
Feature Model Extraction from Product Source Codes based on the
Semantic Aspect

Jihen Maazoun1, Nadia Bouassida2, Hanêne Ben-Abdallah1 and Abdelhak-Djamel Seriai3
1Mir@cl Laboratory, Faculté des Sciences Economiques et de Gestion , Sfax University, Sfax, Tunisia

2Mir@cl Laboratory, Institut Supérieur d’Informatique et de Multimédia, Sfax University, Sfax, Tunisia
3LIRMM Laboratory, University of Montpellier 2, Montpellier, France

Keywords: SPL, Semantic Name Correspondence, Feature Diagram, Feature Identification From Source Code.

Abstract: Software Product Lines can be constructed through either a top-down or bottom-up process. A top-down
process begins by a domain analysis where variabilities are specified then it derives the product line. It is
especially interesting for the creation of new product lines. However, in practice, SPL are often set up after
several similar product variants have been in use. This practice prompted the search for bottom-up processes
that start from an analysis of existing product variants to identify the product line. The proposed bottom-up
processes rely on two hypotheses: the product variants use the same vocabulary to name elements in their
source code, and the product variants have very similar/identical structures. However, while the names repre-
sent the application domain of the products, when different developers were involved in the development of the
product variants, the naming assumption becomes too restrictive. Furthermore, the variants’ code structures
are often different when developed separately and even when one variant is derived from another through sev-
eral modifications. To loosen these two hypotheses, this paper proposes a bottom-up approach that integrates
the semantic aspect of the product variants when extracting the SPL feature model. In addition, a second
contribution of our approach is its capability to identify automatically the constraints among the identified
features.

1 INTRODUCTION

A Software Product Line (SPL) (Clements and
Northrop, 2001) is a set of systems that share a group
of manageable features. A feature is seen as an end-
user, visible characteristic of the system (Kang et al.,
1990). The features of an SPL can be used in variable
combinations to derive product variants in the SPL.
To represent the variability in an SPL, a feature model
(or diagram) is used to specify the SPL variants and
variation points; it indicates the features and the con-
straints (and, or, require, etc) relating the features to
one another. A feature model is constructed by the
development processes of SPL either in a bottom-up
(cf., (Ziadi et al., 2012), (She et al., 2011)) or top-
down (cf., (Ziadi, 2004)) approach.

A top-down development process starts with a do-
main analysis to construct the feature model of an
SPL. Thus, this process is driven by the functional
requirements towards the definition of alternative so-
lutions. It is best applied when the application do-
main has not yet been sufficiently explored. However,

this type of processes is time consuming and requires
guidelines (so far undefined) for the domain require-
ments analysis. On the other hand, a bottom-up pro-
cess starts from the code of a set of products in a given
domain and it identifies their common and variable
features. The purpose of examining sample products
is to create a generic reusable SPL that is understand-
able and easy to reuse.

In recent years, several researchers examined the
extraction of features and/or feature models from
product source codes. Existing feature identification
approaches (Ziadi et al., 2012), (Al-Msie’Deen et al.,
2012), (Salman et al., 2012) (Acher et al., 2013) rely
on two essential hypotheses: all source codes use the
same vocabulary to name packages, classes, attributes
and methods in their source codes; and the product
variants have very similar/identical structures. These
assumptions stem from their way of seeing how the
product variants were created: essentially through
”copy” and ”paste” operations which, indeed, pre-
serve the names and cause little structuring changes.
However, these approaches cannot be applied in the

154 Maazoun J., Bouassida N., Ben-Abdallah H. and Seriai A..
Feature Model Extraction from Product Source Codes based on the Semantic Aspect.
DOI: 10.5220/0004486701540161
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 154-161
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



general setting where an SPL should be constructed
from product variants that were produced by different
developers, and/or product variants that endured so
many modifications that the ”same names and struc-
ture” assumptions are violated. For instance, a class
in one product can be represented in a second product
through two classes where the attributes and methods
of the original class are distributed. A second exam-
ple of product variability is when a class in one prod-
uct was moved from one package to another package.
For these simple examples, existing feature identifi-
cation approaches would fail. Besides the two restric-
tive assumptions, existing bottom-up SPL construc-
tion approaches have limitations in the identification
of the constraints relating identified features: Some
approaches offer no guidance in the identification of
the constraints (cf., (Ziadi et al., 2012)), while others
manage to identify some constraints without a certi-
tude on their types, e.g., they do not distinguish be-
tween the AND and Require constraints. However,
the constraints are as important as the features in an
SPL since they are the means to derive product vari-
ants from an SPL.

In this paper, we propose a bottom-up SPL con-
struction approach that both accounts for the differ-
ences in the names and structures of the source code
products, and identifies automatically the feature con-
straints along with the features. Our approach was in-
spired from (Al-Msie’Deen et al., 2012); it fine-tuned
Formal Concept Analysis (FCA)(Ganter and Wille,
1996) and Latent Semantic Indexing (LSI) (Binkley
and Lawrie, 2011) by using semantic analysis to by-
pass the naming assumption and alleviate the struc-
ture assumption. In addition, it confirms the feature
constraint types by using semantic criteria.

The remainder of this paper is organized as fol-
lows. Section 2 overviews currently proposed ap-
proaches for feature identification from source code
of product variants. Section 3 presents our technique
for feature extraction using the semantics. In addition,
it illustrates it through an example of an SPL for mo-
bile phones. Finally, Section 4 summarizes the paper
and outlines our future work.

2 RELATED WORK

As mentioned in the introduction, an SPL is often
modeled in terms of a feature model. Before examin-
ing existing approaches for SPL construction, we find
it necessary to first overview the concept of feature
models.

2.1 Feature Models

Feature models are a popular means to express re-
quirements in a domain at an abstract level. They are
used to describe variable and common properties of
products in a product line, and to derive and validate
configurations of software systems. As introduced by
the FODA method (Kang et al., 1990) and by (Czar-
necki and Eisenecker, 2000), a feature model repre-
sents a hierarchy of properties of domain concepts. A
feature is a prominent or distinctive quality or charac-
teristic of a software system or systems (Kang et al.,
1990).

Feature models have also been used to improve
program comprehension. In most reengineering activ-
ities, the source code is the only reliable source of in-
formation. Feature models allow designers to bridge
the gap between the concrete code and the fairly ab-
stract information of documents such architecture de-
sign. They are applied in methods for supporting re-
verse engineering in a hypothesis-verification proce-
dure (Riebisch, 2003).

A Feature model has a tree structure where each
node represents a feature. Feature variability is rep-
resented by the arcs and groupings of features. There
are two different types of feature groups: Mandatory,
Optional (see Table 1).

Table 1: Different types of feature groups.

Feature Definition Notation
Mandatory Child feature

is obligatory.

Optional Child feature
is optional.

In addition to the parental relationships between
features, constraints between the nodes across-tree are
allowed. The five most common cross-tree constraints
are: Xor, Or, Require, And, Exclude (see Table 2)

Note that since the features are identified from the
code source, then each feature can be documented by
the corresponding source code parts. This documen-
tation is essential in the creation of a new product
variant from a feature model. Note also that a feature
can be either simple/elementary like a package and a

Feature�Model�Extraction�from�Product�Source�Codes�based�on�the�Semantic�Aspect

155



Table 2: Different constraints in feature groups.

Constraint Definition Notation

Or At least one
of the sub-
features must
be selected

Xor One of the
sub-features
must be
selected

Require The selection
of A in a
product ne-
cessitates the
selection of B

And A and B must
be part of the
same product.

Excludes A and B
cannot be part
of the same
product

class, or composed of several elements like fpackage,
Classg, fpackage, Class,attribute, methodg...

2.2 Feature Model Extraction
Approaches

Several approaches were proposed to extract feature
models. Some of them extract feature models from
product descriptions. For example, Acher et al.,
(Acher et al., 2010) propose to reverse engineer fea-
ture models from the documentation of products; and
(Acher et al., 2013) propose to extract feature models
from the product configurations. Other approaches
propose to extract feature models from source code
but for different purposes (Lozano, 2011). One main
purpose of extracting feature models is to obtain in-
formation to understand and possibly refactor the
SPL. For instance, (Rubin and Chechik, 2012) aims
at refactoring existing, closely related products into a
product line. Their approach compares the product el-
ements and measures their degree of similarity based
on which elements can be merged as features.

A second purpose of feature model extraction is

to analyze and understand the evolution of SPL cf.,
(Xue, 2011), (Loesch and Ploedereder, 2007). For ex-
ample, (Xue, 2011) aims at assisting analysts in de-
tecting changes to product features during their evo-
lution. They propose a model differencing algorithm
to identify evolutionary changes that occurred to fea-
tures of different product variants. On the other hand,
Loesch et al. (Loesch and Ploedereder, 2007) note
that obsolete variable features are not removed after
an SPL evolution; thus, they treat the problem of re-
structuring variability in an SPL that was degraded in
its evolution. For this purpose, they use Formal Con-
cept Analysis (FCA) to construct a lattice that classi-
fies the usages of variable features in real products.

Furthermore, some works were interested in fea-
ture model extraction for reverse engineering and
maintenance purposes. As an example, (She et al.,
2011) propose an approach that constructs the feature
model once the features have been identified. This ap-
proach takes as inputs a set of feature names, descrip-
tions and dependencies, and it uses a set of heuris-
tics to find the hierarchies among the features. It can
identify feature groups (i.e. features used together),
mandatory features and features that imply or exclude
other features. However, it cannot identify alternative
groups (Or-groups).

Several works investigated feature model extrac-
tion from the source code of products in order to con-
struct the SPL ((Ziadi et al., 2012), (Al-Msie’Deen
et al., 2012),(Paskevicius et al., 2012)). For instance,
(Ziadi et al., 2012) propose an approach that first ab-
stracts the input products in SoCPs (Sets Of Construc-
tion Primitives ) and, secondly, it identifies features by
determining common and intersecting SoCPs. This
approach was validated using two case studies: a
banking example and the Argo-UML software prod-
uct line (Couto et al., 2011). The obtained results
show that the approach can handle products with vari-
able names of classes, methods and attributes. How-
ever, this approach does not examine the body of the
methods. In addition, the produced feature model
contains only one mandatory feature and optional fea-
tures; it can identify neither separated mandatory fea-
tures, nor alternative features and their related con-
straints such as the mutual exclusion.

On the other hand, Al-Msie’Deeen (Al-
Msie’Deen et al., 2012) propose an approach
based on the definition of the mapping model be-
tween OO elements and feature model elements. This
approach uses Formal Concept Analysis (FCA) to
cluster similar OO elements into one feature. It uses
Latent Semantic Indexing (LSI) to define a similarity
measure based on which the clustering is decided.
This approach improves the approach of Ziadi (Ziadi

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

156



et al., 2012) since it extracts mandatory features and
optional features along with some constraints among
features like And and Require. However, it does
not treat product variants wit different structures or
different terminologies.

(Salman et al., 2012) present a genetic algorithm
to recover traceability links between feature mod-
els and source code. Traceability links in SPL are
needed to relate variation points and variants with all
corresponding low level artifacts (requirements, de-
sign, source code and test cases artifacts). The ge-
netic algorithm can determine approximately the im-
plementation of each feature (by linking the feature to
classes). However, it generates just one solution for
each run, and the number of runs necessary to deter-
mine all possible classes for each feature is unknown.
In addition, when the number of features and classes
grows, the number of possible implementations for
each variable feature grows exponentially.

In summary, considering the semantic aspect
when extracting the SPL from product variants source
code is missing in existing works. In addition, ex-
isting approaches suppose that the product variants
have a similar/identical structure and the same termi-
nology. However, even though products may vary in
their package, class, attribute, and method names and
structures, they solve semantically the same problems
in their domain. These semantic relationships must be
accounted for.

3 FEATURE MODEL
IDENTIFICATION BASED
AND SEMANTIC CRITERIA

As argued in Section 2.2, considering only
elements with identical names and structures when
extracting feature models from existing products
is too restrictive. Semantics carried through the
names of the classes, packages, attributes and method
declarations is also important to identify the features
and their constraints.

To account for semantics, our feature model ex-
traction operates in three steps (cf., Figure 1):

� Name harmonization: in this pre-processing step,
the semantic correspondences among the names
of the packages, classes, methods and attribute
are treated. This step relies on linguistic and typ-
ing information to harmonize the names. It also
resolves the problems where the same attribute
exists but with different types (e.g., integer or
string).

Figure 1: Feature model extraction process.

� Features identification: In order to tolerate some
structural differences among the source codes of
the product variants, we adapt the FCA (Loesch
and Ploedereder, 2007) and LSI (Binkley and
Lawrie, 2011) by considering the semantics.

� Feature model construction and constraints identi-
fication: In this last step, the semantic information
is used first to define the hierarchy in the feature
model and, secondly, to extract the types of con-
straints among identified features. For this, a set
of semantic criteria are used to ensure that all con-
straints among the features are extracted correctly.

In order to determine the correspondences be-
tween the names, we adapted the set of semantic cri-
teria we defined in our previous works on construct-
ing frameworks (Ben-Abdallah et al., 2004). The fol-
lowing three criteria express linguistic relationships
between element names (however, the list can be ex-
tended):

� Synonyms(C1,� � � ,Cn): implies that the names are
either identical or synonym, e.g., Mobile-Mobile
and Phone-Mobile.

� Hypernyms(C1; C2,� � � ,Cn): implies the name C1
is a generalization of the specific names C2 ,� � � ,
Cn, e.g., Media-Video.

� Meronyms(C1; C2): implies that the name C1 is a
string extension of the name of the class C2, e.g.,
Image-NameImage.

The determination of the above linguistic/semantic re-
lationships can be handled through either a dictionary
(e.g., Wordnet), or a domain ontology when available.

Feature�Model�Extraction�from�Product�Source�Codes�based�on�the�Semantic�Aspect

157



We will illustrate the steps of our approach
through the example of an SPL for mobile phones.
This SPL example is a software product family with
nine product variants Our approach takes as input the
source code of a set of these product variants. Each
product implements a simple mobile application.

3.1 Name Harmonization

The product variants must be first harmonized to be-
come suitable as input to the LSI (in step 2). This pre-
processing starts by identifying the semantic corre-
spondences between the names of packages, classes,
methods and attributes names. The semantic relations
are examined in the following order: the equivalence
(Synonyms), the string extension (Meronyms), and
then the generlization (Hypernyms).

All element names identified as equivalent are har-
monized by keeping one version of them across all
the product variants. In our mobile phone, in the class
”AddPhotoToAlbum”, we found ”GetPhotoName()”
and ”SetPhotoName()”; these two methods are equiv-
alent. A second example is the methods ”GetItem-
Name()” and ”SetItemName()” are also equivalent.
A third example is the equivalence between the at-
tributes ”image” and ”photo”. For each pair of equiv-
alent names, one of them is chosen to replace all other
occurrences of the name.

After the equivalent names are harmonized, the
pre-processing step considers the semantic relation-
ship ”Meronyms(C1; C2)” to replace the occurrences
of C2 by C1 which, being an extension of C2, is more
informative. In our example, we found ”Image” and
”ImageName”. At this stage, ”ImageName” will re-
place all occurrences of ”Image” in all product vari-
ants.

Finally, in general and especially with JAVA, the
class and its constructor has the same name. In
this case, we ignore one of them to save time. For
example, in the class AlbumListScreen, we found
methods having the same name AlbumListScreen(),
AlbumListScreen(String args0, int arg1), Album-
ListScreen(String args0, int arg1, String[] args2, Im-
age[] arg3).

At the end of the pre-processing step, all seman-
tically related names would be harmonized and can
then be analyzed through the FCA in the features
identification step.

3.2 Features Identification Step

In this step, we use FCA and LSI to extract the com-
monalities and variabilities among the harmonized

product variants. Before explaining this step, let us
first overview the basics of FCA and LSI.

Formal concept analysis (FCA) (Ganter and Wille,
1996) is a method of data analysis with a growing
popularity across various domains. As illustrated in
Figure 2, the main idea of FCA is to analyze data de-
scribed through the relationships among a particular
set of data elements (the table in Figure 2). In our ap-
proach, the data represent the product variants being
analyzed; the data description is represented through
a table where the product variants constitute the rows
while source code elements (packages, classes, meth-
ods, attributes) constitute the columns of the table.
Due to space limitations, Figure 4 shows an extract
of this table.

From the table, a concept lattice is derived. The
concept lattice permits, in the first time, to define
commonalities and variations among all products.
(The last part of Figure 2). The top element of the
lattice indicates that certain objects have elements in
common (i.e., common elements), while the bottom
element of the lattice shows that certain attributes fit
to common objects (variations). The elements are
grouped in blocks. First, common elements are com-
mon block which are commonly used in all products.
Secondly, the blocks of variations only appear in spe-
cific products. Common blocks and block variations
are composed of atomic blocks of variation represent-
ing only one feature.

Figure 2: Basics of the FCA analysis process.

In our running example, the common block con-
tains all the source code elements that appear in every
product. The source code elements that are shared by
more than one product are a block of variations. Ex-
ample,”Package:screen”, ”Class: AlbumListScreeb”,
”Class: PhotoViewScreen” presents the common
block. Others, like ”Class:AddListToAlbum”,
”Method:SelectionTypeOfMedia” are blocks of vari-
ation.

Besides the blocks, the lattice also indicates the re-
lationships among elements. The following relation-
ships can be automatically derived from the sparse
representation of the lattice and presented to the an-
alyst:

� Mandatory: features appearing at the top concept
in the lattice are used in every product.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

158



Figure 4: Part of the formal context describing mobile systems by source code elements.

Figure 3: Example of different structures.

Figure 5: The lattice for the formal context of Table 1.

� Optional: features appearing at the bottom con-
cept in the lattice are used in some product.

� Xor: Two variable features F1 and F2 that ap-
pear in different concepts and whose infimum is
the bottom concept are only used in alternative in
the product. These features are likely to be Xor
features,

� Require: if any element has all attributes in F1

also has all attributes in F2

� AND: Two features F1 and F2 that appear in the
same concept

Recall that, in our work, we suppose that the prod-
uct variants are implemented by different developers.
Consequently, the products may have different struc-
tures. For example, a class in one product can be re-
placed in a second product with two classes where the
attributes and methods of the original class are dis-
tributed.

In the extract shown in figure 5, we note that the
common elements are indicated with the same color.
We have common methods and attributes present in
two classes for the first developer and in one class for
the second developer. Thus, if we consider the owner
of the attributes and methods (as treated in (Ziadi
et al., 2012)(Al-Msie’Deen et al., 2012)), then these
attributes and methods will be considered as differ-
ent. For example, the owner of method ”InitMenu()”
is the class ”AlbumListScreen” to the first devel-
oper (InitMenu(), AlbumListScreen) and the class
”ListScreen” to the second developper (InitMenu(),
ListScreen), these pairs are considered different. To
resolve the problem of structure, we omitted the
owner information.

Moreover, since all the products belong to the
same application domain, there are semantic relation-
ships among the words used in the names. To de-
fine the similarity, we apply LSI. It allows to mea-
sure the similarity degree between names for pack-
ages, classes, methods and attributes. Informally, LSI
assumes that words that always appear together are
related (Binkley and Lawrie, 2011). Consequently,
we use LSI and FCA to identify features based on

Feature�Model�Extraction�from�Product�Source�Codes�based�on�the�Semantic�Aspect

159



the textual similarity. Similarity between lines is de-
scribed by a similarity matrix where the columns and
rows represent lines vectors. LSI uses each line in the
block of variations as a query to retrieve all lines sim-
ilar to it, according to a cosine similarity. In our work,
we consider the most widely used threshold for cosine
similarity that is equals to 0.70 (Binkley and Lawrie,
2011). The similarity matrix which is the LSI result
is used as input for the FCA to group the similar ele-
ments together based on the lexical similarity. Thus,
any document that has similarity with only itself will
be ignored. We take the interchanged context as input
for FCA which identifies the meaningful groupings of
objects that have common attributes.

In our case, each line in the block of variations
represents one product variant and at the same time it
represents a query. The application of the name har-
monization step followed by the identification of fea-
ture step extract candidate features without any struc-
ture or hierarchy.

The next step in our approach determines the hi-
erarchy and constraints among features and finalizes
the feature model construction.

3.3 Feature Model Construction and
Constraints Identification

This phase has a threefold motivation. First, the fea-
tures which are composed of many elements (pack-
age, classes, attributes, methods) are renamed based
on the frequency of the names of its elements. For ex-
ample, the feature F1 which is composed of ”Class:
AddMediaToAlbum”, ”Method: MediaListScreen”,
”Method: PlayMediaScreen”, ”Method: SelectType-
OfMedia” is renamed MEDIA. Since, it is the word
the most frequent and significant.

In addition, the organization and structure of the
features is also retrieved based on the semantic crite-
ria. In fact, since the owner information was omitted,
then to retrieve the organization of the features, we
use the semantic criterion

Hypernyms(FeatureN1, FeatureN2) �! FeatureN1
is the parent of FeatureN2

For example,the relation Hypernyms(Media,
Photo)and Hypernyms(Media, Video) implies that
the feature Media is the parent of the features Photo
and Video. Moreover, the relation between these
feature ”Photo” and ”Video” can be ”OR” or ”XOR”.
To resolve this problem, we use Meronyms(Name1,
Name2).

Meronyms(FeatureN1, FeatureN2) �! FeatureN1
OR FeatureN2

In fact, Meronyms(MediaListScreen, Pho-
toListScreen) and Meronyms(MediaListScreen,
VideoListScreen) implies that features Photo and
Video are related with OR.

Finally, the constraints between the different fea-
tures that are extracted with FCA and LSI are verified
and some others are added based on the semantic cri-
teria.

Synonyms(FeatureN1, FeatureN2) �! FeatureN1
XOR FeatureN2

In our running example, we found that the
features ”NewAlbumScreen” and ”NewLa-
belScreen” have equivalent names. Syn-
onyms(NewAlbumScreen,NewLabelScreen) implies
that these two features play the same role (Thus one
of them is sufficient) and they are related by XOR.
However, when we found these two features do not
the same parent, therefore they are related with an
Exclude relation.

At the end of this last step, all the features are col-
lected in a feature model to specify the variations be-
tween these products. The feature model of the mo-
bile system is shown in Figure 6; the features with
white circles are Optional while the features with
black circles are Mandatory.

Figure 6: Mobile media system FM.

4 CONCLUSIONS

This paper first overviewed existing works for feature
model extraction from product variants. Secondly, it
presented a new approach based on a set of linguis-
tic criteria to identify a feature model from different
product source codes. Besides accounting for naming
differences, our approach has the advantage of identi-
fying automatically the features and their constraints
in source codes with different structures. The paper
illustrated the proposed approach through the extrac-
tion of the feature model of an SPL for mobile phones.

In our ongoing works, we are examining how to
add more intelligence in the feature model extraction
by considering product variants where the variability
is in the body of the operations. We will also con-
sider the use of semantics in the refactoring of soft-
ware product lines.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

160



REFERENCES

Acher, M., Baudry, B., Heymans, P., Cleve, A., and Hain-
aut, J.-L. (2013). Support for reverse engineering
and maintaining feature models. In Proceedings of
the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS ’13,
pages 1–8, New York, NY, USA.

Acher, M., Collet, P., Lahire, P., Moisan, S., and Rigault,
J. (2010). Modeling variability from requirements to
runtime.

Al-Msie’Deen, R., Seriai, A., Huchard, M., Urtado, C.,
Vauttier, S., and Salman, H. (2012). An approach
to recover feature models from object-oriented source
code. In Day Product Line 2012.

Ben-Abdallah, H., Bouassida, N., Gargouri, F., and
Hamadou, A. B. (2004). A uml based framework de-
sign method. Journal of Object Technology, pages 97–
120.

Binkley, D. and Lawrie, D. (2011). Information retrieval
applications in software maintenance and evolution.
In Encyclopedia of Software Engineering, pages 454–
43.

Clements, P. and Northrop, L. (2001). Software product
lines: Practices and patterns. SEI Series in Software
Engineering.

Couto, M., Valente, M., and Figueiredo, F. (2011). Extract-
ing software product lines: A case study using condi-
tional compilation. pages 191–200.

Czarnecki, K. and Eisenecker, U. (2000). Genera-
tive programming - methods, tools and applications.
Addison-Wesley.

Ganter, B. and Wille, R. (1996). Formal concept analysis:
Mathematical foundations. Springer-Verlag.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A.
(1990). Feature-oriented domain analysis (foda) fea-
sibility study,. Technical report CMU/SEI-90-TR-21,
Software Engineering Institute,Carnegie Mellon Uni-
versity,.

Loesch, F. and Ploedereder, E. (2007). Restructuring vari-
ability in software product lines using concept analy-
sis of product configurations. pages 159–170.

Lozano, A. (2011). An overview of techniques for detecting
software variability concepts in source code. In ER
Workshops, pages 141–150.

Paskevicius, P., Damasevicius, R., and tuikys, V. (2012).
Quality-oriented product line modeling using feature
diagrams and preference logic. In Information and
Software Technologies, pages 241–254.

Riebisch, P. (2003). Using feature modeling for program
comprehension and software architecture recovery.
Huntsville Alabama, USA.

Rubin, J. and Chechik, M. (2012). Combining related prod-
ucts into product lines. In FASE, pages 285–300.

Salman, H., Seriai, A., Dony, C., and Al-Msie’Deen, R.
(2012). Genetic algorithms as recovering traceability
links method between feature models and source code
of product variants. In Day Product Line 2012.

She, S., Lotufo, R., Berger, T., Wsowski, A., and Czarnecki,
K. (2011). Reverse engineering feature models. pages
461–470.

Xue, Y. (2011). Reengineering legacy software products
into software product line based on automatic variabil-
ity analysis. pages 1114–1117.

Ziadi, T. (Decembre, 2004). Manipulation de lignes de pro-
duits en uml. These de doctorat, Universite de Rennes
1.

Ziadi, T., Frias, L., da Silva, M. A. A., and Ziane, M. (2012).
Feature identification from the source code of product
variants. pages 417–422.

Feature�Model�Extraction�from�Product�Source�Codes�based�on�the�Semantic�Aspect

161


