
From Relational Databases to Ontology-Based Databases

Hamaz Kamal1 and Benchikha Fouzia1,2
1LIRE Laboratory, University Mentouri of Constantine 2, Constantine, Algeria
2Computer Science Department, University of 20, Aout 1955, Skikda, Algeria

Keywords: Relational Databases, Reverse Engineering, Semantic Discovery, Ontology-Based Databases.

Abstract: Nowadays, the volume of data used in an information system grows rapidly. Additionally, enterprise
information systems are more open to distributed environments and platforms. Thus, the need for
interoperability between the different underlying data sources increases considerably. Therefore, data
storage should consider storing data as well as the semantic of it in a single database. To overcome this
problem, Ontology-Based Databases seem to be a good choice to replace legacy databases. In this sense,
this paper proposes a reverse engineering approach which transforms a relational database to an ontology.
The extracted ontology is enriched with more semantics by mean of external domain ontology. Finally the
ontology and data are stored in one of the existing specific architectures for Ontology-Based Databases.

1 INTRODUCTION

The success of enterprises clearly depends on how
services are being improved and upgraded with time.
From this perspective many enterprises are faced
with the problem of having to optimize their
information systems. This would lead to high quality
services and better interactions. For every
information system, databases play an important role
for data storage, retrieval and manipulation.
Therefore, the development of databases leads also
to the development of any enterprise information
system. Despite the fact that the relational model is
the most used model for data storage, other database
models have appeared. In particular, XML and
object-oriented databases have appeared with the
aim to give additional capabilities, which doesn’t
exist in relational databases. More specifically, the
semantic representation of the stored data is the most
required capability. This capability is essential
especially for enterprises that deal with
heterogeneous environments, in which it is needed
to handle interoperability between different
underlying data sources.

In order to maintain semantics of the stored data,
the use of a conceptual model within a database is
seen to be necessary. Many conceptual models give
the ability to represent semantics of any given
domain. As an example, UML model or ontologies
are able to represent semantics of any domain.

Nowadays the use of ontologies increases in many
fields. Ontologies provide a rigorous and a formal
manner for the formulation of conceptual schemes.
Therefore works to combine ontologies and
databases have emerged (Pierra, 2005); (Alexaki,
2001); (Broekstra, 2002). Once the ontology is
stored with data in a single database, it is possible to
retrieve the definition or the meaning of the
requested elements. Hence providing semantics of
the stored data is considered. Such databases are
called Ontology-Based Databases (OBDB).

In this paper we propose a reverse engineering
approach that transforms a relational database into
an Ontology-Based Database. The literature shows
how a reverse engineering process could provide
abundant benefits in discovering semantics in legacy
databases (Hainaut, 2002). Therefore, in this paper
we propose a set of rules to extract an ontology from
a relational database. The resulted ontology is
enriched with more semantics by mean of external
domain ontology. In the last step the ontology and
data are stored in an OBDB architecture. Here
OntoDB (Dehainsala, 2007) is the architecture that
is being used for storage. The motivation behind
choosing OntoDB is shown in section five.

The rest of the paper is organized as following:
section two and three talk about database
development and reverse engineering respectively.
In section four our proposed approach for reverse
engineering relational databases to ontologies is

289Kamal H. and Fouzia B..
From Relational Databases to Ontology-Based Databases.
DOI: 10.5220/0004454802890297
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 289-297
ISBN: 978-989-8565-59-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

detailed. Section five gives some aspects of the
OntoDB architecture. A case study is conducted in
section six followed by conclusion and future work.

2 DATABASE DEVELOPMENT

The development of database models and DBMS
had been always an interesting area of research. The
progress of information systems regards directly and
indirectly the progress of databases. Researchers
have employed different models and techniques to
improve databases. In the last years, a significant
attention is dedicated to reuse existing information
resources, and provide access to them at the
semantic level. In the following we define two of the
major database models that were for big influence in
database development.

2.1 Object-oriented Databases

Object-oriented databases are databases that store
data as objects. Also, objects can be interpreted by
methods defined in their related classes.
Additionally, interesting relationships between
objects such as inheritance are preserved. However,
object-oriented database systems are closely
dependent to a specific language such as C++. They
have been seen for a while as a rival to replace
relational databases (Ramanathan, 1997). Though
the relational model has continued being broadly
used, due of its maturity acquired over the years. In
the other side, the inconveniences of the object-
oriented model (lack of standard, complex
databases…) have long persisted. Meanwhile,
ontologies appeared and didn’t stop to be
increasingly interesting.

2.2 Ontology-Based Databases

2.2.1 Ontologies

An ontology is defined as a specification of a
conceptualization (Thomas 1993). Ontologies define
hierarchies based on structured vocabularies,
grouping together concepts/classes and their
relationships and instances of classes.

2.2.2 Advantages of Ontologies

Ontologies provide many advantages in comparison
with the relational and object models. They provide
rigorous formulation of the conceptual schemas.
They make it possible for systems to use data

semantics. And other advantages as inferences and
use of online vocabularies like WordNet. As a
consequence, many works on using ontologies
within databases have started to appear (Pierra,
2004); (Broekstra, 2002) assuming that using
ontologies will give born to more semantically
efficient databases.

2.2.3 Approaches for Ontology Storage

The concept of OBDB is widely defined and
explained in (Pierra, 2005). Such databases use
ontologies as one of the database layers. They store
in a same database data and semantics that define
data by the mean of an ontology.

There exist different approaches with different
ways to store ontologies.
 Vertical Representation Approach: In this

approach the storage is simple where classes and
relationships/properties are stored as triples:
‘Subject, Predicate, Object’. Jena (Wilkinson,
2003) is an example of such an approach.

 Specific Representation Approach: In this
approach, the storage is different from an
implementation to another. However the most
general strategy stores separately the ontology
and data, where each data should have a
reference to its conceptual element in the
ontology. IBM SOR (Jing, 2007) follows this
approach for storing ontology and data. There
exist other approaches that add a new part called
‘Meta-Schema’ as with the OntoDB architecture
(Dehainsala, 2007) (See Figure1).

Different languages for exploiting and querying
OBDB exist as SPARQL (Seaborne,), OntoQL
(Jean, 2006), etc.

Figure1: Ontology-Based Database architecture.

The advantage of OBDB approaches is the fact
that it is possible to query either the stored data, the
ontology that defines the data or both. According to
the diverse advantages of such approaches and of
ontologies in general, works on relational database
reverse engineering to ontologies have appeared. In
the following we define the reverse engineering
process and its early and late targeted models.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

290

3 RELATIONAL DATABASE
REVERSE ENGINEERING

The reverse engineering process is a process that
analyses a given model or a system in order to
discover information concerning its components and
their relationships. Therefore it is possible to
discover semantics, especially for legacy/relational
databases. Also the main motivation behind applying
a reverse engineering process over legacy databases
is that these last contain an important mass of data,
as well as useful information to reuse. Many models
were defined to be the result of this process. First
ones were toward the conceptual schema, as the
work in (Johansson) which extracts a conceptual
schema from a relational database. Some other
works considered extracting semantics under an
object oriented model as the work in (Ramanathan,
1997). Hence, this would provide better semantics
under an object-based representation of the relevant
entities. Lately ontologies are being the most used
model to be the source-to-target of relational
database reverse engineering. The related work can
be classified as follows.

3.1 Exploiting Relational Schemes

Although some works on relational database reverse
engineering consider using external sources to end
up with a better ontology, most of the existing
approaches exploit only the relational
schema/database. As an example the work in
(Astrova, 2004) proposes an approach that analyses
the SQL-DDL code of the database and the
correlations between keys, attributes and data in
order to discover semantics. The process divides the
relational schemes into base relations, composite
relations and dependant relations. An extension of
this work has succeeded in (Astrova, 2006) and
represents the resulted ontology in OWL. It takes
also into account the representation with OWL of
some database constraints as the constraint CHECK.
Another recent work in (Zdenka, 2010) focuses on
conversion of constructs from relational database to
OWL constructs, in addition of transferring the
relational data to ontology instances by application
of their rules.

3.2 Exploiting an External Source

In this category of approaches an ontology is
extracted from a relational schema/database and then
enriched by help of an external source. Some

approaches exploit the semantics that could be found
in the related HTML pages/forms used to interact
with the database. Such as the work in (Astrova,
2005) and (Benslimane, 2008). This last uses HTML
forms to analyze them in order to discover more
semantics. The discovered new entities and
organized in a way that permits to discover relevant
constraints and dependencies between data. Another
work in (Kashyap, 1999) exploits user queries to add
additional semantics to the ontology extracted from
the database. This last shows that user queries can
indeed reveal semantics which could be translated to
new classes or properties.

In the next section we present our approach for
ontology extraction from a relational database and
its enrichment.

4 THE PROPOSED APPROACH

The proposed approach supposes that the relational
database is in the 3NF, and do not use surrogate
keys. Three main steps constitute our approach that
fulfils respectively the following tasks:
 Ontology extraction from a relational database

by application of a set of rules.
 Enrichment of the extracted ontology by help of

external domain ontology.
 Ontology and data storage in OntoDB.

4.1 Preliminaries

 Basic Relational Concepts: A relational schema
can be seen as a finite set of attributes that we
denote ∂. Attributes are denoted using the capital
letters of the alphabet from beginning A, B, C, A1
…, a set of attributes is denoted by the last
capital letters of the alphabet X, Y, Z. We use R
to represent a relation schema, where R is a
subset of ∂ and (R1 ∪ R2 ∪…Ri) = ∂. If we assume
that R(X) represents a relation schema with n
attributes, we write Xi=A1, A2, An. Also each
attribute has a set of values D. Tuples are
denoted by t such that for a given relation R (A1,
A2, … An) we have ti (Rሻ	⊂	Di(A1),

X Di(A2)
X …

X Di(An), where ti of R	 represents values of a
specific tuple.

 Keys and Dependencies: A primary key PK is a
candidate key CK chosen to identify attributes of
R, we write PK(R) to denote a PK of a relation,
and PK(X) to denote X as the attributes used for
the PK. A foreign Key FK in a relation R1 is a PK
in another relation R2 (sometimes in the same

From�Relational�Databases�to�Ontology-Based�Databases

291

relation), where values of the FK reference
values of the PK. We use S to denote the set of
all attributes that represent foreign keys in ∂.
Inclusion dependencies IncD exist between two
relation schemes if the following form holds:
R1(Y)⊆ R2ሺZ	 ሻ	 |	 Y = Z (same sequence of
attributes), IncD takes the following form R1 (Y)
→ R2 (Y).

 Ontologies: We describe an ontology by a 4-
tuple O=(CC, AC, RC, HC), Where:

• CC is a finite set of classes (C1, C2, C3 ... Cn).

• AC is a collection that represents the sets of
attributes belonging to the classes. A(c) denote
attributes that belong to one class.
• RC is a finite set of roles/relationships which
exist between classes. C1R	 C2 denotes a role
between two concepts | C1 (Domain), C2 (Range).
• HC represents the hierarchy or taxonomy
between concepts. We write HC C1 ⊆ C2 to
denote that C1 is the subclass of C2.
 In the following, our transformation process
based on rules is presented and explained.

4.2 Transformation Process

The transformation process is composed of a set of
rules to create ontological classes and hierarchies
between classes. Then it creates roles/relationships
between classes and finally the attributes of classes.

Rule#1:

For every: PK(R) ⋂ S = ∅ (When such a case
holds we call R an atomic relation)
Do: Create C

Rule#2:
For every: Two atomic relations R1, R2 with:
PK(R1) ⊆ PK{/CK} (R2)
Do: Create HC C1 ⊆ C2 | C1, C2 correspond
respectively to R1, R2

Rule#3:
For every: Atomic relation R1 with:
FK(R1) ⊆ PK(R1)
Do: Create C | C Class created for attribute FK
 Create HC C ⊆ C1 | C1 Class created for R1

Rule#4:
For every: Two atomic relations R1, R2 with:

IncD: R1 (Y) → R2 (Z) exists such as:
FK(Y) ⊆ PK(Z)

Do: Create C1RC2 | C1 (domain), C2 (range)

Rule#5:

For every: PK(R1) such tha PK(W,Y) represent

 the attributes used for the PK, with:
IncD: R1 (Y) → R2 (Y)
PK(R1) ⋂ PK(R2) ൌ Y

Do: Create C2RC1 | C2 (domain), C1 (range)

 Rule#6:
For every: R (Z) where:
Z ∈	S and Z	ൌ	n	number	of	attribute	with n⩾2.
Do: ∀	i,j ⩽ n ∧ i ≠ j ∧	i < j
Create Ci R Cj | Ci (domain), Cj (range)
Create Inverse Role Cj R Ci

The values of i and j represent the relations that are
being referenced by the FK’s of R(Z).

Rule#7:
For every: R (Z,W) such that Z ∈	S.		
If: W⋂	S ൌ	∅
Do: Create C
 Create roles the same way as in Rule#6

Rule#8:
For every: R having X a set of its attributes, such
that foreign keys are not considered.
Do: A(c) = {(X1, X2 .. Xi)}

We studied these rules to cover the different possible
relational forms to capture as much semantics as
possible. After the creation of classes in Rule1
hierarchies between classes are created in rule2.
Rule3 treats reflexive cases when a relation
references itself, thus a new class is interesting to be
created to represent an additional semantic link. In
the other hand, roles are created in Rule4, Rule5 and
Rule6. More specifically Rule 5 treats the case of
weak entities translated to relations, and Rule6 treats
binary and n-ary relationships where we used
variables i, j to treat the different possible cases.
Rule7 is a special case of Rule6, when an additional
attribute(s) exist and not referencing any other
relation. A class is created for this case to not lose
the semantics of the possible additional attributes
(See attribute grade in table 2). And last, Rule8
creates attributes of classes.

Once the ontological model is extracted it will be
enriched under the enrichment process.

4.3 Enrichment Process

The enrichment process is an effective way to add
more semantics to the extracted ontology. More
often the ontology extracted from a relational
database is closer to an object model. However, by
adding more semantics, the ontology will be more
adequate. The enrichment is based on an algorithm
and some additional cases for adding more roles.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

292

Table 1: Algorithm of enrichment.

 Main Function
Description: The main function supposes that we
already have two ontologies (our extracted ontology
RO and the domain ontology DO).
Prior Step. Organize classes of RO from top to down
in the array r1. Organize classes of DO from bottom to
top in the array r2
c1 and c2 represent respectively each class from r1 and
r2
foreach c1 in r1
{ k= Stemming (c1); //receiving the root word in variable k

 r3= WordNet(k); //get possible synonyms in the array r3
 foreach c2 in r2
 foreach q in r3
 {b=StringCompare(q,c2); //b is boolean false by default

 if (b); //if b=true
//once there’s similarities we call these two functions.

DegreeOfSimilarities (c1,c2);
Enrichment(c1,c2);

 }
 }

 Degree of Similarities
Description: Degree of similarities is calculated
between each two classes. With help of the degree
calculations done between classes, an expert can decide
which classes to keep or to deleted
P1= an array that will have all properties of c1;
P2= an array that will have all properties of c2;
x1= max (P1.length,P2.length);
x2= number of similar properties between c1 and c2;
Degree= (x1/x2); // Degree is a float variable
 Enrichment
Description: The enrichment function adds
subclasses/superclasses and their properties once two
classes show similarities. Also, it makes sure not to add
existing classes. Once all enrichment finished roles that
point only to one class will be deleted.
co1Sub= classes subsumed by c1;
co1Sup= the super class of c1;
co2Sub= classes subsumed by c2 (if they exist);
if co1Sup = null //no super classes
// Case 1 {Write in an output file the class c1 with all the
chain of the super classes found in DO, and their properties; }
 foreach s in co1Sub
 for each f in co2Sub
 {

 if ((s && WordNet(s)) are all different of f) // test
to not add classes that already exist
// Case 2 {Write always in the output file the class s with f as
its new subclass with its properties;}
 if (f.subclass = = (any other s in co1 || Wordnet (s)) //
we call d any s that satisfies this condition
// Case 3 ‘Once a class added to c1’ {Write on the same output
file that d is now subsumed by f and not anymore by c1 (delete
subsumption between (c1, d)); }
 }

4.3.1 Algorithm of Enrichment

This proposed algorithm attempts to add new
classes/properties. We inspired some points for our
algorithm from the work in (Rene, 2010). The main
steps of the algorithm are shown in table 1.

The fact that domain ontologies exist lately for a
very large number of fields motivates their use in
our algorithm of enrichment. In addition they could
cover interesting semantic aspects. In this sense,
they could bring many benefits to an extracted
ontology from a relational database of the same
domain of application.

4.3.2 Adding More Roles

Additional roles can be discovered between classes
if the following conditions hold: Relations related to
the classes are atomic relations. One or more of
these atomic relations contain (⩾2) foreign keys. In
other words let’s suppose we have three atomic
relation schemes R1, R2 and R3. And R1 has two
foreign keys R1 (X, FK1, FK2) such as:

FK1 (R1)⊆PK (R2) and FK2 (R1)⊆PK (R3).

If such a condition holds it is possible to derive a
new role between R2 and R3. However, the nature of
the role can be only decided by an expert that knows
the semantics of the database.

5 PROCESS OF STORAGE

The last step in our approach consists on storing the
enriched ontology and data which existed in the
relational database. As we mentioned we use the
OntoDB architecture for storage. This last offers
many advantages: it stores ontology and data
separately, it has a meta-schema part, which is
flexible and stores different ontology models. And
facilitates updates, since the ontology is stored as an
instance of the meta-schema, in addition, it enables
to store semantic definitions in other languages.

Figure 2: Meta schema part.

OntoDB architecture covers similarities with the

From�Relational�Databases�to�Ontology-Based�Databases

293

relational model as when using foreign keys to link
different parts together. It was implemented under a
PostgreSQL environment. OntoDB has a query
language called OntoQL, which is very close to
SQL. According to these features, an enterprise that
uses a relational database would prefer to have a
better storage environment, but yet not a totally
different from the one existing. Thus we opted for
OntoDB because it covers most today’s desired
features in a database.

The creation of a database based on OntoDB
architecture is carried out using OntoQL statements
for ontology and data definition. Also it is possible
to alter and update the database once it is created.

The general syntax for ontology definition is
shown as follows. More details of OntoQL can be
found in (Jean (thesis), 2006).

Once the ontology is defined we proceed by the
migration of data from the relational database. These
data will be stored in the content part of OntoDB. To
populate the content part, data can be directly
transferred from each table/relation in the relational
database to its related table in OntoDB. Obviously,
each class in the ontological part of OntoDB can
have a table for storing its instances in the content
part. Hence, if a relation R in ∂ has a created class C
in OntoDB and C has been assigned a table T in the
content part. Data from R will be transferred to T
with the same sequence of tuples. This applies only
for attributes that are common for both R and C.
Let’s suppose that the following form represents a
specific tuple in the relation Person:

ti (Personሻ	⊂	Di(Id-Person1),
X Di(name1)

X Di(address1)

In the content part we use the same values of tuple ti
for populating a tuple in the extent of Person’s class,
if we suppose that it has the same defined attributes.
Tuples in the relation Person will be mapped in the
same order to the table Person of the content part. In
the other hand, the link between the ontology part
and content part is kept (Jean, 2006), because every
class is related to the table(s) that define its data.
More of the storage details are represented in the
next section of the case study.

6 CASE STUDY

In this section an example of simple relational
database is given to illustrate the application of our
approach (See table 2). After this, we present details
of the storage process with OntoQL clauses. By the
same way, we show the advantages of OntoDB
when querying data semantics. We write
attribute{number} to distinguish foreign keys, primary
keys are underlined.

Table 2: Relational schema.

1) Person (Id-Person, name, address, marriedwith{1})
2) Professor(Id-Prof{1}, salary, CourseID{6})
3) Student(Id-Stud{1}, year, DepId{4})
4)Department(DepId, name, devided-In{9}, located-
In{8})
5) Laboratories(IdLab, interests, budget, DepId{4})
6) Course(CourseId, title, section)
7) CourseTime(CT, CourseId{6}, starttime)
8) City(CityId, name, population)
9) Division(NumDiv, description)
10) Enrolled(Id-Stud{3}, CourseId{6}, grade)
11) Teaches(Id-Prof{2}, Id-Stud{3})

Since the enrichment is based on a domain
ontology, we use the one found in (Domain-
Ontology), a part of it is shown in figure 3.

Figure 3: A part of the domain ontology.

The result of the application of our
transformation and enrichment processes is
represented in figure 4. Each class labelled with
either C or R or both means respectively that it was
enriched with more class(es) or role(s).

For the enriched classes they were benefited with
more semantics. The class project was added
‘SoftwareProject’ and ‘ResearchProject’ as new
subclasses. The class Person was added ‘Employee’
and the class Student ‘Graduate’ and ‘Undergraduate’.
In the other hand, roles have been added to
Department, Student and Person. Finally a new role
(Laboratories ‘located-in’ Division) is added with
the case of adding more roles of section 4.3.2. Next
step consists on ontology and data storage.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

294

Figure 4: Result after applying our approach.

6.1 OntoQL Statements

In order to execute OntoQL statements tools as
OntoQL-Plus and PLIB-Editor exist. The clause
CREATE CLASS is used to create a new class. The
one called DESCRIPTION is used to describe the
class and provide it with more semantics. The
PROPERTIES clause represents attributes of the
class. In the following a part of OntoQL statements
is shown for ontology definition in OntoDB.

CREATE Class Person
DESCRIPTOR(
#name[fr]='une personne',
#definition='human being‘)
PROPERTIES (Id-Person INT, name String,
address String)

CREATE Class Professor UNDER Person
DESCRIPTOR(
#name[fr]='Professeur',
#definition='Teacher or supervisor‘)
PROPERTIES (Id-Prof INT, Salary Float)

CREATE Class Student UNDER Person
DESCRIPTOR(
#name[fr]='Etudiant',
#definition='Person studying‘)
PROPERTIES (Id-Stud INT, year DATE)

CREATE Class Department
DESCRIPTOR(
#name[fr]='Département',
#definition=’Academic buildings‘)
PROPERTIES (DepId INT, name String)

We proceed the same way with the rest of classes. In
order to store roles we extend the meta-schema part,
the entity Role is created under the existing entity
‘Property’ in the meta-schema.

CREATE #Entity Role UNDER #Property
(#Rolename String,
 #InverseRole String,
 #Domain REF(#Class),
)

The classes related to the roles will be linked to
them with internal identifiers. For the content part an
extent is created for each class issued of the
transformation process.

CREATE EXTENT OF Person (Id-Person, name,
address, marriedwith);

Such a clause creates a table in the content part.
The clause used to insert values is:

INSERT INTO (attributes) VALUE (values);

It is possible also to create views as an extent of
other tables of the content part. For example, we
represented ‘MarriedWith’ as a subclass of Person.
We could then create a view for it based on the
attributes of person and its data.

CREATE VIEW OF MarriedWith AS
(SELECT Id-Person, name, Marriedwith)
FROM Person
WHERE (Marriedwith IS NOT NULL)

This clause creates a new table with the attributes of
the selection and will eventually represent only
married persons.

6.2 Querying OntoDB

The OntoQL query language provides different
abilities that could be used to exploit the semantics
of the stored ontology and data. Here are some
examples:

The first query retrieves the code of classes
which define a property called ‘located-in’.

SELECT c.#code
FROM c in #class, p in #properties
WHERE p.#name = ‘located-in’

It is possible to retrieve the names of classes with
the provided other language.
SELECT #name[FR] FROM #class

The following query returns classes that have
‘Etudiant’ as their French name.
SELECT c.#oid
FROM c in #Class
WHERE c.#name[fr] like ‘Etudiant’

We could query also on roles
SELECT p.#role, p.#inverserole FROM
#PROPERTY AS p WHERE p.#oid=101

From�Relational�Databases�to�Ontology-Based�Databases

295

Furthermore, we could select from ranges of
super/sub classes and also properties by using:
#superclasses #directsuperclasses #subclasses
#scopeProperties #properties #usedproperties. All
these are very useful to exploit better the ontological
semantics stored in OntoDB. This sub-section
highlighted only few of OntoQL abilities, which are
more interesting (Jean (thesis), 2006). We show on a
future work how we could retrieve more from
OntoQL abilities, and from using OntoDB for
ontology and data storage.

7 CONCLUSIONS

In this paper, we presented a reverse engineering
approach that aims to migrate relational databases to
OBDB. We proposed first a set of transformation
rules to extract an ontology from a relational
database. And to optimize the extracted ontology we
proposed an enrichment process. This last uses
external domain ontology and attempts to add more
classes or properties to make the ontology
semantically more complete. Then we stored the
enriched ontology and data in OntoDB. In a future
work we will focus on running more experiments,
tests and evaluations on larger databases, and prove
how OBDB could bring many benefits for an
enterprise. Equally important, we prove the
efficiency of our transformation process by testing
several transformation criteria. Such criteria are
useful to prove that there’s no information loss in the
transformation process.

REFERENCES

Alexaki, S. Christophides, V. Karvounarakis, G.
Plexousakis, D. Tolle, K., 2001. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In
SemWeb. Hong Kong, pp. 1-13.

Astrova, I., 2004. Reverse Engineering of Relational
Databases to Ontologies. In Proceedings of the 1st
European Semantic Web Symposium (ESWS),
Heraklion, Greece, pp 327-341.

Astrova, I., Kalja, A., 2006. Mapping of SQL Relational
Schemata to OWL Ontologies. In Proceedings of the
6th WSEAS International Conference on Applied
Informatics and Communications, Elounda, Greece.
pp375-380.

Astrova, I., Stantic, B., 2005. An HTML Forms Driven
Approach to Reverse Engineering of Relational
Databases to Ontologies. In Proceedings of the 23rd
IASTED International Conference on Databases and
Applications (DBA), Innsbruck, Austria.pp 246 - 251.

Benslimane, S., Malki, M., Rahmouni, M., Rahmoun, A.,
2008. Towards Ontology Extraction from Data-
IntensiveWeb Sites: An HTML Forms-Based Reverse
Engineering Approach. The International Arab
Journal of Information Technology. pp 34-44.

Broekstra, J., Kampman, A., Van Harmelen, F., 2002.
Sesame : A generic architecture for storing and
querying rdf and rdf schema. Proceedings of the First
Internation Semantic WebConference, number 2342 in
Lecture Notes in Computer Science. pp 54–68.

Dehainsala, H., Pierra, G., Bellatreche, L., 2007. Ontodb:
An ontology-based database for data intensive
applications. In DASFAA. pp 497-508.

Domain-Ontology http://ontoware.org/swrc/swrc_v0.3.owl
Hainaut, J., 2002. Introduction to database reverse

engineering. Book, 160 pages.
Thomas R, Gruber., 1993. Formal ontology in conceptual

analysis and knowledge representation. Chapter:
“Towards principles for the design of ontologies used
for knowledge sharing”. Kluwer Academic Publishers.

Jean,. S., Aït Ameur, Y., Pierra, G., 2006. Querying
ontology based databases the ontoql proposal. In
Proceedings of the 18th International Conference on
Software Engineering & Knowledge Engineering, pp
166—171.

Jean, S (thesis).2006., OntoQL, un langage d’exploitation
des bases de données à base ontologique. Mémoire de
doctorat.

Jing, L., Li, M.,Lei, Z., Jean-Sébastien, B., Chen, W., Yue,
P., Yong, Y., 2007. SOR: A Practical System for
Ontology Storage, Reasoning. In VLDB 2007, 33rd
Very Large Data Bases Conference ,pp 1402-1405.

Johannesson, P., 1994. A Method for Transforming
Relational Schemas into Conceptual Schemas. In
Proceedings of the Tenth International Conference on
Data Engineering IEEE Computer Society
Washington, DC, USA, pp 190-201.

Kashyap, V., 1999. Design and creation of ontologies for
environmental information retrieval. In Proceedings of
the 12th Workshop on Knowledge Acquisition,
Modeling and Management. Alberta, Canada. pp. 3–
21.

Pierra, G. Dehainsala, H. Aït-Ameur, Y. Bellatreche, L.
2005. Base de données à base ontologique: principes
et mise en œuvre. Ingénierie des Systèmes
d’Information, 10(2):91-115.

Pierra, G., Dehainsala, H. Aït-Ameur, Y., Bellatreche, L.
Chochon, J and Mimoune, M. (2004). Base de
Données à Base Ontologique: le modèle OntoDB.
Proceedings of Base de Données Avancées 20èmes
Journées (BDA’04), 263–286.

Ramanathan, S., Hodges, J., 1997. Extraction of object-
oriented structures from existing relational databases.
SIGMOD Jounral Vol 26 number 1, pp 59-64.

Rene Robin, C.R., 2010. A Novel Algorithm for Fully
Automated Ontology Merging Using Hybrid Strategy.
European Journal of Scientific Research. Vol.47 No.1,
PP. 074-081.

Seaborne, A., Prud’hommeaux, E. Sparql query language
for rdf. http: // www. w3. org/ TR/ rdf-sparql-query/

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

296

Wilkinson, K., Sayers C., Kuno, H., Reynolds, D. 2003.
Efficient RDF storage and Retrtieval in Jena2.
Proceedings of the 1st International Workshop on
Semantic Web Database (SWDB’03). pp. 131–150.

Zdenka, T., 2010. Relational Database as a Source of
Ontology Creation. Proc, of the International
Multiconference on Computer Science and
Information Technology. 135.139.

From�Relational�Databases�to�Ontology-Based�Databases

297

