques, the SR process is considered
laborious to be planned and conducted (Kitchenham,
2004). It demands a high maturity level from the
researcher to define the right research question to be
answered, leading novice researchers to opt for an
ad-hoc literature review.

According to Bailey et al., (2007), Systematic
Mappings (SM), also known as Scoping Review
(Petticrew and Roberts, 2006), should be conducted
before a SR, since its goal is to identify the features
and the kind of publications to be investigated on a
particular theme.

The main goal of Systematic Mapping studies is
to provide an overview of a research area, and
identify the quantity and type of research and results
available within it as well as mapping the
frequencies of publication over time to see trends.”
(Petersen et al., 2008). These authors also mentioned
that a secondary goal is to identify the forums where
the research topic has been published. Furthermore,
Systematic Mapping studies can help in refining the
question for the full review and estimating the
resources that will be needed (Petticrew and
Roberts, 2006).

The goal of this paper is to describe a Systematic
Mapping of experimental studies related to software
inspection process. The objective was to identify
techniques, tools, artifacts and the inspection process
usually employed in the published experimental
studies. Moreover, the intention was to identify the
process and techniques more explored in the
experimental studies, their respective authors and the
places where the studies are usually published.

The remaining of this paper is organized as
follows: Section 2 presents the methodology applied
to conduct this SM; Section 3 presents the results;
Section 4 presents the threats of validity; and finally,
Section 5 presents the discussions regarding the
study.

2 METHODOLOGY

Briefly, SM allows creating an overview of an
interest area based on the definition of research
questions and the identification and quantification of
the collected data.

Petersen et al., (2008) present the following steps
as the essential process steps for a Systematic
Mapping study (Figure 1):

1) Definition of research question: In this step, one
or more research questions should be defined,
reflecting the expected answer at the end of the
mapping. The outcome of this step is the review
scope.

2) Conduct Search: In this step, search strings are
defined based on the research questions
established in the previous step. The search
strings are then applied to different online
scientific databases to identify relevant papers
for the mapping. The outcome of this step is a
list of papers retrieved by the search strings.

3) Screening of Papers: In this step, inclusion and
exclusion criteria should be applied based on the
research questions. These criteria are intended to
identify those primary studies that provide direct
evidence about the research question. In order to
reduce the likelihood of bias, selection criteria
should be established during the protocol
definition, although they may be refined during
the search process (Kitchenham, 2007). The
outcome of this step is a list of relevant papers to
the research theme.

4) Keywording using Abstracts: In this step, the
researcher must read the abstract of accepted
papers and identify keywords that characterize
various aspects of the studies, like the research
method, type of conducted study, research area,
research group, method and/or tool used, etc.
After the reading, a set of keywords is created
and used to classify all papers in different
features. The outcome of this step is a
Classification Scheme.

5) Data Extraction and Mapping Process: the
accepted papers in step 3 are classified according
to the categories previously identified in step 4.
The classification scheme may evolve during the
data extraction, either by adding new categories
or merging or splitting existing categories. After
that, the categories are grouped into facets,
which in turn are related between each other to
generate a map (as a bubble plot, for example) so
to allow the researcher to visualize various
aspects of the studied research topic. The
outcome of this step is the generated map.

Next sections present the goal of the SM process
steps and how they were conducted.

Figure 1: Systematic Mapping process (Petersen et al.,
2008).

Experimental�Studies�in�Software�Inspection�Process�-�A�Systematic�Mapping

67

2.1 Definition of Research Question

According to the intention of this SM, presented in
Section 1, the research questions were:

RQ.1)"Which software inspection processes were
investigated through experimental studies?".

RQ.2)"Which techniques and tools have been
used in experimental studies that investigated
software inspection processes?".

Petersen et al., (2008) suggest that a protocol is
filled as it is in Systematic Reviews to enable the
registration of the study decisions, as well as the
auditing and replication.

Aiming to use a computational support for
conducting this SM, the StArt tool (Hernandes et al.,
2010); (Zamboni at el, 2010); (Fabbri et al., 2012)
was used. Hence, the protocol was based on
Kitchenham’s proposal (2007), since this is the
model provided by the tool. Although the protocol
data can be adjusted during the process execution, in
this step the research questions, the inclusion and
exclusion studies criteria and the information
extraction form fields were defined.

2.2 Conduct Search

The definition of the search string is relevant to
ensure that the studies to be analyzed support the
answer to the research question. The online
scientific database SCOPUS was selected to perform
essays till an effective search string was reached.

SCOPUS was chosen because it offers facilities
that allow operations with a set of strings besides
analyzing relevant data as: list of research area,
authors, conferences/journals and keywords most
frequent in the papers retrieved. Furthermore, Dieste
et al., (2009) argue that it has fewer weaknesses than
the other online scientific databases.

After some essays, the search string defined was:

TITLE-ABS-KEY("software inspection process" OR
(("inspection process" OR "inspection technique")
AND "software engineering")) AND TITLE-ABS-
KEY("primary stud*" OR "experiment*" OR
"empirical stud*" OR "controlled stud*")

After performing the query in SCOPUS and
exporting the results (papers) to a .bib file, the same
search string was adapted to be applied to the other
online scientific database defined in the protocol:
IEEExplore, ACM Digital Library and Web of
Science.

These four online scientific databases were
inserted into the StArt tool protocol such that a
respective search session was created for each one.

Aiming to enable replications of this study, for each
search session the respective search string was
registered in the tool, as well as the BibTex file was
imported.

Dieste et al., (2009) exposed that the results of an
ACM DL search cannot be exported either to text or
Reference Manager formats which represents a
significant impediment for a SR.

To workaround this problem we used the Zotero
Firefox plug-in (www.zotero.org) to import the
ACM DL results and generate the BibTex file.

When the user imports a .bib file to a search
session of StArt, duplicated papers (with the same
title and authors) are automatically identified. In
addition, the tool sets a score for each papers, which
is based on the frequency that each keyword
(defined in the protocol) appears in the title, abstract
and keywords of the paper.

After all .bib files were imported, 249 papers
were inserted under this SM, having 116 as
duplicated papers (indexed by more than one online
scientific database).

2.3 Screening of Papers

The computational support of the StArt tool makes
the screening of papers easier. The tool offers an
interface that allows the reading of the abstracts
(retrieved by .bib reference file); shows the inclusion
and exclusion criteria (defined on the protocol);
enables the attribution of these criteria to the papers;
and allows setting the papers as accepted or rejected.
The StArt also allows the user setting a reading
priority (very high, high, low and very low),
deduced from the reading of the abstract, which will
be useful when the full paper should be read, for
example, in a Systematic Review.

In order to revise the inclusion and exclusion
criteria and the data extraction form (both defined in
the protocol - Step 1), first of all the five high scored
and five low scored papers were analyzed.

The criteria were satisfactory and no change was
made. By the other hand, a new field was added to
the data extraction form: "Which process phase (or
activity) is supported by the technique?" (more
details in Section 2.5).

Although Petersen et al., (2008) suggest that this
SM step is conducted based on the paper abstract (or
some paper sections), there are cases where the
abstract is not enough for applying the inclusion and
exclusion criteria. In these cases, reading the full
text can be a good option, like in the Systematic
Review process (Kitchenham, 2004; 2007).

At the end of this step, 54 papers were rejected

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

68

and 79 were accepted. Table 1 shows the inclusion
and exclusion criteria applied and the number of
papers related to each one. There are some papers
that were related to more than one criterion.

It is important to mention that this systematic
mapping has focused just in papers about software
inspection process and its variants – papers about
peer review, as example, were not considered.

Table 1: Inclusion and Exclusion criteria applied in the
SM.

Criterion
type

Criterion
Number
of papers

Inclusion

presents or uses some tool or
technique to support the experimental
studies in software inspection process

31

presents a experimental study related
to software inspection process

56

Exclusion

proceedings introduction 1

not written in English or Portuguese 1

full paper not available on web
neither in the university commutation
service

4

not presents an inspection process
related to software

14

not related to software 16

not presents an experimental study
related to software inspection process

18

2.4 Keywording of Abstracts

Although Petersen et al., (2008) suggest that the
classification schema should emerge while the step
Keywording of Abstracts is being conducted, in this
SM it was defined when the protocol was filled. In
this way, we tried to ensure that the required data to
answer the research question would be extracted.

In this SM the Keywording of Abstract was
conducted in parallel to the Screening of Papers.
Hence, if a paper was accepted, as the abstract was
read, the Classification Scheme (data extraction
form) defined in the protocol was revised aiming to:
i) identify if the paper would fill all items of the
schema; ii) identify values to compose a list of
possible categories for each classification schema
item.

Again, the StArt tool makes this task easier, once
it gives two possibilities to define the classification
schema items in the data extraction form (resource
available in the tool): textual classification or
itemized classification.

If the user set a classification item as textual, this
field will be a text and probably, different for each
papers. If the user set a classification item as
itemized, a list of categories must be created and
only one category can be chosen when the item is

filled. Of course, the list of categories can be
updated if necessary.

The itemized item is a good option to ensure
standardization of answers. For instance, in this SM
the classification item "study type" was an itemized
item and its categories were updated as the
Keywording of abstracts was conducting.

2.5 Data Extraction and Mapping of
the Studies

In this step the 79 accepted papers were categorized
in 8 classification items:
a) study classification, according to Wieringa

(2006);
b) inspection process used,
c) artifact inspected;
d) tool used in the study;
e) step (s) of the process supported by the tool;
f) techniques used in the study;
g) step (s) of the process supported by the

technique;
h) research group or university.

In addition to the map based on data collected
through the classification schema, using the StArt
tool it is possible to map the research area taking
into account other data, for example: publication
year, conferences or journals, and authors. These
fields are available when the .bib file is imported to
the tool.

Considering the research question, the bubble
chart that maps the research allows identifying the
techniques used in experimental studies related to
software inspection process and which activities are
supported by these techniques.

Charts and tables show the publications
evolution, processes and tools more used, artifacts
commonly inspected, and so on.

When the StArt tool is used, besides the
characterization of the papers by means of the
Classification Schema, the papers can be
characterize by additional and relevant information.
This is possible since relevant information can also
be registered in a memo field provided by the tool,
for each paper. We emphasize that any scientific
methods to Thematic Synthesis as mentioned by
Cruzes and Dyba (2011) were considered.

As secondary studies should be accessible to the
community (Kitchenham, 2007), Pai et al., (2004),
etc) the package of this study is available at:
www.dc.ufscar.br/~lapes/packs/inspecao5.1.

Experimental�Studies�in�Software�Inspection�Process�-�A�Systematic�Mapping

69

3 RESULTS

The results will be commented according to the
research questions.

The first question is related to the software
inspection process that have been used in
experimental studies: RQ.1)"Which software
inspection processes were investigated through
experimental studies?".

According to Figure 2, that shows the identified
processes and how many papers cited them, we
observe that few authors mentioned the process used
in the experimental study (23 occurrences).

The Fagan process (Fagan, 1976; 1986) was the
most mentioned (22 occurrences), mainly if some
adaptations of this process are also considered (7
occurrences) (Porter et al., 1995); (Porter et al.,
1998); (Kelly and Shepard, 2000); (Harjumaa,
2003); (Vitharana, Ramamurthy, 2003); (Torner et
al., 2006); (Porto et al., 2009).

The process presented by Sauer et.al (2000) was
also highlighted among the accepted papers (7
occurrences). Some adaptations of this process
(Bernardez et al., 2004); (Winkler et al., 2005);
(Walia and Carver, 2008) were also mentioned (3
occurrences).

The inspection process presented by Gilb and
Graham (1993) (3 occurrences), HyperCode
(Perpich et al., 1997); (Perry et al., 2002) (2
occurrences) and N-fold (2 occurrences) (Schneider
et al, 1992; He, Carver, 2006) were the other
processes also explicitly cited among the accepted
papers.

As mentioned before, although the secondary
study that was carried out was a SM, which does not
require the full reading of papers, some of them
were completely read aiming to extract more
detailed information.

As mentioned before, there were cases where a
brief reading of the full text was needed. Although
different processes were identified among the
experimental studies, all of them propose activities
to plan the inspection, find defects, analyze the
defects and select the ones for rework. The main
differences between the processes stayed on the
roles, intermediate activities, strategies to collect and
analyze defects and tools to support them.

It is important to notice that some papers used
more than one inspection process. In addition, a
process was considered "adapted" when some of its
steps were not performed.

As software inspection can be applied to all kind
of software artifact, the artifacts referred in the
experimental studies were of different types. Figure

3 shows this information and highlights that the
most investigated artifacts are requirement
documents and code. The reviewers have decided
maintain the name of the artifacts mentioned by each
author, which led to present UML diagrams, Use
Cases, Use Cases model and OO diagrams as
different items.

The secondary question is related to techniques
and tools that have been used in experimental
studies: RQ.2)"Which techniques and tools have
been used in experimental studies that investigated
software inspection processes?"

Figure 4 shows a bubble chart that shows the
most mentioned techniques and the respective
activities supported by them. Table 2 shows the tools
and what features each one provides. Only 25 papers
mentioned some tool and which one was used.

Related to the techniques, as expected, most of
them are reading techniques or techniques defined
for other purpose but used to find defects (e.g.
heuristic evaluation (Frøkjær and Hornbæk, 2008)).

The outstanding reading techniques of this SM
were Checklist and Perspective-Based Reading
(PBR). PBR is a systematic technique for defect
detection in requirement documents and Checklist is
a reading technique that can be applied for reading
different types of artifacts. Notice that this result is
aligned with the one showed in Figure 3, since the
requirements document was mentioned as the most
inspected artifact in the experimental studies.

Other technique commonly used in the
experimental studies was Capture-Recapture
(Runeson, Wohlin, 1998); (Miller, 1999); (Freimut
et al., 2001, Thelin, 2003); (Thelin, 2004); (Walia et
al., 2008). This technique is related to statistic
methods used to quantify remaining defects in the
artifact after the inspection. The use of Capture-
Recapture in software inspection was proposed by
Eick et al., (1992) and some studies and
improvements were presented thereafter.

Related to the tools mentioned in the papers, they
usually provide support to the software inspection
process in different ways.

Regarding inspection meeting or defects
discrimination activity, in general, the tools adopt
asynchronous communication. The roles involved in
these activities communicate and share opinions by
means of forums created to enable discussions about
the defects identified during the inspection, for
example. A score previously assigned to each defect
by inspectors assists the discussion and also helps
the moderator in defining if a defect is a false-
positive or a real-defect (Lanubile et al., 2004);
(Kalinowski and Travassos, 2004); (Ardito et al.,

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

70

Figure 2: Software inspection process used in the experimental studies.

Figure 3: Artifacts inspected in the experimental studies.

Figure 4: Techniques x Inspection Process phase/activity map.

2006b).
Two studies applied synchronous communication

to support these activities. Tyran and George (2002)
have used a GSS tool (Group Support System) to
allow that a group of inspectors discuss the process
outcomes in a synchronous way. A similar study was
presented by Vitharana and Ramamurthy (2003),
who used a GSS tool to enable the roles involved in
the inspection joining in the discussion activity
anonymously.

Although both studies presented appropriate
results using this kind of tool, these tools do not
assist other inspection activities such as defects
identification.

Porto et al., (2009) presented CRISTA (Code
Reading with Stepwise Abstraction) that supports
the inspection meeting and defect discrimination
activity. Despite the discussions can be performed
by groups, they must be coordinated by the
moderator who inserts the decision into the tool.
CRISTA also supports defects detection.

As mentioned before, for SM it is also important
to identify the sources where the papers were
published. Hence, Table 3 shows the conferences
and journals that published the accepted papers -
those which published only one paper were grouped
in the row "Other conferences and journals". The
outstanding in this classification was the Empirical
Software Engineering Journal.

Experimental�Studies�in�Software�Inspection�Process�-�A�Systematic�Mapping

71

Table 2: Tools used in the experimental studies.

Software inspection
activities (Sauer et al.,

2000)

Planning Discovering Collection Discrimination

Rework Follow-up

Activities mentioned
by the authors

 P
la

n
n

in
g

A
rt

if
ac

ts
 /

d
oc

u
m

en
ts

sh

ar
in

g

In
d

iv
id

u
al

 p
re

p
ar

in
g

D
ef

ec
t

id
en

ti
fi

ca
ti

on

A
u

to
m

at
ic

 d
ef

ec
t

id
en

ti
fi

ca
ti

on

D
ef

ec
t

id
en

ti
fi

ca
ti

on

fo
rm

D
ef

ec
ts

 c
ol

le
ct

io
n

A
n

al
ys

is
 a

n
d

d

ef
ec

t
p

ri
or

iz
at

io
n

D
ef

ec
ts

d

is
cr

im
in

at
io

n

D
at

a
an

al
ys

is

M
ee

ti
n

g
(a

sy
n

ch
ro

n
ou

s)

M
ee

ti
n

g
(s

yn
ch

ro
n

ou
s)

In
sp

ec
ti

on
 r

ev
ie

w

S
im

u
la

ti
on

s
of

 t
h

e
p

ro
ce

ss

R
ew

or
k

C
ap

tu
re

-r
ec

ap
tu

re

te
ch

n
iq

u
es

ap

p
li

ca
ti

on

Adobe Acrobat 5.0
ASSIST-
Asynchronous/Synchr
onous Software
Inspection Support
Tool

Assistent to Usability
Inspection Process

Capture-Recapture;
CARE

CRISTA
Document Quality
Defect Detection tool

Extend Software
Modeling tool

FindBugs; Jlint
Electronic form
Gerdame / NosePrints
GRIP
GroupSystems
HyperCode
InspectA
Internet-Based
Inspection System
(IBIS)

ISPIS
Spreadsheet
SUIT (Systematic
Usability Inspection
Tool)

Ventana Corp.’s
Group Outliner tool

VisionQuest; GSS
anonymous software

WAIT (web-based
artefact inspection
tool)

Web-based Inspection
Process Support tool
(WIPS)

Table 4 shows the universities and research
groups that have conducted experimental studies
related to software inspection. The outstanding in
this classification were the Vienna University of
Technology and the University of Maryland. Figure
5 shows a cloud of authors' name who published the
accepted papers.

Figure 6 shows the type of studies according to
the categories presented by Wieringa (2006).
Considering that this SM is about experimental
studies that investigated software inspection
processes, as expected, most of the papers
corresponded to a validation or evaluation of some
process. The "proposal" category represents the

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

72

studies that presented a new proposal and also an
empirical study to evidence the proposal advantages.

Table 3: List of journals/conferences which published
experimental studies on software inspection.

Journals
Number of

papers

Empirical Software Engineering 7

IEEE Transactions on Software Engineering 5

ACM Transactions on Software Engineering and
Methodology (TOSEM)

2

Information and Software Technology 2

Lecture Notes in Computer Science 2

SIGSOFT Software Engineering Notes 2

Software Testing Verification and Reliability 2

Conferences

International Conference on Software Engineering
(ICSE)

5

International Software Metrics Symposium 4

ACM/IEEE International Symposium on Empirical
Software Engineering

3

Conference of the Centre for Advanced Studies on
Collaborative research

3

International Symposium on Empirical Software
Engineering (ISESE)

3

Asia-Pacific Software Engineering Conference 2

Euromicro Conference 2
EUROMICRO Conference on Software Engineering
and Advanced Applications, SEAA

2

International Conference on Automated Software
Engineering (ASE)

2

International Conference on Quality Software
(QSIC)

2

International Conference on Software Engineering
and Knowledge Engineering, SEKE

2

Nordic Conference on Human-computer Interaction 2

Brazilian Symposium on Software Engineering 2

Other conference and journals 23

Figure 5: Authors highlighted in the accepted papers.

Table 4: Universities and research groups highlighted on
the SM.

University/Research group Number of papers

Vienna University of Technology 13

University of Maryland 8

Fraunhofer Kaiserslautern 6

University of Strathclyde 7

Federal University of Rio de Janeiro 4

Johannes Kepler University Linz 4

Lund University 4

Royal Military College of Canada 4

Università di Bari 4

AT&T Bell Labs 4

Mississippi State University 3

University of Bari 3

Federal University of São Carlos 2

Fraunhofer Maryland 2

Technical University Vienna 2

University of Copenhagen 2

University of Oulu 2

University of Sannio 2

Other universities / research groups 40

Figure 6: Studies classification according to Wieringa's
categories (2006).

Figure 7 shows the distribution of accepted
papers in the years. It is known that some online
scientific database do not index conference papers
straightway the conference closing. Taking into
account the search strings was applied in the first
semester of 2012 (April/May), it may explain the
absence of papers published in 2012.

Figure 7: Distribution of publication by years.

Experimental�Studies�in�Software�Inspection�Process�-�A�Systematic�Mapping

73

4 THREATS TO VALIDITY

Although a research protocol have been filled and
evaluated by other members of the research group,
some threats to validity can be identified.

Basically, the main threats are of internal validity
as: (i) researcher’s bias when analyzing the primary
studies; (ii) the possibilities provided by the online
scientific databases of constructing the search string,
which may not catch all representative papers from
the database; and (iii) the researcher’s university
permission related to the online scientific databases
access, which may cause non access to full papers
and, consequently, their rejection.

Some actions were taken for minimizing these
threats, for example, assessing the protocol during
the screening of papers to certificate that it portrayed
the correct selection criteria; and the conduction of
pilot study for reaching an acceptable search string.

Regarding the details present in this paper and
the study package available, we believe that a
replication of this study is feasible. Even the
replication date can affect the outcome and threats to
validity, we believe the underlying trends should
remain unchanged.

5 DISCUSSIONS, LESSONS
LEARNED AND FUTURE
WORKS

This paper presented a systematic mapping of
experimental studies on software inspection process.

The search string was applied in four online
scientific databases (SCOPUS, IEEExplore, ACM
Digital Library and Web of Science) and 249 papers
were retrieved. Taking title and authors into account,
the StArt tool, used as computational support to
conduct this study, identified 116 duplicated papers.
After analyze the 133 remaining papers and apply
the inclusion and exclusion criteria, 79 papers were
accepted.

The data extracted from these papers showed that
the inspection process presented by Fagan (1976;
1986) was the most mentioned. Although software
inspection can be applied to all kind of software
artifact, requirement documents and code were
highlighted as the most investigated artifacts.

In relation to the techniques, the most mentioned
were the reading techniques. Checklist and
Perspective-Based Reading (PBR) were highlighted.

Concerning the tools, a wide list of tools with
different purposes was identified. Some tools were

specific to the software inspection process, such as
CRISTA (Porto et al., 2009), ISPIS (Kalinowski and
Travassos, 2004), HyperCode (Perry et al., 2002),
InspectA (Murphy and Miller, 1997) and IBIS
(Lanubile et al., 2004). Other tools were used in the
experimental studies but were not for supporting the
software inspection process properly, such as
Capture-Recapture (Runeson and Wohlin, 1998) and
FindBugs (Wojcicki and Strooper, 2006).

Some lessons learned deserve attention: the
importance of good abstracts and the registration of
some details about any object under evaluation
through experimental studies. This is very important
for reaching the objective of a SM.

Although the SM process suggests that the
Classification Schema is created on the basis of
papers abstract, few of them provide basic
information about the conducted study. Hence, the
only way to get the necessary information is to read
the full paper or some section of it.

Even so, there were papers that did not exhibit
relevant details about the conducted study, such as:
the process used (or the way that the process was
performed), artifacts inspected, how the data was
analyzed and the threats to validity. Thus, the lack of
information for filling the classification schema
established by the investigators can jeopardize the
research area characterization.

These hardships faced by the authors (lack of
information both in the abstracts and the full paper)
emphasize the importance of topics already
explained by other authors: structured abstracts
(Budgen et al., 2008) and guidelines to report
empirical studies (Jedlitschka and Pfahl, 2005).

Considering that this SM was conducted in the
context of a PhD research that aims to give better
support to the inspection meeting and defect
discrimination activities, as future work the most
used inspection processes will be investigated more
deeply. Hence, systematic reviews are being planned
and will be conducted as future work.

ACKNOWLEDGEMENTS

Our thanks to the Brazilian funding agencies CAPES
and CNPq and INEP (Observatório da Educação,
project 3280). E. M.H thanks CAPES foundation
(BEX 11833/12-2) and the Software Engineering
Group of The University of Alabama.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

74

REFERENCES

Anderson, P.; Reps, T.; Teitelbaum, T. 2003. Design and
implementation of a fine-grained software inspection
tool. IEEE Transactions on Software Engineering,
29(8), pp. 721-733.

Ardito, C., Lanzilotti, R., Buono, P., Piccinno, A. 2006. A
tool to support usability inspection. In: Working
Conference on Advanced Visual Interfaces, 11th. AVI.
Veneza, Italy, May, 2006. New York: ACM Press.

Basili, V.R., Green, S., Laitenberger, O., Shull, F.,
Sørumgård, S., Zelkowitz, M. 1996. The empirical
investigation of Perspective-Based Reading. Empirical
Software Engineering, 1(2), pp. 133-164.

Bailey, J., Budgen, D., Turner, M., Kitchenham, B.,
Brereton, P., and Linkman, S. (2007). Evidence
relating to Object-Oriented software design: A survey.
In: International Symposium on Empirical Software
Engineering and Measurement, Madri, Spain, Sep.,
2004. Los Alamitos: IEEE Press.

Bernardez, B.; Genero, M.; Duran, A.; Toro, M. 2004. A
controlled experiment for evaluating a metric-based
reading technique for requirements inspection. In:
International Symposium on Software Metrics, 2004.
Proceedings. 10th, Chicago, USA, Sep., 2004. Los
Alamitos: IEEE Press.

Boogerd, C., Moonen, L. 2006. Prioritizing Software
Inspection Results using Static Profiling. In IEEE
International Workshop on Source Code Analysis and
Manipulation, 6th. SCAM. Philadelphia, USA. Dec.,
2006. Los Alamitos: IEEE Computer Society.

Budgen, D.; Kitchenham, B.; Charters, S.; Turner, M.;
Brereton, P.; Linkman, S. 2008. Presenting software
engineering results using structured abstracts: a
randomised experiment. Empirical Software
Engineering. 13(4). pp. 435--468.

Cruzes, D.; Dyba, T. 2011. Recommended Steps for
Thematic Synthesis in Software Engineering. In:
International Symposium on Empirical Software
Engineering and Measurement, Banff, Canada, Sep.
2011. Los Alamitos: IEEE Computer Society.

Denger, C., Elberzhager, F. 2007. Unifying inspection
processes to create a framework to support static
quality assurance planning. In: Euromicro Conference
on Software Engineering and Advanced Applications,
33rd, Lubeck, Germany, Aug., 2007. Los Alamitos:
IEEE Press.

Dieste, O.; Grimán, A.; Juristo, N. 2009. Developing
search strategies for detecting relevant experiments.
Empirical Software Engineering. 14(5). pp 513-539.

Eick, S., Loader, C., Long, D., Votta, L., and Vander
Wiel, S. 1992. Estimating software fault content
before coding. In: International Conference on
Software Engineering, 14th, Melbourne, Australia,
May., 1992. Los Alamitos: IEEE Computer Society.

Fabbri, S., Hernandes, E., Di Thommazo, A., Belgamo,
A., Zamboni, A., Silva, C. 2012. Managing literature
reviews information through visualization. In
International Conference on Enterprise Information

Systems.14th. ICEIS, Wroclaw, Poland, Jun, 2012.
New York: SCITEPRESS.

Fagan, M. E. 1976. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(7), pp. 182-211.

Fagan, M. E. 1986. Advances in software inspections.
IEEE Transactions on software Engineering, 12(7),
pp. 744-751.

Freimut, B.; Laitenberger, O.; Biffl, S.. 2001.
Investigating the impact of reading techniques on the
accuracy of different defect content estimation
techniques. In: Software Metrics Symposium, 17th.,
London, UK, Apr., 2001. Los Alamitos: IEEE Press.

Frøkjær, E; Hornbæk, K. 2008. Metaphors of Human
Thinking for Usability Inspection and Design. ACM
Transactions on Computer-Human Interaction. 14(4).
pp. 1--33.

Gilb, T., Graham, D. 1993. Software Inspection.
Wokingham, England: AddisonWesley,.

Halling, M., Biffl, S., Grunbacher, P. 2002. A groupware-
supported inspection process for active inspection
management. In: Euromicro Conference, 28th.
Dortmund, Germany, Dec., 2002. Los Alamitos: IEEE
Computer Society.

Harjumaa, L. 2003. Distributed software inspections - An
experiment with Adobe Acrobat. In: International
Conference on Computer Science and Technology,
26th. Cancun, Mexico, May, 2003. New York:
IASTED.

He, L, Carver, J. 2006. PBR vs. checklist: a replication in
the n-fold inspection context. In: ACM/IEEE
International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil, Sep., 2006. New
York: ACM Press.

Hernandes, E. C. M.; Zamboni, A. B.; Thommazo, A. D.;
Fabbri, S. C. P. F. 2010. Avaliação da ferramenta
StArt utilizando o modelo TAM e o paradigma GQM.
In: X Experimental Software Engineering Latin
American Workshop, ICMC-São Carlos.

Humphrey, W. S. 1989. Managing the software process.
Addison-Wesley Longman Publishing Co.

Jedlitschka, A.; Pfahl, D. 2005. Reporting guidelines for
controlled experiments in software engineering. In:
International Symposium on Empirical Software
Engineering, Kaiserslautern, Germany, Nov. 2005.
Los Alamitos: IEEE Press.

Kalinowski, M., Travassos, G.H. 2004. A computational
framework for supporting software inspections. In:
International Conference on Automated Software
Engineering, 19th, Linz, Austria, Set., 2004. Los
Alamitos: IEEE Computer Society.

Kelly, D.; Shepard, T. 2000. Task-directed software
inspection technique: an experiment and case study. In
Conference of the Centre for Advanced Studies on
Collaborative research, Mississauga, Canada, Nov.,
2000. Palo Alto: IBM Press.

Kitchenham, B. A. 2004. Procedures for Performing
Systematic Reviews. Software Engineering Group,
Keele University, Keele, Tech. Rep. TR/SE 0401.

Kitchenham, B. A. 2007. Guidelines for performing

Experimental�Studies�in�Software�Inspection�Process�-�A�Systematic�Mapping

75

Systematic Literature Reviews in Software. Software
Engineering Group, Keele Univ., Keele, Univ.
Durham, Durham, Tech. Rep. EBSE-2007-01.

Lanubile, F.; Mallardo, T.; Calefato, F. 2004. Tool support
for geographically dispersed inspection teams.
Software Process: Improvement and Practice, 8(4),
pp. 217-231.

Miller, J. 1999. Estimating the number of remaining
defects after inspection. Software Testing, Verification
and Reliability. University of Strathclyde, UK.

Murphy, P., Miller, J. 1997. A process for asynchronous
software inspection. In: IEEE International Workshop
on Software Technology and Engineering Practice,
8th, Jul., 1997, London, UK. Los Alamitos: IEEE
Press.

NASA. 1993. Software Formal Inspections Guidebook.
Washington, USA, Aug., 1993. Available at:
<http://www.cs.nott.ac.uk/~cah/G53QAT/fi.pdf>.
Accessed: 07/Feb/2013.

Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria,
W., Kennedy, G., Tharyan, P., Colford Jr., J. M. 2004.
Clinical Research Methods - Systematic reviews and
meta-analyses: An illustrated, step-by-step guide. The
National Medical Journal of India.

Perpich, J.; Perry, D.; Porter, A.; Votta, L.; Wade, M.
1997. Anywhere, Anytime Code Inspections: Using
the Web to Remove Inspection Bottlenecks in Large-
Scale Software Development. In: International
Conference on Software Engineering, Boston, USA,
May, 1997. Los Alamitos: IEEE Computer Society.

Perry, D.; Porter, A.; Wade, M.; Votta, L.; Perpich, J.
2002. Reducing inspection interval in large-scale
software development. IEEE Transaction Software
Engineering. 28(7). pp. 695--705.

Petersen, K. et al. 2008. Systematic Mapping Studies in
Software Engineering, In: Proc. Inter. Conf. on
Evaluation and Assessment in Software Engineering,
Bari, Italy.

Petticrew, M. and Roberts, H. 2006. Systematic Reviews
in the Social Sciences - a practical guide. Blackwell
Publishing, Malden.

Porter, A., Votta, L., Basili, V. 1995. Comparing
Detection Methods for Software Requirements
Inspections: A Replicated Experiment. IEEE
Transactions on Software Engineering, 21(6), pp. 563-
575.

Porter, A., Siy, H., Mockus, A., Votta, L. 1998.
Understanding the Sources of Variation in Software
Inspections. ACM Transactions on Software
Engineering and Methodology, 7(1), pp. 41-79.

Porto, D., Mendonca, M., Fabbri, S. 2009. The use of
reading technique and visualization for program
understanding. In: International Conference on
Software Engineering and Knowledge Engineering,
21st. Boston, USA, May, 2009. New York: ACM
Press.

Runeson, P., Wohlin, C. 1998. An Experimental
Evaluation of an Experience-Based Capture-Recapture
Method in Software Code Inspections. Empirical
Software Engineering. 3(4), pp.381-406.

Sauer, C. Jeffery, D.; Land, L.; Yetton, P. 2000. The
effecticveness of software development technical
review: a behaviorally motivated program of research.
IEEE Transactions on Software Engineering, 1(26),
pp. 1--14.

Schneider, M; Martin, J.; Tsai. 1992. An experimental
study of fault detection in user requirements
documents. ACM Transactions on Software
Engineering and Methodology, 1(2). pp. 188-- 204.

Thelin, T. 2003. Empirical Evaluations of Usage-Based
Reading and Fault Content Estimation for Software
Inspections. Empirical Software Engineering, 8(3).

Thelin. T. 2004. Team-Based Fault Content Estimation in
the Software Inspection Process. In International
Conference on Software Engineering, 26th ICSE, St
Louis, USA, May, 2004. Washington: IEEE
Computer.

Tyran, C. K., George, J. F. 2002. Improving software
inspections with group process support.
Communications of the ACM. 45(9), pp. 87-92.

Torner, T,; Ivarsson, M.; Pettersson, F.; Öhman, P. 2006.
Defects in automotive use cases. In: ACM/IEEE
International Symposium on Empirical Software
Engineering, Redondo Beach, USA, Aug., 2006. New
York: ACM Press.

Travassos, G. H., Gurov, D., Amaral, E. 2002. Introdução
à Engenharia de Software Experimental. UFRJ. Rio
de Janeiro, Brazil. 2002. (Technical Report 590/02).

Vitharana, P., Ramamurthy, K. 2003. Computer-mediated
group support, anonymity, and the software inspection
process: An empirical investigation. IEEE
Transactions on Software Engineering. 29(2). pp. 167-
180.

Walia, G.; Carver, J. 2008. Evaluation of capture-
recapture models for estimating the abundance of
naturally-occurring defects. In: ACM-IEEE
International Symposium on Empirical software
Engineering and Measurement, 2nd, Kaiserslautern,
Germany, Oct., 2008. New York: ACM Press.

Wieringa,R.; Maiden, N.; Mead, N.; Rolland, C. 2005.
Requirements engineering paper classification and
evaluation criteria: a proposal and a discussion.
Requirements Engineering. 11(1), pp.102-107.

Winkler, D.; Biffl, S.; Thurnher, B. 2005. Investigating the
impact of active guidance on design inspection. In;
International Conference on Product Focused Software
Process Improvement, Oulu, Finland, Jun., 2005
Berlin: Springer-Verlag.

Wojcicki, M.; Strooper, P. 2006. Maximising the
information gained from an experimental analysis of
code inspection and static analysis for concurrent java
components. In: In: ACM/IEEE International
Symposium on Empirical Software Engineering,
Redondo Beach, USA, Aug., 2006. New York: ACM
Press.

Zamboni, A. B.; Thommazo, A. D.; Hernandes, E. C. M.;
Fabbri, S. C. P. F. StArt Uma Ferramenta
Computacional de Apoio à Revisão Sistemática. In:
Brazilian Conference on Software: Theory and
Practice - Tools session. UFBA.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

76

