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Abstract: Tensor systems are a framework for modeling of multilinear hybrid systems with discrete and continuous
valued signals. Two examples from building services engineering and multi-agent systems show applications
of this framework. A tensor model of a heating system is derived and approximated by tensor decomposition
methods first. Second, a tensor model of a multi-agent system with a structure already given in a decomposed
form is reduced further by the same decomposition methods. The validity of these low rank approximations is
shown for both examples.

1 INTRODUCTION

Multilinear models are a subclass of nonlinear mod-
els which is interesting for engineering applications
because several systems behave multilinear, as shown
by the examples. In most applications the processes
are driven by some automation device with fixed sam-
pling time. Thus, only discrete time models are inves-
tigated here.

The class of multilinear models obviously in-
cludes linear continuous valued models but moreover,
all discrete valued models are inherently multilinear,
see (Lichtenberg, 2010). As multilinearity is mathe-
matically closely related to tensor calculus, there are
tensor representations of multilinear systems. Of spe-
cial interest are discrete time hybrid systems consist-
ing of a multilinear continuous valued subsystem and
an arbitrary discrete valued subsystem connected by
a quantizer and an injector. These can be represented
by so-called Hybrid Tensor Systems defined in (Licht-
enberg, 2011). This modeling approach was first ap-
plied to the identification problem of discrete valued
models from continuous data, (Lichtenberg and Eich-
ler, 2011).

Over the last years simulation of building and
heating systems has attracted a lot of interest, see
e.g. (Nouidui et al., 2012) or (Wetter, 2006). In these
approaches nonlinear models are derived and simu-
lated, mostly for performance evaluation. Heating
systems are application examples for hybrid tensor
systems because of their physical structure, see (Pan-

galos and Lichtenberg, 2012). This paper shows in
detail how to derive a multilinear one zone model of
a large scale building using RC-models of the walls.

Another field of applications are distributed net-
work systems like Multi-Agent Systems (MAS),
which have received considerable attention over the
past ten years, because of its broad variety of applica-
tions, see (Ren and Beard, 2007; Ren and Cao, 2011).
To perform tasks like Decision-Making or Policy For-
mulation, hybrid MASs are required, (Srinivasan and
Choy, 2010). These can be represented by the same
class of hybrid tensor systems.

Numerical tensor calculus with special interest
on decomposition methods is an active reseach field
in applied mathematics, see e.g. (Hackbusch, 2012).
Tensor models can be approximated by standard ten-
sor decomposition techniques - similar to model re-
duction techniques for linear systems. Most of the
latter techniques like PCA use singular value decom-
postion (SVD) of matrices as workhorse for the re-
duction process. For tensor systems, so-called higher-
order SVD decomposition algorithms are appropriate
reduction methods, see (Kolda and Bader, 2009).

The paper is organized as follows. After this intro-
duction the class of hybrid tensor systems is described
in section 2. The model of a complex heating system
is developed, validated, represented by a hybrid ten-
sor system, and finally decomposed in section 3. In
section 4 multilinear modeling and transformation to
a tensor system is shown for a hybrid MAS. Final con-
clusions are drawn in section 5.
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2 TENSOR SYSTEMS

Tensor representations of multilinear systems are in-
troduced in (Lichtenberg, 2011) and reviewed in this
section. All linear systems can be represented by this
class, which on the other hand is a subset of the class
of polynomial systems.

First, a matrix format to describe multilinear sys-
tems is introduced. Next, it is shown how to represent
these systems as tensor models. Finally, the notation
is extended to hybrid systems which include continu-
ous and discrete states and inputs.

2.1 Multilinear Matrix Models

With the help of the symbol 
 denoting the standard
Kronecker product, the monomial vector introduced
in the following Definition contains all possible mul-
tilinear terms.
Definition 2.1. The monomial vector is defined as

m(x;u)=
�

1
um

�

�� �


�
1
u1

�


�

1
xn

�

�� �


�
1
x1

�
(1)

where x 2 Rn is the state vector and u 2 Rm is the
input vector.

With the monomial vector, a multilinear state
space model can be written in matrix form

F(x) = Fm(x;u) ; (2)
y = Gm(x;u) ; (3)

where F(x) denotes the next state vector, y 2 Rl

the output vector, F 2 Rn�2(n+m)
the transition matrix

and G 2 Rl�2(n+m)
the output matrix.

Example 2.1. Consider the state transition function
of a multilinear second order model with one input
and next state vector�

f11+ f12x1+ f15u+ f16ux1
f22x1+ f23x2+ f24x1x2+ f26ux1+ f27ux2+ f28ux1x2

�
:

The state space model (2) is given as�
F(x1)
F(x2)

�
=

�
f11 f12 0 0 f15 f16 0 0
0 f22 f23 f24 0 f26 f27 f28

�
0BBBBBBBB@

1
x1
x2

x1x2
u

ux1
ux2

ux1x2

1CCCCCCCCA
:

(4)

In the following, the output equation (3) will not
be considered – for a description of multilinear input-
output models see (Lichtenberg, 2011).

For multilinear models (2), linear state and input
variable transformations

x̃i =
xi�bi

ai
8i = 1; : : : ;n (5)

ũi =
ui�bn+i

an+i
8i = 1; : : : ;m (6)

are computable in closed form. The transformed state
transition matrix is given byeF = diag

i=1;:::;n

�
1
ai

��
FT�

�
b 0n�2(n+m)�1

��
(7)

where diag denotes the diagonal matrix with ele-
ments ai,

T =

�
1 0

bn+m an+m

�

�� �


�
1 0
b1 a1

�
is a transformation matrix, b is a column vector con-
taining the bi’s and 0n�2(n+m)�1 denotes a zero ma-
trix with dimension (n�2(n+m)�1). Linear transfor-
mations allow a numerical preconditioning of models
which is used in section 3.4.

2.2 Multilinear Tensor Models

To rewrite (2) in a compact tensor notation, follow-
ing standard definitions from e.g. (Kolda and Bader,
2009) or (Cichocki et al., 2009) are introduced.
Definition 2.2. A Tensor

X 2 RI1�I2�����In

of order n is an n-way array where elements xi1i2���in
are indexed by i j 2 f1;2; : : : I jg for j = 1; : : : ;n.

Example 2.2. The elements of a tensor X 2 R2�3�2

can be illustrated and arranged in 3 dimensions as

X =

x211 x221 x231

x111 x121 x131

x212 x222 x232

x112 x122 x132

.
Definition 2.3. A Kruskal tensor

K= [X1;X2; : : : ;Xn] �l 2 Rr1�r2�����rn

is a tensor of dimension (r1; : : : ;rn), with elements
given by the sums of the outer products of the col-
umn vectors of so-called factor matrices Xi 2 Rri�r,
weighted by the elements of the so-called weighting
or parameter vector l. An element of the multidimen-
sional tensor K is given by

K jk:::p =
r

å
i=1

li (X1) ji (X2)ki : : :(Xn)pi

If no weighting vector is given, it is assumed to be
a vector of ones, i.e. l = (1 1 : : : 1)T .
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Definition 2.4. The contracted product of two ten-
sors Y 2 RI1�:::�In and X 2 RI1�:::�In�In+1�:::�In+m is

hX jY i (k1; : : : ;km) =
I1

å
i1

� � �
In

å
in

xi1;:::;in;k1;:::;kmyi1;:::;in ;

(8)

is a tensor of dimension In+1� : : :� In+m.

Example 2.3. Consider a tensor X 2 R2�2�3

and a tensor Y 2 R2�2. To calculate the con-
tracted product Z = hX jY i 2 R3, the matching
dimensions have to be multiplied elementwise, as
highlighted in red in the following illustrations.

=

z1

z2

z3x211 x221

x111 x121

x212 x222

x112 x122

x213 x223

x113 x123

y21 y22

y11 y12

=

z1

z2

z3x211 x221

x111 x121

x212 x222

x112 x122

x213 x223

x113 x123

y21 y22

y11 y12

=

z1

z2

z3x211 x221

x111 x121

x212 x222

x112 x122

x213 x223

x113 x123

y21 y22

y11 y12

A simple notation for tensor spaces is introduced:

R�
(n+m)2 := R

n+mz }| {
2�:::�2

:

The state transition function (2) of a multilin-
ear state space model can then be rewritten with the
monomial Kruskal tensor

M(x;u) =
��

1
um

�
; : : : ;

�
1
u1

�
;

�
1
xn

�
; : : : ;

�
1
x1

��
:

in terms of a contracted tensor product as

F(x) = hF jM(x;u) i ; (9)

where the transition tensor F2R�(n+m)2�n contains all
parameters of the model while the structure is given
by the monomial tensor M(x;u) 2 R�(n+m)2.

2.3 Decomposed Tensor Models

As contracted products could be efficiently computed
in Kruskal form, and monomial tensors are easily

given in this form by their internal structure, it is
worth looking for decompositions

F= [Fum ; : : : ;Fu1 ;Fxn ; : : : ;Fx1 ;FF] �l f (10)

of the state transition tensor having rx factors. This
will be illustrated by the Example 2.1. Setting the
matrix factors of (10) accordingly leads to

Fx1 =

�
1 0 1 0 0 1 0 0 1 0
0 1 0 1 1 0 1 1 0 1

�
;

Fx2 =

�
1 1 1 1 1 0 0 1 0 0
0 0 0 0 0 1 1 0 1 1

�
;

Fu =

�
1 1 0 0 1 1 1 0 0 0
0 0 1 1 0 0 0 1 1 1

�
;

FF =

�
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1

�
:

Together with the continuous valued parameter vector

l f=
�

f11 f12 f15 f16 f22 f23 f24 f26 f27 f28
�T

they form the state transition tensor

F= [Fu;Fx2 ;Fx1 ;FF] �l f :

The contracted product can now be calculated by sim-
ple matrix operations (Lichtenberg, 2011)

hF jM(x;u) i = (11)

FT
F

�
l f ~

�
FT

u

�
1
u

��
~

�
FT

x2

�
1
x2

��
~

�
FT

x1

�
1
x1

���
;

where ~ denotes the (element-wise) Hadamard prod-
uct. It can be checked that calculating the contracted
product (9) leads to the transition equation (4).

At a first glance, for Example 2.1 this tensor nota-
tion does not seem to be more compact than the ma-
trix notation. It is easy to verify that the system matrix
has n �2(m+n) = 16 elements, whereas the tensor repre-
sentation takes rx (1+3n+2m) = 90 elements as the
dimension of the n+m factor matrices is 2� rx, FF

has dimension n�rx and the parameter vector has an-
other rx entries.

But looking at the model of the heating system
that will be introduced in section 3 with n = 12 states,
no inputs m = 0 and rx = 46 factors, this would lead
to 12 �212 = 49152 elements in matrix representation
whereas only 46(1+3 �12)= 1702 Kruskal tensor el-
ements need to be stored.

For construction of the factor matrices and the pa-
rameter vector set the columns of the factor matrices

to
�

0
1

�
, if the summand contains the corresponding

state and to
�

1
0

�
otherwise. The product of states is

weighted by a constant given in the parameter vector.
The factor matrix FF indicates to which next state el-
ement the summand is added.
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This can is shown exemplarily by the first sum-
mand of the Example. All first rows of the factor ma-

trices are
�

1
0

�
, i.e. the first summand of the first next

state does not depend on any current state or input but
is equal to the first entry f11 of the parameter vector.

With standard tensor decomposition algorithms
like CP-ALS low rank approximations of the state
transition tensor could be found, see (Kolda and
Bader, 2009).

2.4 Boolean Tensor Models

In the following, Boolean variables will be indicated
by underlining. Heading for tensor models of hybrid
systems, the binary state x2BN and input u2BM are
defined. The state transition function of a Boolean
tensor state space model

F(x) = hF jL(x;u) i ; (12)

with a transition tensor F 2 B�(N+M)2�N describes a
binary dynamical system by a contracted product with
a Boolean literal tensor L(x;u) 2 B�(N+M)2 defined as

L(x;u) =
��

ūn
un

�
; � � � ;

�
ū1
u1

�
;

�
x̄n
xn

�
; � � � ;

�
x̄1
x1

��
;

(13)
where the bar symbol is used to denote the negation
of a variable.

If the values of the state and input variables are
from a continuous domain but the transition tensor is
still Boolean, the resulting next state is in general a
continuous variable.

With the help of the symbol h � j � i+ defining a
contracted real tensor product which converts any
Boolean FALSE to a real zero and a Boolean TRUE to a
real one, the state transition of an algebraic Boolean
tensor state space model

F(x) = hF jL(x;u) i+ ; (14)
can be defined, where

L(x;u) =
��

1�un
un

�
; � � � ;

�
1�u1

u1

�
;�

1� xn
xn

�
; � � � ;

�
1� x1

x1

��
: (15)

It has the property that - if all initial states and inputs
are Boolean - the state and output trajectories only
take values 0 and 1 and thus, show a behavior which
includes the behavior of the binary system.

Transformation of (14) to monomial form is pos-
sible and given by

F(x) = hF jM(x;u) i+ ; (16)

with the transition tensor F 2 Z�(n+m)�n having inte-
ger elements which are easy computable from F .

2.5 Hybrid Tensor Models

Figure 1 shows a block diagram of the class of hybrid
systems investigated further. The outputs are omitted,
it is assumed that the states can be measured.

Multilinear System
hF jM i

Quantizer
b

Binary System
hF jL i

Injector
a

vw

w v

u

u

Figure 1: Block diagram of a multilinear hybrid system.

Without loss of generality, it is assumed that all
discrete signals are encoded Boolean. The contin-
uous valued subsystem and the discrete valued sub-
system are connected via a quantizer and an injector
given in the next Definitions, see (Lichtenberg, 2011),
where H is a hybrid space. The hybrid state and input
vectors

xe=
�

x
x

�
2 Rn�BN (17)

ue=
�

u
u

�
2 Rm�BM (18)

are given by appending the Boolean signal vectors to
the continuous signal vectors.

Definition 2.5. The standard injector is the func-
tion a : HI1�����IN ! RI1�����IN , which is given for all
elements with index vector i 2 NN by

(a(xe))i =

8<: 1 2 R if xi = TRUE ;
0 2 R if xi = FALSE ;

xi if xi 2 R :
(19)

Definition 2.6. The standard quantizer is the func-
tion b : RI1�����IN ! BI1�����IN , which is given for all
elements with index vector i 2 NN by

(b(xe))i = s(xi�
1
2
) ; (20)

where the Heaviside function is given as

s(x) =
�

1 if x� 0 ;
0 otherwise : (21)

These definitions make the need of explicite equa-
tions for w;w;v and v obsolete, as they can be cal-
culated with the help of the standard injector and
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the standard quantizer which are also used for the
next Definition - an extension of the contracted ten-
sor product taking into account Boolean as well as
continuous values.

Definition 2.7 (Hybrid Contracted Tensor Product).
The notation h � j � i� for the hybrid contracted tensor
product implies that all values are mapped to the cor-
rect domains given by the domain of the tensor on the
left side of the contracted product

hF jM i� = hF ja(M(b(x))) i (22)

with standard quantizer and injector.

If the tensor on the left side has hybrid domains,
quantization and injection are applied to compute the
results corresponding to the domain on the left hand
side.

By using this Definition, the state transition func-
tion of a hybrid tensor system can be written in a very
compact way as

F(xe) = 
Fe ��Me (xe;ue) �� : (23)

This will be illustrated by Examples in the following
sections.

3 HEATING SYSTEMS EXAMPLE

The heating system mentioned in the introduction will
now be modeled as a hybrid tensor system. This is
possible because of the inherit multilinear nature of
heating systems.

The heating system consists of a boiler with
burner, a consumer, where a building temperature can
be measured and a pump, which is controlled (see
Figure 2)

Boiler

Burner

Consumer
Pump

Figure 2: Heating system.

Signals being real or Boolean will be clear from
the context, therefore no underlines or ”undertildes”
will be used in this section.

For each of the elements of the heating system,
first the thermal balances are stated and then trans-
formed. After a validation of the model the factor
matrices and parameter vector are given such that the
system can be represented as a tensor system.

3.1 Differential Equations

The continuous valued states of the system are the
supply temperature Ts, the return temperature Tr and
the buildings temperature Tb. Day oscillation and year
oscillation of the ambient temperature are modeled
by four continuous valued states Ta1 : : :Ta4, two for
each oscillation. Two Boolean states Xl and Xu deter-
mine whether or not the buildings temperature is in
the interval where the thermostatic valves are linear,
in the lower or in the upper saturation. Two further
Boolean states Hl and Hu determine a supply temper-
ature above an upper limit or below a lower limit and
a Boolean state U that states if the boiler is running or
not. The state vector is given by x 2 R7�B5

x = [Ts Tr Tb Ta1 Ta2 Ta3 Ta4 Xl Xu Hl Hu U ]T :
(24)

Controlled Pump
The flow rate V̇ is a consequence of the room tempera-
ture Tb and the reference temperature for the room Tbr.
The relationship is shown in Figure 3.

Tb�Tbr

V̇

�DTb DTb

V̇m

�
V̇a

V̇a

�

Figure 3: Flow rate over control error of the room tempera-
ture.

In this Figure V̇m is the mean flow rate for Tb = Tbr
and V̇a is the amplitude from the mean flow rate at ref-
erence room temperature to its extrema. The extrema
in the flow rate are reached at a room temperature that
is at least DTb different from the reference room tem-
perature.

To state the flow rate V̇ in terms of the discrete
states and the room temperature, the discrete states

Xl =

�
1 if Tb > Tbr�DTb
0 else (25)

Xu =

�
1 if Tb > Tbr +DTb
0 else (26)

are introduced. Thus the flow rate V̇ is given as

V̇ = V̇m +V̇a +

�
TbrV̇a

DTb
�V̇a

�
Xl : : :

�
�

TbrV̇a

DTb
+V̇a

�
Xu�

V̇a

DTb
TbXl : : :
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+
V̇a

DTb
TbXu : (27)

Boiler
The thermal balance of the boiler is given as

ṪsVbrc = TrV̇ rc�TsV̇ rc+PmaxU : (28)

Using the Euler forward method with sampling time ts
to discretize this differential equation and rearranging
leads to

Ts(k+1) = Ts(k)�
ts
Vb

Ts(k)V̇ (k) : : : (29)

+
ts
Vb

Tr(k)V̇ (k)+
ts

Vbrc
PmaxU(k) :

Dropping the time index, denoting the next state by
the operator F and substituting (27) for the flow rate
gives

F(Ts) = Ts

�
1� ts(V̇a+V̇m)

Vb

�
+Tr

ts(V̇a+V̇m)
Vb

: : :

+TsXl
V̇ats(DTb�Tbr)

DTbVb
�TrXl

V̇ats(DTb�Tbr)
DTbVb

: : :

+TbTsXl
V̇ats

DTbVb
�TbTrXl

V̇ats
DTbVb

: : : (30)

+TsXu
V̇ats(DTb+Tbr)

DTbVb
�TrXu

V̇ats(DTb+Tbr)
DTbVb

: : :

�TbTsXu
V̇ats

DTbVb
+TbTrXu

V̇ats
DTbVb

+PmaxU ts
Vbcr

:

Ambient Temperature
The ambient temperature is modeled as an oscillator
with two frequencies. One for the temperature oscil-
lation over the day and one for the oscillation of the
year. The sinusoidal curves estimate the ambient tem-
perature roughly.

The continuous time state space model can be
given by0B@Ṫa1

Ṫa2
Ṫa3
Ṫa4

1CA=

0BB@
0 1 0 0
�w2

d 0 0 0
0 0 0 1
0 0 �w2

y 0

1CCA
0B@Ta1

Ta2
Ta3
Ta4

1CA

Ta =
�
1 0 1 0

�0B@Ta1
Ta2
Ta3
Ta4

1CA+Ta;m : (31)

Note that a multilinear state space model allows a
constant term, here Ta;m. Using the Euler forward
method, the state equation in discrete time with sam-
pling time ts is given by

F

0B@
0B@Ta1

Ta2
Ta3
Ta4

1CA
1CA=

0BB@
1 ts 0 0
�w2

d 1 0 0
0 0 1 ts
0 0 �w2

y 1

1CCA
0B@Ta1

Ta2
Ta3
Ta4

1CA:
(32)

The output equation of system (31) does not change.

Building
The temperature of the building Tb is introduced as the
average temperature of all rooms. The temperature
can be given as

kbṪb = kr;b (Tr�Tb)� kb;a (Tb�Ta) ; (33)

where kb is the capacity of the building, kr;b the heat
transfer coefficient from the radiators to the building
and kb;a the heat transfer coefficient from the building
to the outside. Again using the Euler forward method
for temporal discretization and substituting the output
equation of (31) gives

F(Tb) = Tb

�
1� ts(kr;b+kb;a)

kb

�
+Tr

tskr;b
kb

: : :

+Ta1
tskb;a

kb
+Ta3

tskb;a
kb

+
tskb;aTa;m

kb
: (34)

The parameters kb;kr;b;kb;a are estimated with real
measurement data of the building. The validation of
the model is described in the next section, where the
numerical values of the constants are given in Table 3.

Consumer
The thermal balance of the consumer is given by

Ṫr(t)Vcrc = Ts(t)V̇ (t)rc�Tr(t)V̇ (t)rc� Q̇d(t) :
(35)

The heat demand Q̇d can be calculated in terms of
the return temperature and the building temperature
as

Q̇d(t) = (Tr(t)�Tb(t))kr;b : (36)

Inserting (36) and (27) into (35) and discretizing
the result gives

F(Ts) = Ts
ts(V̇a +V̇m)

Vc
: : : (37)

+ Tr

�
1�

ts(kr;b + cV̇ar+ cV̇mr)

Vccr

�
: : :

+ Tb
kr;bts
Vccr

�TsXl
V̇ats(DTb�Tbr)

DTbVc
: : :

+ TrXl
V̇ats(DTb�Tbr)

DTbVc
�TbTsXl

V̇ats
DTbVc

: : :

+ TbTrXl
V̇ats

DTbVc
�TsXu

V̇ats(DTb +Tbr)

DTbVc
: : :

+ TrXu
V̇ats(DTb +Tbr)

DTbVc
+TbTsXu

V̇ats
DTbVc

: : :

� TbTrXu
V̇ats

DTbVc
;

where the time dependencies are dropped.
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Bang Bang Controller
The discrete states Hl and Hu are used to determine
whether or not the supply temperature Ts is below
a lower limit, here: 75�C or above an upper limit,
here: 95�C. The signal U steering the boiler is then
computed by

F(U) =

8<: U if 75�C < Ts < 95�C
1 if Ts � 75�C
0 if Ts � 95�C

: (38)

3.2 Validation of the Consumer

In this section the validation of the consumer is
shown. For this purpose the discrete bang bang con-
troller is replaced by a PI-controller as in the real
building. The ambient temperature is modeled sep-
arately. For the validation, the ambient temperature
is taken from measurement data. Not all states are
displayed but just the supply temperature Ts, the re-
turn temperature Tr and the flow rate V̇ . Note that
the flow rate is not a state of the system but depends
on the buildings temperature Tb and the two Boolean
states Xl and Xu. The system has two main time scales
caused by the oscillating ambient temperature over
the day and over the year.

The temperatures over a whole year, starting Jan-
uary 1st are given in Figure 4. The mismatch in the
return temperature in the summer is probably caused
by a later detected bypass of the boiler.
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Figure 4: Supply and return temperatures over a year.

The flow rate over the year is given in Figure 5.
This shows a quite good fit of the signals in a year
scale. Now the second scale should be investigated.
Therefore in Figure 6 the temperatures are given and
in Figure 7 the flow rate is given for two days. As
one can see also the day scale has a good fit. Still
remaining for validation is the use of an oscillator for
the ambient temperature. Figure 8 shows the ambient
temperature from measurements and the results from
the oscillator over a year in the upper plot and the
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Figure 5: Flow rates over a year.

55
60
65

Te
m

pe
ra

tu
re

103 103.5 104 104.5 105
35

40

Time [days]
[°

C
]

Measurement:
Simulation:

Ts
Ts

Tr
Tr

Figure 6: Supply and return temperatures over two days.

103 103.5 104 104.5 105
3

4

x 10−3

Time [days]

Fl
ow

 ra
te

 [m
3 /s

] Measurement: Simulation:

Figure 7: Flow rates over two days.
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Figure 8: Measurement and simulation of the ambient tem-
perature.

ambient temperatures over two days in the lower plot.
The parameters for the signal generator are given in
Table 1

For completeness Table 2 states the used material
constants and Table 3 states all estimated parameters.
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Table 1: Parameters of the ambient temperature signal gen-
erator.

Frequency Symbol Value

Day oscillation wd �
� 2p

86400

�2 rad
s

Year oscillation wy �
� 2p

31536000

�2
; rad

s

Table 2: Material constants of water.

Density of water r 1000 Kg
m3

Specific heat c 4182 Ws
KgKcapacity of water

Table 3: Parameters of the building model.

Parameter Symbol Value
Volume boiler Vb 1:05m3

Volume consumer V v 5m3

Mean flow rate V̇m 4:75 �10�3 m3

s

Flow rate amplitude V̇a 3:25 �10�3 m3

s
Building reference Tbr 21 �Ctemperature
Linear temperature

DTb 4 �Camplitude of
the thermostat

Thermal capacity kb 1010 Ws
Kof the building

Total heat transfer
kr;b 2:5 �104 W

Kcoefficient
(radiator building)
Total heat transfer

kb;a 4:7338 �104 W
Kcoefficient

(building ambiance)
Mean ambient Ta;m 12:5 �Ctemperature

Maximal power Pmax 1:1MWof the boiler

The initial state vector used is

x(0) =
�

253 323 294 0 � 5p

86400
: : :

� 5p

86400
�12:5 0 1 0 0 0 1

�
T : (39)

Note that the simulation was performed with SI-units,
such that the temperatures are in Kelvin. For bet-
ter legibility the temperatures in Table 3 were given
in �C.

3.3 System Tensor

With the difference equations from the section 3.1 it
is now straight forward to construct the system ten-

sor. Here just the first entries of the system tensors
factor matrices, that correspond to the next state of
the supply temperature Ts are given. The entries are
constructed as shown in Example 2.1 The Factor ma-
trices, in order of the states (24) are:

FTs=

�
0 1 0 1 0 : : :
1 0 1 0 1 : : :

�
; FTr=

�
1 0 1 0 1 : : :
0 1 0 1 0 : : :

�
FTb=

�
1 1 1 1 0 : : :
0 0 0 0 1 : : :

�
; FTa1=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
FTa2=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
; FTa3=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
FTa4=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
; FXl=

�
1 1 0 0 0 : : :
0 0 1 1 1 : : :

�
FXu=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
; FHl=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
FHu=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�
; FU=

�
1 1 1 1 1 : : :
0 0 0 0 0 : : :

�

FF=

0B@ 1 1 1 1 1 : : :
0 0 0 0 0 : : :
...

...
...

...
...

. . .

1CA (40)

The matrix FF has dimension 12� 46 to assign
the 46 summands of the system to the corresponding
next state. Note, that the factor matrices are not com-
plete but just given for the first five summands of the
first next state. Since all entries that were looked at
correspond to the first next state, the first five entries
of the first row of FF are 1. The corresponding part
of the parameter vector is given by

lf =

266666666664

1� ts(V̇a+V̇m)
Vb

ts(V̇a+V̇m)
Vb

V̇ats(DTb�Tbr)
DTbVb

� V̇ats(DTb�Tbr)
DTbVb
V̇ats

DTbVb
...

377777777775
: (41)

3.4 Tensor Decomposition

In this section a reduction of the tensor rank is per-
formed using tensor decomposition techniques. With
the factor matrices (40) and the parameter vector (41)
defined in section 3 a state transition tensor

F=
�
FTs ;FTr ;FTb ;FTa1 ;FTa2 ;FTa3 ;FTa4 ; : : : (42)

FXl ;FXu ;FHl ;FHu ;FU ;FF

�
�l f (43)

is constructed. The Tensor Toolbox (Bader and
Kolda, 2012) and the command cp als is used to re-
duce the rank of the tensor F, which was constructed
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to have a tensor rank of 46. Using the Toolbox, the
rank of the system tensor is reduced to 23, which has
a fit of over 99%. The first five entries of the first two
factor matrices are

F1=

�
�0:999 0:999 1:000 1:000 1:000 : : :
0:045 �0:054 0:009 0:007 0:000 : : :

�
;

F2=

�
0:988 0:984 0:999 1:000 1:000 : : :
�0:152 �0:179 0:040 0:031 0:000 : : :

�
:(44)

The corresponding entries in the parameter vector are

l =
�
10:443 6:967 4:322 2:598 2:587 : : :

�T
:

(45)
The results of the simulation with the original and the
decomposed state transition tensor are given in Fig-
ure 9. One can see, that the main system dynamics
are captured with the decomposed system. The sup-
ply temperature drops to 75�C if 95�C is reached and
rises again. Also the offset and the dynamics of the re-
turn temperature show similar behavior for both state
transition functions.
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Figure 9: Original and decomposed system.

The value of the states has a big impact on the
results. For this reason a state transformation (see
section 2) was performed such that all states of
the transformed system are in the interval [0 0:5].
Since we have a 12th order system a very small
factor in front of the multiplication of all states
(which was not used, i.e. 0 in the original sys-
tem) can give a next state many orders of magni-
tude away from the original next state. This ef-
fect can be reduced significantly by normalizing the
states to the interval [0 0:5]. To illustrate this is-
sue assume, that Ts = Tr = Tb = 300. To calculate the
next state of Ts the multiplication of all three temper-
atures is not used, i.e. F(Ts) = : : :+0 �TsTrTb + : : :.

Assume a CP decompostion is performed and the
factor is now 0:001. This still gives a very good
fit for the tensor. The next state of Ts however
is 3003 �0:001 = 27 �103 different to that of the orig-
inal system. In contrast to that consider a trans-
formed system. Now the states are transformed.
They are assumed to be in the interval [280 300]
and therefore transformed with x̃ = x�280

40 leading
to Ts = Tr = Tb = 0:5. Again calculating the error of
the next state gives 0:53 � 0:001 = 125 � 10�6 trans-
forming this error back to the original coordinates
gives an error of 5 �10�3.

4 MULTI-AGENT SYSTEMS
EXAMPLE

A MAS consists of a group of agents (e.g. vehicles
with their computing entities) that exchange informa-
tion and share knowledge to solve a common task like
in (Balaji and Srinivasan, 2010). The demand of au-
tonomous MAS’s with the ability to perform tasks as
Decision-Making or Policy Formulation leads to hy-
brid MAS’s. There are various different applications
of hybrid MAS’s and many different ways to describe
them, e. g. (Srinivasan and Choy, 2010). How a hy-
brid MAS is modeled as tensor system is shown in the
following.

Graphs are a natural way to describe the com-
munication topology between agents of an MAS,
see (Mesbahi and Egerstedt, 2010). A directed
Graph G(V ;E) consists of a set of N ver-
tices, representing the single agents, and a set of
edges E � V �V , describing the communication
topology. If agent i receives information from
agent k, there is an edge (k; i) 2 E . The mainly
used matrix representation of graphs for MAS is the
Laplacian L . The normalized Laplacian is defined
as (Ren and Beard, 2007)

Lik :=

8<:
1 if i = k and jNij 6= 0
� 1
jNij if k 2 Ni

0 otherwise.
(46)

Here Ni is the set of neighbors of agent i, that is de-
fined as Ni = fkj(k; i)2Eg, and jNij is its cardinality.

Consider a MAS of N equal agents, where each
agent i = 1 : : :N is described by the switched system

F(xi) = axi +ui if F
�1(xi)� 0:5

F(xi) = bxi +ui if F
�1(xi)< 0:5 ; (47)

with xi;ui 2 R being continuous signals
and F�1(xi) = xi(k� 1) denoting the previous state.
By introducing the discrete signal zi = b(F�1(xi)),
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being the quantized state variable, system (47) can be
written as the multilinear system

F(xi) = (a�b)zixi +bxi +ui : (48)

This can be described as a tensor system for one
agent i by

F(xi)=


Fi ��Me (x;z;u) �=
�Fi

u;F
i
z;F

i
x
� ��Me (x;z;u) �(49)

with Fi
u=

�
1 0
0 1

�
; Fi

z=

�
b 1

a�b 0

�
; Fi

x=

�
0 1
1 0

�
:

The control input is determined by the communi-
cation topology as u = �Lx like simple consensus
algorithms propose (Mesbahi and Egerstedt, 2010)
with x = (x1 : : :xN)

T , u and z defined respectively.
The discrete system is easily described by

F(z) = b(x) : (50)

The continuous part can be described as a continuous
tensor system of the form F(x) =



F
��Me (x;z) �+. It

is obvious that the continuous system only contains
multilinear terms of the form xizi introduced by the
system equations of the single agents in (48), whereas
the control input is linear in x. Thus the standard
monomial tensor of dimension R�2N 2 is very sparse.
A special formation monomial tensor is introduced
here as Me F(x;z) 2H2�2�N

Me F(x;z) =
��

1 : : : 1
z1 zN

�
;

�
1 : : : 1
x1 xN

�
;IN

�
:

(51)

This is a tensor of rank N in contrast to the standard
monomial tensor of rank 1.

With (51) a state transition function of a hybrid
tensor system for the overall system, with state vec-
tor xe= (x;z)T is defined as

F(xe) = 
FeF ��Me F(x;z)
��

(52)

with FeF =
�
FF

z ;FF
x ;FF

I ;F
F
F

�
2 R2�2�N�2N . The state

transition tensor FF has the factor matrices with 2N
factors

FF
F =

�
IN IN 0
0 0 IN

�
;

FF
I =

�
IN �L IN

�
;

FF
x =

�
1T

3N

�
0
1

��
;

FF
z =

�
1T

N

�
b

a�b

�
1T

2N

�
1
0

��
: (53)

The factor matrix FF
F

specifies the state, xe= (x;z)T .
First the continuous state vector x is considered. Due

to the identity matrices in FF
F

and FF
I , the first N

columns of the factor matrices describes the internal
dynamics of the agents. This can be easily seen by
comparing the first N columns of FF

x and FF
z with Fi

x
and Fi

z in (49). The Laplacian in FF
I describes the

communication between the different agents. The
fact, that the communication is linear in the states xi,
explains the second N vectors in FF

x and FF
z since���

0
1

�
;

�
1
0

��
;

��
1
zi

�
;

�
1
xi

���
= xi :

The discrete signal z is simply calculated
by F(z) = b(x), which explains the choice of
the last N columns in FF

x and FF
z .

Next, a hybrid tensor system with N = 100 agents
is modeled. The considered connected graph is di-
rected and contains 473 random edges. The internal
dynamics of the single agents is described by (48)
with a = 0:5 and b = 1. The number of factors of
the exact system tensor is 300 = 3N. CP decompo-
sitions of the system tensor from rank 1 to 299 have
been calculated with cp als.
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Figure 10: Frobenius norm of error.
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Figure 11: Continuous valued state trajectories for rank 200
approximation.

The Frobenius error between the exact and ap-
proximated hybrid tensor model is shown for tensor
approximations of different rank in Figure 10. A ten-
sor of rank 200 = 2N describes the system dynam-
ics almost exactly. The Frobenius error for graphs
of every tested different size shows qualitatively the
same shape. Thus it can be supposed that the sys-
tem is in fact not a tensor system of rank 3N but
of 2N. In Figure 11, continuous state trajectories of
the rank 200 approximation are shown. The maximal
mean squared error between the original and approx-
imated trajectories for a rank 200 approximation is
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Figure 12: Continuous valued state trajectories for rank 150
approximation.

with < 10�17 negligible and thus approximation and
original system match exactly. For comparison the
rank 150 approximation is shown on Figure 12. Here
the same consensus value of approximately 0.2 is
reached with the same convergence shape. However,
the states does not exactly converge to the real consen-
sus value but reach an envelope around it, which gets
small for higher order approximations. For approxi-
mations with smaller order instability of the conver-
gence process may occur.

5 CONCLUSIONS

Hybrid tensor systems are an adequate framework for
modeling discrete time multilinear systems with con-
tinuous and discrete valued states and inputs. A hy-
brid tensor model of a complex heating system is de-
rived as a real-world example. All parameters are
stored in a state transition tensor which in a second
step is reduced to a low rank Kruskal tensor using
standard decomposition techniques. As simulations
show, this decomposed tensor is still capable to cap-
ture the main dynamics of the heating system.

As a second application example from a quite dif-
ferent application domain, a hybrid tensor model of a
Multi-Agent System (MAS) is built. Structural con-
traints are imposed in an easy way, a reduced rank
state transition tensor of the system is again computed
by tensor decomposition algorithms and simulations
are carried out based on the decomposed model. The
reduced rank model converges to the same final values
as the original one. Moreover, the original N-agents
system can be modeled exactly by a hybrid tensor sys-
tem with a small rank of 2N.

Further research will be done to investigate the
stability behaviour of hybrid tensor systems. Another
focus will be the derivation of tensor representations
for nonlinear normal forms - as well for general non-
linear as for multilinear systems. Tensor decompo-
sition techniques will play an important role in these
fields and extensions of the continuous algorithms to
hybrid spaces would be essential tools for analysis
and design of multilinear hybrid systems.
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