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Abstract: Dealing with extra-large models in software modeling is getting more and more common. In these cases, 
both memory and computational capacity of a single computer might be insufficient. A solution to 
overcome this barrier is to use cloud computing. However, existing algorithms have to be 
extended/modified to support cloud computing and use the advantages of its architecture efficiently. We 
focus on creating an algorithm to partition graphs representing models. Based on the algorithm, models 
should be able to be mapped onto several computational instances and processed in a distributed fashion 
efficiently. Previously, we have presented an algorithm that was based on the heuristic Kernighan-Lin 
partitioning method with two extensions: no limit on the number of partitions and not building on the 
knowledge of the whole model at beginning (nodes are received and processed one by one). However, when 
applying social network-based case studies, we have identified weaknesses of the algorithm. This paper 
elaborates an enhanced algorithm that produces better results for extra-large models. Detailed measurements 
are also presented in order to show the improvement.  

1 INTRODUCTION 

Nowadays, software modeling has become a usual 
pattern in software development. We often meet 
extra-large models from different segments of the 
industry. For example refactoring a huge, industrial 
source code model, processing bio-chemical systems 
and examination of DNA related processes requires 
huge storage and computational resources, or 
processing complex embedded systems to locate 
errors. Similarly, working with social network 
models is also not an easy. These networks tend to 
contain millions and sometime even more than one 
billion users (Facebook, 2012). Models of this size 
may require TBs of space. Supporting these models 
and offer an efficient solution to process them is a 
challenging task. We are not always able to use the 
usual, comfortable technique of loading the whole 
model into the memory of a computer. One solution 
can be to partition our model and to use a network of 
computers to store and process the model parts. It is 
not easy to achieve this though. 

Our modeling approach focuses on domain-
specific models (Fowler, 2010), where models are 
often processed and transformed into another models 

or artifacts. For example, you can specify a pattern, 
when suggesting groups based on your interest, 
friends and previous posts. Finding an appropriate 
suggestion and updating the model can be applied by 
model transformation. However, current model 
transformation approaches does not support or at 
least not optimized for distributed environments. 
Most of the approaches use models stored 
completely in the memory. The reason for this is that 
processing models directly from hard drives is 3-4 
orders of magnitude slower. However, as mentioned 
before, some of the domains produce extra-large 
models, which do not fit into the memory of one 
computer. Partitioning the models and applying 
transformation on these partitions is a viable solution. 
We are working to make this mid-term goal possible. 

By dividing models into partitions, we are not 
limited by architectural limits anymore; we can 
handle models of arbitrary size (supposing that we 
have as many computers as needed in our network). 
The emerging world of could computing is a natural 
selection. We can easily extend our computational 
capacity whenever needed and we do not need to 
invest into personal super-computers. Instead, we 
only pay for the resources we really use. The most 
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widespread cloud computing platforms include 
Microsoft Windows Azure (Microsoft, 2012), 
Amazon AWS (Amazon, 2012) and Google App 
Engine (Google, 2012). Although the cloud 
computing architecture is a great aid in realizing our 
vision on partitioned modeling environment, it does 
not solve all the difficulties at once: The efficiency 
of using partitioned models is heavily affected by 
the communication overhead between the computers 
storing the partitions. Therefore, our goal is to 
minimize the communication between the computers.  

In our approach, models are represented by 
graphs. Partitioning the model means partitioning 
this graph.  We would like to search and transform 
the models, thus we need to find graph patterns and 
replace them. In order to minimize communication 
between computer instances, we have to minimize 
the number of navigation steps between the 
partitions. Therefore, we need to minimize the 
weight of edges that connect nodes in different 
partitions. More precisely, we have a mid-term and a 
short-term goal. The mid-term goal is to support 
minimize inter-partition edges (their weight) for all 
kinds of models, while the short-term goal is to be 
optimal in case of social network models. First we 
have created a general algorithm and then started to 
optimize it to social networks. This paper presents 
both the original algorithm and its optimization. The 
algorithm does not depend on a concrete cloud 
computing environment; it can fit each of them. 
Note that although the motivation behind the 
enhancements is based on the field of social 
networks, they improve efficiency in general as well.  

The rest of the paper is organized as follows: in 
Section 2 the background work is introduced. In 
Section 3 the algorithm is presented in detail. 
Section 4 evaluates the results of the algorithm and 
reveals the advantages of the improved algorithm. 
Finally, some conclusions are drawn together with a 
brief account of the future directions in Section 5. 

2 BACKGROUND 

The problem of graph partitioning has been present 
for over 40 year. Although the problem is NP-
complete, several fast and heuristic algorithms exist.  

B.W. Kernighan and S.Lin have worked out an 
efficient heuristic procedure (the KL algorithm) for 
partitioning graphs. In their paper (Kernighan and 
Lin, 1970) the KL algorithm is discussed in detail. 
The basic idea of the work is to count the difference 
between the external and internal sum of edge 
weight for each ܽ ∈  is a subset of ܣ nodes, where ܣ

nodes. Their work grounds the base for many graph 
partitioning algorithms from the automotive industry 
to medicine. 

To improve the efficiency of the KL algorithm 
C.M. Fidducia and R.M. Mattheyses introduce a new 
data structure in (Fiduccia, 1982). They used the KL 
algorithm to improve Computer Network Partitions. 
Bucket list structure has been used to store and 
maintain the gain ܩ௔ for each node.  

These algorithms are not applicable directly in 
our scenario, since the number of partitions is 
predefined, and do not map on streaming input 
model. 

Konrad Voigt has provided a brief conclusion for 
each available algorithm for a really similar problem 
to the one introduced in this paper. His dissertation 
(Voigt, 2011) provides an algorithm for partitioning 
planar graphs. In his work, he states that he could 
not use the spectral bisection because it does not 
support explicitly the variable number of clusters. 

George Karypis and Vipin Kumar introduced the 
Metis framework (Karypis, 1998). Their paper 
divides graph partitioning into three phases: 
coarsening, partitioning and uncoarsening. The 
phases are explained later in this paper as well. For 
each phase, they describe different type of 
algorithms that can be used. The Random, HEM, 
LEM and HCM algorithms for coarsening; bisection, 
KL, GGP, GGGP for partitioning; and KL 
refinement, Boundary KL refinement for 
uncoarsening. Their work also concludes the 
efficiency of these methods. 

Burkhard Monien (Monien, 1999) and his team 
elaborate the latest type of coarsening algorithms 
and their efficiency on different kind of sample 
graphs.  

Finally, in 2011 Xin Sui, Donald Nguyen, Martin 
Burtscher, and Keshav Pingali presented parallel 
graph partitioning methods for shared memory – 
multicore systems (Sui et al., 2011). 

To run model transformation on the model of 
social networks we have done basic research in 
Social Network Sites (SNS). Several papers 
conclude different aspects of Social Networks, from 
the definition to methods and applications. The 
paper (Boyd, 2006) of Danah M. Boyd and Nicole B. 
Ellison conducted a short history, features and future 
of social networks. The work of Nathan Eagle, Alex 
Pentland and David Lazer (Nathan Eagle, 2009) 
introduces the different ways to collect data for 
social networks. They use the traditional, 
predominant self-reporting and new automatized 
mobile phone based data collection. Their article 
compares the results and does initial steps to merge 
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these data. Their paper also conducts different social 
networks. 

Graph partitioning in general has a huge 
mathematical background. However, the area of, the 
social networks and cloud environment define 
special constraints, like the communication overhead 
between computational instances or graph structure 
characteristics for social networks. In this paper, we 
present an approach applicable in all these areas. 

3 MODEL PARTITIONING 

Models can easily be transformed into graphs, each 
entity in the model is transformed to a vertex in the 
graph and each relation in the model, is transformed 
into an edge. These graphs may have vertices and 
edges reflecting the types and attributes of model 
items but at the current stage, we ignore this 
information to be able to handle all domains and all 
models the same way. 

Industrial sized models are difficult to handle 
without partitioning them. However, partitioning is 
not easy, since models cannot be decomposed into 
independent components. The main challenge is to 
create partitions with minimal number of edges 
between the partitions. We have created a solution to 
this issue in the form of a fast, heuristic graph 
partitioning algorithm.  

As mentioned earlier, we have a short-term goal 
(partitioning social network model graphs) and a 
mid-term goal (partitioning all kinds of graphs). We 
have created a general algorithm and fine tuned it 
later for social network-like models. In this paper 
firstly we present our original algorithm and then we 
elaborate the enhancements applied on it. 

Because the extraordinary size of the models, our 
algorithms needs to fulfill special constraints: 
Existing graph partitioning approaches (e.g. the KL 
algorithm) usually suppose that the whole graph is 
known, when partitions are created. In our case, this 
presupposition is not fulfilled, since the model may 
not fit into the memory. We have decided to create 
an algorithm that does not build on knowledge of the 
whole model, but can handle receiving model parts 
(nodes) one by one in a stream. This way, the size of 
manageable models is not limited. 

Our partitioning method consists of three phases: 
1. Growing partitions 
2. Separating partition into sub-partitions 
3. Refining partitions 

 

The skeleton of the algorithm is the following: 

 1.NewNode([Node])  
 2.  [partition]= Select partition with 
     the highest sum of edges weight 
     from [Node] 
 3.  add [Node] to [partition] 
 4.  if([partition] has too many Nodes) 
 5.    Separate([partition]) 
 6.  if([Node] is the last) 
 7.    Coarsen([partitions]) 
 8.      for each partition pair 
 9.        KL(partition pair) 
10.    UnCoarsen([partitions]) 

Figure 1: Skeleton of the algorithm. 

3.1 Growing Partitions 

In the first phase (growing partitions), the nodes are 
received from the stream and inserted into a partition 
(Figure 1– Line 2 and 3).  

Selection of the partition to insert the node into is 
not random. To determine the chosen partition for a 
give node ܽ , we compute the sum of weight for 
edges from ܽ to each partition	ܲ: 

௉ሺܽሻݓ ൌ෍ ,ሺܽݓ ܾሻ
∀௕ఢ௉

 (1)

where ݓሺܽ, ܾሻ is the weight between nodes ܽ and ܾ. 
The chosen partition is the one with the maximum 
sum of edge weights maxሼݓ௉	ሽ.  

After the insertion, if the number of nodes in 
partition ܲ is more than a predefined constant value, 
we divide the partition into two sub-partitions. As 
the result, the partitions cannot grow beyond the 
memory of one instance. The details of this 
separation are discussed in the second phase. 

3.2 Separation 

The second phase is called Separation (Figure 2). 
Firstly, two nodes are chosen from the partition. 
These two nodes considered to be the centers of the 
new partitions from now on. The nodes can be 
incident nodes; however the Graph Growing 
Partitioning (GGP) is sensitive to the choice of the 
vertexes from which we start to grow the partitions. 
The basic idea here is to select two nodes with the 
highest weight of edges. Starting from these points, 
we use a modified GGP algorithm (Karypis, 1998). 
We begin to grow regions around the two chosen 
points in a breath-first fashion until all vertices have 
been included (Figure 3). 

1.Separate([partition]) 
2. Choose [node1] and [node2] with the  
   highest Edge weight 
3. Grow regions around [node1] and  
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   [node2] in breath-first fashion to  
   create initial [partition1] and  
   [partition2] 
4. KL([partition1],[partition2]); 
5. Merge([partition1]); 
6. Merge([partition2]); 

Figure 2: Separating the nodes into sub-partitions. 

 
Figure 3: The GGP algorithm. 

When the regions are full sized (all nodes are 
included in one of the partitions), the partitions are 
further refined by a modified KL algorithm.  

In the KL part of the second phase (Figure 4), the 
basic idea is to compute the distance 

௔ܦ ൌ ∀ܾ, ݀	 ෍ ௔௕ݓ
௔∈௉భ
௕∈௉మ

െ	 ෍ ௔ௗݓ
௔∈௉భ
	ௗ∈௉భ

 
(2)

where ܽ, ܾ, ݀  are nodes, ݓ௔௕  is the cost of edge 
between nodes ሺܽ, ܾሻ and ଵܲ, ଶܲ are the partitions of 
the nodes. 

Note that the nodes are not ordered by their D 
value in their partitions. However, we select the two 
unprocessed nodes with the highest D value to 
exchange in both partitions. Ordering the partitions 
may seem to be more optimal, but finding the 
exchangeable nodes are faster than reordering the 
neighbors in each step. 

After exchanging, the D value of the unprocessed 
incident nodes has to be updated. Notice that the size 
of partitions does not change, but the number of 
unprocessed nodes continuously decrease. We 
define the gain in each iteration: ܩ	 ൌ ௔ܦ ൅ ௕ܦ െ

௔௕ݓ  the sum of the ܦ  values for nodes ܽ  and ܾ 
minus the weight of edge(s) between. We repeat this 
step until the value of gain is a positive number. 

  1.KL([partition1], [partition2]) 
 2.  foreach [node] in the partitions 
 3.    compute [D] for [node] 
 4.  do 
 5.    choose unprocessed [node1] and 
       [node2] from partitions where 
       [gain]=[node1].[D]+[node2].[D]- 
       [node1_node2_edge] is highest 
 6.    exchange [node1] and [node2] 
 7.    update [D] values of the 
       incident nodes of [node1] and 
       [node2] 
 8.  while([gain]> 0) 

Figure 4: Modified KL algorithm. 

3.3 Refining Partitions 

In the refining partitions phase (Figure 1 – Line 7 – 
10), the whole model is already processed, and the 
nodes are partitioned. The purpose of the third phase 
is to further refine the existing partitions. The phase 
consists of three steps: coarsening, refinement, 
uncoarsening. In the coarsening step, a series of 
simpler graphs with fewer and fewer vertices are 
created. Graph coarsening can be done with several 
algorithms. Suppose that the graph to be coarsened 
is ܩ଴, in each step of the series we produce a new 
| ௜ whereܩ ௜ାଵ fromܩ ௜ܸ| ൐ 	 | ௜ܸାଵ|. 

 1.Coarsen( [partitions] )  
 2.  for each [partition] 
 3.    do 
 4.      for random order of each [node] 
         in [partition] 
 5.        select a connected unmatched 
           [node1] in [partition] with 
           the highest edge weight 
 6.        merge [node] and [node1] 
 7.    while the sum of nodes in 
       [partition] is below [X] 

Figure 5: HEM coarsening. 

In each iteration, nodes are merged into a multinode. 
Multinodes are nodes, which weight is the sum of 
the original nodes’ weight and the edges are the 
union of the original edges except the edges 
connecting the nodes in the multinode. In the case 
when both nodes have edges to a vertex v, the 
weight of the edge from the multinode to vertex v is 
the sum of the original weights of these edges. 

An edge-cut of the partition in a coarser graph 
will be equal to the edge-cut of the same partition in 
the finer graph. A matching of a graph is a set of 

Partition 2

3

3

3

Partition 1 Partition 2

Partition 1 Partition 2

Partition 1

Graph�Partitioning�Algorithm�for�Social�Network�Model�Transformation�Frameworks

483



edges which does not have any endpoint in common. 
The coarser graph is constructed by finding a 
matching and merging the nodes into multinodes, 
while unmatched vertices remain in the coarsened 
graph as well. A matching is maximal if any edge in 
the graph that is not in the matching has at least one 
of its endpoints matched. A matching can be 
maximum when it is a maximal matching and it has 
the maximum number of edges. For computational 
reasons, in practice, the maximal matching is 
preferred instead of the maximum matching. 

To find a maximal matching we have used the 
Heavy edge matching (HEM) algorithm, which is a 
greedy algorithm for the number of coarsening 
iterations (Figure 5). It can be shown that the total 
edge weight of the graph is reduced by the total 
weight of the matching. Although, HEM is based on 
a randomized algorithm, thus it does not guarantee 
to find the maximum matching, it gives a good 
approximation. The vertices are visited in a random 
order, and for each vertex u an unmatched vertex v is 
chosen, so that edge (u,v) has the highest weight 
from the all possible v vertices. The computational 
complexity of HEM is ܱሺ|ܧ|ሻ  (Burkhard Monien, 
1999). 

In the coarsened graph, the KL algorithm is used 
to improve the efficiency. Finally, in the 
uncoarsening phase, the coarsened graph is projected 
back to the original graph. For each vertex, the 
coarsened graph contains a subset of vertices. These 
vertices are assigned back to the partition of the 
original vertices during the projection. During the 
projection it is still possible to improve the partitions 
by running KL refinement or Boundary KL 
refinement algorithms.  

Although this heuristic algorithm does not find a 
global optimum, it finds a local optimum for graph 
partitioning in a really effective way.  

Concluding, our algorithm consists of three 
major phases. In the first phase, we grow partitions, 
in case of large partitions we separated these 
partitions into sub-partitions in the second phase. 
The second phase is based on the Kernighan-Lin 
method. Finally, in the last phase we refine these 
partitions using coarsening and uncoarsening 
techniques. Now, we present our enhancements on 
the algorithm. 

3.4 Order of Nodes in GGP  

During separation, our goal is to create two new 
partitions having fairly the same amount of nodes. 
Two regions are grown in a breath-first fashion 
around the two center nodes. A list of nodes is used 

to store nodes for processing in waiting_for_process. 
When a new node is processed, it is popped from the 
list, and the node’s unprocessed incidents are added 
to this list if they are not already there. However, 
this method has clearly a huge drawback. Let’s take 
the following graph on Figure 6. The two center 
nodes are a and b. Now if we first process the 
incident nodes of node a, none of the nodes will be 
added to the partition of b node, because they are 
already added to the waiting_for_process list with 
a’s partition. The separation is not balanced. Our 
solution for this problem is to add the nodes to the 
waiting list in an alternating manner, especially for 
the incident nodes’ of two center nodes. This means, 
that when a and b’s incident nodes are processed, 
they are either added to the list with a node’s 
partition or b node’s partition alternatingly. This will 
result two partitions, one with 3 nodes and one with 
2 nodes. The result is fairly balanced. 

 

Figure 6: Problem of separation. 

3.5 Merging 

Merging is a new phase inserted into the original 
algorithm. The phase solves the defragmentation 
problem occurred during partitioning. Merging 
reduces the number of partitions, which results less 
edges between partitions. Merging partitions can 
only result less edges between partitions, as new 
nodes or edges are not created, and if nodes were 
originally in separate partitions which are merged, 
edges will no longer running between partitions. 
Edges to other partitions remain, but their number 
will not increase. Also note that reducing the number 
of partitions is not only beneficial because the 
number of edges is reduced.  The secondary 
advantage is caused by the fact that we need fewer 
instances in cloud environment, which also results 
lower bills. (Supposing that partitions are ran on 
different instances.)  

The merging phase can take place either after the 
whole algorithm, which influences only the final 
result, or during the algorithm, after each separation 
phase. The second solution influences not only the 
final result, but the next step of the algorithm as well. 

a b
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Therefore, we have chosen the second option as it 
provides a better solution. This way some partitions 
can be already corrected at the separation time 
which could not be corrected at the end of the 
algorithm. Merging is applied for the two new 
separated partitions, one after the other. Merging 
(Figure 7) itself collects the incident partitions and 
chooses a partition where the number of nodes is 
still less than the maximum node per partition after 
the merging, but would create the largest partition. 
After this, it moves the nodes from one partition to 
the other partition and deletes the empty partition. 

 1.Merge( [partition1] ) 
 2. Collect all incident partitions 
    into [incident] 
 3. Choose [partition2] where nodes in 
    [partition1] + [partition2] < max 
    nodes in partitions, and  
    [partition2] is the largest 
 4. Move nodes in [partition2] to 
    [partition1] 
 5. Delete [partition2] 

Figure 7: Merging phase. 

4 EVALUATION 

In this section of the paper, the performance results 
of our implementation are presented. The algorithm 
has been tested on general graphs and on social 
network like graphs as well.  

A customizable version of the presented 
algorithm has been implemented. This version 
emulates the behavior of several computer instances, 
but runs in local development environment, which 
emulates the cloud architecture. Although, the 
algorithm can be run in a highly parallel manner, we 
have not implemented it in all possible cases yet, as 
the algorithm is still being developed and optimized. 
We have tried to keep its performance closer to the 
real multiple instance scenario, where 
communicational overhead is a huge constraint. 

To implement the algorithm, we used the C# 
language and .NET Framework. There are two 
deviations in the implementation from the pseudo 
codes shown earlier. One is in the third refining 
partitions phase: for all partitions pairs a KL is run 
(Figure 1 – Line 9). In our case study 
implementation, a few random pairs are chosen for 
the KL algorithm, but we do not apply it on all 
possible combinations. The other deviation is in the 
implementation of KL algorithm: we have an 
external loop, thus the algorithm can be repeated 
several times sequentially. These repetitions can 

further refine the partitions. 
The source model and the algorithm are driven 

by a set of parameters: (i) Number of nodes; (ii) 
Maximum nodes in one partition; (iii) Average 
degree of nodes; (iv) Average weight of edges; (v) 
The number of KL repetitions. 

In the first scenario, we run the algorithm on a 
general graph. The model consists of 10000 nodes 
and 6 edges for each node in average. The weight for 
each edge changes from 1 to 10 in a random manner. 
The maximum number of nodes in a partition is 
varied from 100 to 1000. The KL repetitions highly 
influence the running time of the algorithm. We used 
values between 10 and 50.  

For reference, a random solution is also 
implemented, where the nodes are randomly put into 
one of the partitions. If a partition is larger than the 
limit, it is separated in a random manner: we create 
two new partitions, and we move each node into one 
of the new partitions by a random choice. The 
random solution is initialized with a single partition. 
Note, that comparing our results to a random 
solution may seem meaningless, however there is no 
other algorithm which would support streaming 
input model and variable number of partitions. 
Applying the KL algorithm on our models would be 
possible if the required extra information is 
manually set, but it would lead to false results, since 
KL would build on an extra advantage due to the 
extra information. 

To compare the results, we computed the sum of 
the edge weight between the partitions. We have 
observed that random solution provides a good result, 
in the case of high connectivity and low number of 
partitions. Note that in these cases, there is no “near-
optimal” solution.  

Our research has shown that the base algorithm 
works much better than the random solution under 
normal conditions. We have tried several different 
random graphs and the advantage of our algorithm 
remained approximately the same. Results have 
clearly shown, that the algorithm is 50% better than 
the random solution in average, based on the sum of 
edge weights between partitions.  

 We have also observed that if the number of 
edges is higher, the efficiency of our algorithm is 
reduced, while larger edge weight improves it. 

However, currently we intend to run model 
transformations on the models of social networks 
primarily. Modeling the connections between the 
people and other social entities realistically is 
difficult. It is necessary for us to find a good sample 
graph that models social networks. This graph must 
be simple, easy to reproduce, but it also should hold 
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one or more characteristics of social networks.  
We have prepared several smaller graphs to 

simulate the structure of social networks. These 
graphs represent different aspects of a social 
network in an abstract way. We have identified a 
few primitive patterns and built up complex 
structures from them. In this paper, we use the 
model of a star, and the model of loosely connected 
stars for sake of simplicity. We believe the graph of 
a connected starts is a good initial approximation for 
these topic. Figure 8 represents a linked star graph. 

 

Figure 8: Sample linked star graph. 

Our measures have shown that the structure of 
partitions and number of partitions are dependent on 
the order of the nodes received in the first (growing 
partitions) phase. Different ordering results in 
different number of partitions and inter-partition 
edges. This was the main reason why we added the 
merging phase to our algorithm.  

The initial problem is the following: let us take a 
graph with two stars where the center nodes are 
connected. The size of both stars shall not be greater, 
but equal to the size of a single partition.  

In the first test (Figure 9, solid lines), the nodes 
of the first star are received and the second star only 
after that (starting with the center). The first partition 
is filled by the algorithm and then the center of the 
second star is added. Since the partition size is 
exceeded, the partition is separated. The centers of 
the GGP algorithm will be the center of the first star 
as it has the highest degree and the center of the 
second star, because its degree is equal to the other 
nodes’ degree but it is the last received node. Note 
that at this point we have no information about the 
final degree of the center of the second star. The 
result of the separation phase is two partitions, one 
with the center of the first star and the other nodes in 
the first star, and one with the center of the second 
star. As the algorithm continues, the rest of the 
second star is added to the new partition with the 
center of the second star. In this case, our algorithm 
works well, the result concurs to the expected.  

In the second test (Figure 9, dotted lines), node e 
of the first star is received only after the second 
center was added. The beginning of the algorithm 

results the same as in the previous case. However, as 
we exceed the limit of a single partition, we choose 
different nodes for the centers of the GGP algorithm. 
The first center of GGP will be the center of the first 
star, because it has the highest degree. The second 
center of GGP will be node e as it has the same 
degree as the other nodes but it is the last node. The 
results of the separation phase are two new partitions: 
all nodes except e, and node e. As the algorithm 
follows, and we get a new node from the second star, 
another separation phase takes place. This is 
necessary, since the first partition is oversized, again. 
As the result, there will be three partitions, one with 
the first star, except node e, one with the second star 
and one with node e (Figure 9). Unfortunately, this 
is not the result we expect, it contains three 
partitions, one with only one node. The number of 
edges between the partitions is also higher than in 
the previous case. The difference between the two 
cases is the order of the nodes.  

 
Figure 9: Different separation results. 

Remark, that in the second test, partition of node e 
could be merged with the partition of the first star. 
Note that the problem is not really specific to linked 
stars, or social networks, it is a general issue. The 
original algorithm was able to create partitions, but it 
was unable to merge partitions. Since we may create 
extra partitions (we do not know all the information 
(the whole model) during partitioning), we should be 
able to merge the partitions later, as our knowledge 
evolves. As we see more-and-more from the graph 
we can always apply merging again.  

We have run tests on the original algorithm and 
with merging enabled. Our algorithm has resulted 
approximately one order of magnitude less edge 
between partitions than the random solution if each 
star has the same amount of nodes. The difference is 
even more remarkable (45 vs. 2919), if the size of 
the star changes. The number of partitions has also 
decreased by 25% compared to the merge-less 
algorithm. The generation of nodes for the stars does 
not influence the final results, all methods has the 
same outcome. The number of edges between 
partitions scales with the number of nodes overall. 
Results are concluded in (Gergely Mezei, 2013). 
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5 CONCLUSIONS AND FUTURE 
WORK  

In model-based software engineering, new methods 
have to be applied because the size of the models 
can grow beyond the capacity of a common, single 
computer. For extra-large models such as social 
networks, several instances of computers can be 
used and transformations can be applied efficiently 
in a distributed fashion. Cloud services provide a 
whole new perspective for the multi-instance 
infrastructure. Their payment model also allows us 
to pay only after the resources we really use. In 
order to process models in the cloud, they have to be 
partitioned and existing modeling approaches should 
be modified. The goal of partitioning is to have the 
least amount of edges between different computers, 
thus network communication can be reduced.  

We have provided an improved heuristic 
approach to partition a social network like graphs 
into subsets of nodes.  The algorithm is based on the 
Kernighan-Lin method and graph coarsening. With 
this algorithm, a social network like graph can be 
partitioned into unconstrained number of partitions, 
where the maximum size of partitions is constrained.  

In the near future, we aim to further refine the 
algorithm by considering further characteristics of 
social networks. We need more case studies for this, 
thus we plan to use a real world, Facebook-based 
case study with real data as the input model with a 
small world assumption.  

Since structure of social networks tend to change 
rapidly, we have to find a way to adopt to these 
changes. A promising solution would be to 
transforming both models and transformation logic 
via model transformations. 

We plan to evaluate time performance 
measurements for each phase of the algorithm. As 
well as, we plan to implement a several magnitudes 
bigger scenario, which runs on real network 
connected computer instances. In the further future, 
we will improve and extend the existing distributed 
model transformation methods. 
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