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Abstract: Based on the paradigm biological receptor and its fundamental feature to filter signals and transduce them, we
set up a mechanical sensor system to find hints to establish a measurement or monitoring system. These tech-
nical systems have to offer high sensitivity to signals from the environment. To mimic the complex behavior
of the biological system, adaptive controllers have to be applied to a mechanical sensor system to compensate
and filter unknown ground excitations (uncertainties of the system). Before doing this we summarize previous
work on controlling such mechanical systems. We expose the need of improvements of already existing strate-
gies from literature, the corresponding problems are formulated. Improved adaptive controllers are presented.
Their working principle is illustrated in various numerical simulations and experiments.

1 INTRODUCTION 2 HAIR FOLLICLE RECEPTORS

In nature there are various senses that allow animalsL€t Us focus on mammalian receptors. The vibrissae

to perceive their environment. Depending on the dis- S€rve mainly as levers for force transmission. If the
tance of objects to be sensed from the system bound-nair is deflected due to some excitations, e.g., wind,
aries of the animal (usually the skin), sensors are this mechanical (oscillation) energy is then transmit-

distinguished between “far field” (e.g., vision) and t€d to the various receptors, which respond to any
“near field”, of which the sense of vibrations is a spe- Mmovementofthe hairs, see Fig. 1. Areceptor has only
cial case. Here, we focus on the sensing of vibra- ONe fun_ctlon: to transducela (mechanical) stimulus to
tions for purposes of exteroception (outside the body), "eural impulses (Soderquist, 2002). However, a re-
not ignoring the phylogenetic relation to interoception CEPtor never continues to respond to a non-changing
mechanisms like proprioception. Vibrations are an Stimulus in transducing information to the CNS as
important piece of environmental information that in- 10ng as the stimulus is present. It rather depends on
sects rely on, especially arachnids, such as spiders andn€ type of stimulus. If some impulses stimulate a re-
scorpions. To perceive vibrations, they have different ceptor then there is a rapid and brief response of the
types of sensilla (or tactile hairs, (Barth, 2004)). Ver- receptor to it. _Th|s response declines if the stimu-
tebrates, such as cats, rats and sea lions, also posseds is unchanging. Due to permanently changing en-
the sense of vibration. They can perceive vibrations Vironments the receptors have to be ipemanent
with the help of their vibrissae (whiskers). stat_e of adaptationto adjust their behawo_r. The rate
Although these biological vibration receptors have OF time needed to adapt or stop responding to an un-
a different physiology — (Iwasaki et al., 1999) or c_han_gmg stlmglus is the main cha_lractensuc to dis-
(Smith, 2008) for classifications, they share common tinguish two different types of tactile receptors, see
properties: When in touch with an oscillating ob- F|g..2. The classification is, (Soderquist, 2002) and
ject, they are moved and stimulate various (pressure-(sm'thv 2008):

sensitive) receptors which have to analyze the stimu- e fast adapting (FA) receptoencompass hair fol-
lus and to transduce their gained adequate information licle sense endings: as mentioned previously, FA
to the central nervous system (CNS). receptors react to applied movements or pressures
Mechanoreceptors of this kind are present throughout  with a fast (rapid) response of activity, which is
the integument of insects (cuticula) and mammals (fur succeeded by a decrease of it even though the
on skin). stimulus is still present. This means, that, if a
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Figure 1. Follicle-sinus complex (FSC) of a vibrissa with
various types of receptors (blue); adapted from (Ebara.et al
2002) and (Rice et al., 1986).
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Figure 2: Adaptation processes of FA and SA receptors,
modified from (Soderquist, 2002).

mechanical pressure via an unchanging force is
applied the FA receptor responds quickly with a

steep increase of activity and then decreases this

activity and waits for a further stimulus, it adapts
its activity in order to notice changes in the stim-
ulus;

the counterpart arslow adapting (SA) receptars
e.g., Merkel cells — these receptors work in a
similar way as FA receptors but offer two ways of
operation: first, as usual to receptors, a rapid re-
sponse is followed by a decrease of activity. But,
there is also a long duration of time of activity
of these receptor cells from the beginning of the
stimulus. This is in contrast to FA receptors.

The described behavior is shown in Fig. 3.
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Figure 3: Activity behavior of FA and SA receptors, modi-
fied from (Soderquist, 2002).

Here, we want to focus on tHfast adapting re-
ceptors The sensibility of these cells is continuously
adjusted so that the receptor system converges to the
rest position despite the continued excitation (Dudel
et al., 1996). Hence, the perception of the continu-
ous unchanging excitation is damped. Therefore, the
excitation is considered irrelevant, once it has been
perceived. If however a different excitation, such as
a sudden deviation of the vibrissa sensor, occurs, this
information is relevant and the sensor has to be sensi-
tive to perceive it. If, for example, a cat is exposed to
wind, the recognition of the resulting excitation of the
whiskers will be damped and ignored. If the cat en-
counters an obstacle, the receptors should still be sen-
sitive enough to perceive the sudden deviation of the
whiskers while the wind excitation persists. There-
fore, the adaption process has to ensure enduring sen-
sitivity.

In the following, we set up a simple mechanical
model to map all important features of fast adapting
receptors via adaptive control strategies applied to the
mechanical system.

3 MECHANICAL MODELING

Motivated by the biological observations in the fore-
going section we consider a simple model of a recep-
tor in form of a spring-mass-damper-system within
a rigid frame, which is forced by an unknown time-
dependent displacemenf-). Moreover, the mass
is under the action of an internal control foraé)
to compensate the unknown ground excitations, see
Fig. 4, wherexis the absolute coordinate. The param-
eters of this sensory system andthe forced seismic
point mass), the damping factdmand the spring stiff-
nessc.
We derive the differential equation of motion by using
Newton’s second law:
mX(t) = —d (x(t) — a(t))
—c(x(t) —a(t)) +u(t), (1)

X(0) =x0, Xx(0)=x3.
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Figure 4. Mechanical model of a sensor system (receptor
model) (Behn and Steigenberger, 2010).

e

With y = x — a as the relative coordinate of the point
mass, we arrive at the following differential equation
of the relative motion with respect to the frame
mWU+dWU+CWU——mﬂU+um,}
¥(0) =x—a(0), y(0)=x—a(0).

If y(-) is the measured output of the system, (2) is
presented in normalized form

(o) =[5 5] C)
Flafuos |go) (@
y(0) =xo—a(0), y(0)=x—2a(0).

4 SCOPE, PROBLEM AND GOAL

Scope:The goal is to achieve a predefined movement
of the receptor mas® of the sensor system in Fig. 4
such as stabilization of the sensor system or tracking
of a reference trajectory. It is obvious that the sole
possibility of influencing this system lies in the (con-
trol) force u(-). Hence, we have to design and im-
plement a controller which ensures a desired system
output behavior. Therefore, the scope/objectis to find
a suitable control strategy that reproduces the special-
ities of the biological system receptor.

This system is similar to seismic sensor systems to de-
tect (unknown) ground excitations due to the principle
of passive oscillation perception.

Problem: In general, one cannot expect to have
complete information about a mechanical or biologi-
cal system, but instead only structural properties are
known. It is important to point out that all system pa-

rameters are supposed to be unknown because of the

sophisticated nature of the biological system. The ex-
ternal excitatiora(-) (biological disturbance to the re-

ceptor) is unknown and the mass, spring and damping
factors are uncertain, e.g., vary in time due to thermic
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influences. Here, uncertainty of the factors mean that
they have a positive value, but they are not known ex-
actly, only a valid range, e.qc.€ [c,T]. Summarizing,

we have to deal with dighly uncertain (control)
systemof known structure. This is why traditional
control methods fail, as they rely on the knowledge of
those parameters. The consideration of uncertain sys-
tems leads us to the use of adaptive control. By the
above mentioned adjustment of the receptor we are
given the task to adaptively compensate the unknown
ground excitation: we have to design an adaptive con-
troller, which learns from the behavior of the system,
so automatically adjusts its parameters in such a way
that the (seismic) point mass tends to the rest position
in spite of the continuing excitation.

Goal: We choose tha-tracking control objective
(Behn and Zimmermann, 2006) due to the high-gain
property of the sensor system presented in (3).
tracking allows for simple feedback laws and does
not focus on exact tracking since we deal with an un-
certain system. Therefore, the goal is to act on the
system in such a way that the system oufguitis A-
tracked, i.e., the system outputis forced into an error
neighborhood\ around a set point trajectomyes(-).

If yref(-) =0, the problem is known as-stabilization.
In this case, the receptor is supposed to remain in its
equilibrium state (rest position).

This design of controllers depends tremendously
on the system properties. The adaptive control strate-
gies should meet the followingquirements

ability to apply the controllers without any knowl-
edge about system parameters;

e simple feedback structure;

optimal control performance regarding

- short settling time: a desired quality of adap-
tive controllers is finite time behavior. Since all
system parameters are unknown and the level
of the necessary control gain cannot be antici-
pated, itis also unknown at which pointin time
the control objective will be achieved. Con-
trollers with finite time behavior enable the user
to specify a time at which the control objective
will be achieved at the latest.

simple structure of controller equations;

small level of gain parameters, level of error in-
side the\-tube;

ability to quickly adapt to parameter changes. It
is imperative to keep the sensitivity of the sys-
tem high. If, for example, a recurring excitation

signala(-) acts on the system, it is supposed
that its influence is to be damped by the con-
troller. Once the sensor/receptor has noticed
this excitation it has to fade it out to wait for
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further new information.
adjust its parameters.

It has to adaptively

damping factod and the spring stiffnessrepresent

If however the excita- positive real values, then we can simplify system class

tion subsides or is replaced be one with a much (4) to a very special one:

lower amplitude, the system is supposed to re-

main sensitive and quickly adjust the control
parameters.

5 SYSTEM CLASSES

The equations of motion (3) fall into the cate-
gory of quadratic, finite-dimensional, nonlinearly per-
turbed,m-inputu(-), moutputy(-) systemsMIMO -
systems) of relative degree two, for sh8shoenint, of
the form

y(t) = A2y(t) + f1(sL (t), y(t), (t))+GU()
2(t) = Asz(t) + AoY(t) + f2(s2(t), ¥(1)) . @)
y(to) = Yo, ¥(to) =y1, 2(to) =2,

with y(t), yo, y1, u(t) € R™, z(t), z0 € R™2™, Ay,
G ¢ R™m Aséanm n2m)A0€Rn 2m)xm
n > 2m, and, for natural numbey andqy it holds

(i) spedG) c C,, i.e., the spectrum of the “high-

e we restrict tosingle-inputu(-), single-outputy(-)
systems $1SO-systemm = 1),

e then, we claim®; < 0,
¢ and we neglect the coupling terdy := 0.

Hence, we arrive at a subclass of finite-dimensional,
nonlinearly perturbed SISO-system with strict rela-
tive degree twosz nonlinz for short, of the form

Y(t) = Aoy(t) + fu(su(t), y(t), 2(t)) + Gu(t),
2(t) = Asz(t) + f2(s2(t),y(1)) , (5)
y(to) = Yo, Y(to)=y1, 2zto)=2,

with y(t),Yo,y1,u(t),G,A2 € R, z(t),z € R"?,

As € R(-2x(=2) 'n > 2 "and forgy, gp € N it holds

(i) G> 0, i.e., a positive input gain (“high-frequency
gain”);

(i) si() € L2(Rso;R%) andsy(-) € L7 (R0, R%),
i.e., they may be thought of as (bounded) distur-
bance terms;

frequency gain” Iles in the open right-half com- (iii) the functionsf; : R% x R x R"2 — R and f, :

plex plane;

(i) s1(-) € L7 (Ro0;R%), 5(-) € L2 (R0;RP?) may

be thought of as (bounded) disturbance terms,

where s (t) = gi(t,y(t),y(t),z(t)) is also pos-
sible with i(-,-,-,-) € L*(R>o x R™ x R™ x
Rn—Zm;qu);

(iii) the functions f : R% x R™ x R"2M —, R™ and
fy : R%2 x R™ — R"2M gre continuous functions
and, for compact set€; ¢ R% andC, C R%,

there existcy, ¢ > 0 such that for all(s,y,z) €
Cy x RMx Rh—2m

[fi(sy,2)|| < ce[1+ Iyl +1I2ll],
and for all(s)y) € C; x R™
[ f2(s.y)]| < c2[1+Iyll]-

(iv) spedAs) C C_, i.e., the system is minimum
phase, provided; =0, f, =0

It is easy to prove that every system of this system
class has strict relative degree two. Therefore, rela- Z(t)

tive degree two means that the conw6l) directly in-

fluences the second derivative of each output compo-

nent. The term\oy appears in connection with under-
actuated systems (Behn and Zimmermann, 2006).

If we inspect system (3) in more detail and take
the physical meaning of the parameters into account,

i.e., the mass of the forced (seismic) point masthe

(iv) spedAs) C C_,

R% x R — R"2 are continuous ones and, for
compact set€; ¢ R% andC, c R®, there exist
c1, C2 > Osuchthatforalls,y,z) € C; x R x R"?

[ fi(s)y, a [1+1yl+112],
and for all(s)y) e Co xR

7)| <

[f2sy)]| < c2[1+I¥];

i.e., the system is minimum
phase, provided; =0, f,=0
(V) A2 <0, i.e., this system has a zero-center in

the open left-half complex plane (a “stable zero-
center”), see (Ogata, 1997).

Itis easy to check thafs noniine C S2,nonlim. holds.
In order to capture more relevant SISO-systems we
introduce a generalized system classS@fonlinz in
the following — system class$; nonlin3 :

y(t) = fo(so(t), y(t),z(t)) y(t)
+fr(s1(t),y(t), z(t)) + Gu(t),

=Asz(t) + fa(s2(t), y(1)) ,

y(to) =Yo, Y(to) =Yy1, 2zto) =2,

with y(t),yo,y1,u(t),G € R, Z(t),z0 € R" 2, As €
R("™2x(""2), n> 2, and forgo,q1,G2 € N we have

(6)

+ to claim that the following will hold additionally:

(i) so(-) €

L2 (Rxg;R%);
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(iii) fo:R% xR xR"?— Ris a continuous function,
and for a compact sdfy C R%, there existco,
€ > 0 with & > co, such that for all(s)y,z)
Co x R x R"2

—C < fo(s,y,2) < —Co;

It follows that S nonlire C S2.noniin3.  For the fol-
lowing control systems, theorems and proofs we then
focus on class, noniinz instead ofS52 noniire-

6 CONTROLLERS

Since we deal with uncertain, nonlinearly perturbed
(ground excitation, see the continuous functions
fi) MIMO-systems, which are not necessarily au-
tonomous, particular attention is paid to the adaptive
A-tracking controbbjective (Behn and Zimmermann,
2006). This is to determine amnline control strategy
that achieves approximate tracking of a given, favored
reference signal in the following sense:

(i) every solution of the closed-loop system is de-
fined and bounded far> 0, and

(i) the outputy(-) tracksyyes(-) with asymptotic ac-
curacyh > 0 in the sense that

max{0, [y(t) = yeer()]| -2} 70, (D
i.e., we tolerate a feasible error of prescribed ize
(accuracy). Visually, this means that the outp(t}
tends to a tube of radidsaroundye¢ (t), see Fig. 5.

m

R

Figure 5: Reference signal anetube.

Classical adaptive high-gainambdatrackers
from literature are:

1. Thefirst one is a modification of the preferred sta-
bilizer from literature, see (llchmann, 1991). The
modified control strategy, which is also presented
in (Behn and Zimmermann, 2006), is:

eft) = y(t) ~ Yeer(t)
u(t) = — (k()e(t) + § (k()e(t)) )
k(t) = y(max{o, |le(t) —)\})2,

(8)
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with k(0) = ko € R, A > 0, Viei(-) € R, u(t),

e(t) e RM k() € R, andy>> 1.

Due to the presentegttracking control objective
(tolerating a tracking error of siz&, no exact
tracking) this controller consists of a very simple
feedback mechanism and adaptation law, and is
only based on the output of the system and its time
derivative - no knowledge about the system pa-
rameters is required. However, the adaptive con-
troller (8) uses the derivative of the output. The
following two feedback controls avoid the usage
of the derivative of the system output.

.~This one includes a dynamic compensator due to
a controller in (Miller and Davison, 1991). This
controller avoids the possible drawback of using
the derivative of the output.

e(t) == y(t) — Yrer(t),
u(t) = —k(t)8(t) — g (k(t) B(t)) .
B(t) = —k(t)28(t) + k(t)2e(t),

2
)

=3

ol

(9)

k(t) :ymax{o, | et)|| —)\}

with B(tg) = 6o, k(to) = ko > 0, A > 0, Yrei(+) €

R, u(t), e(t) € R™ k(t) € R, y> 1 and arbitrary
initial datakg > 0,089 € R™.

We stress that the feedback in (9) does not invoke
any derivatives of observables.

If S noniim i restricted to single-input, single-

output systems of class$, noniinz, then the fol-

lowing simple feedback control is considered,

which reduces in dimension (the number of used

variables calculated by internal differential equa-
—k(t) [y(t) — Yrer(1)] .

tions):
) } (10)
YO =A}"

with k(0) = kg € R. Therefore, we have a con-
troller of order 1 whereas (9) is a controller of or-
der 2. We stress that this feedback in (10) does not
invoke any derivatives, too.

The feedback law has a P-structure, a D-term is
not necessary for controlling systems of the class
S2nonlin3. Naturally we need a P- and D-term to
control systems with strict relative degree two, see
(Sontag, 1998).

To summarize, these controllers are simple in their
design, rely only on structural properties of the system
(and not on the system’s data) and do not invoke any
estimation or identification mechanism. They only
consist of a feedback strategy and a simple parameter

3.

u(t)

k(t) = ymax{0,




Modeling the Behavior of Hair Follicle Receptors as Technical Sensors using Adaptive Control

adaptation law, and, moreover, do not have to depend

on the derivative of the output of the system.

All three controllers achieva-tracking (and, of
course,A-stabilization usingyef(-) = 0, as well) in
applying all three controllers (8), (9) and (10) to the
system classes:

e Theorem [: controller (8) applied to systems of
class S, noniint — Proof in (Behn and Zimmer-
mann, 2006);

e Theorem lI: controller (9) applied to systems of
class$s nonlinn — Proofin (Behn, 2011);

e Theorem lll: controller (10) applied to systems of
classsS nonling — proven and submitted.

The parameteystrongly determines the growth of
the gain parametdd(-). In (Behn and Zimmermann,
2006) the casg = 1 was dealt with. With smaly
(e.g.,y=1 as formerly)k(:) often grows too slowly

A very simple modification of the adaptation law
is the so-called-modification, o > 0. ForA-tracking
control including the gain coefficient (Georgieva
and llichmann, 2001), and revisited in (Behn and
Steigenberger, 2009) in simplified form we have
Adaptor 1:

k(t) —okaf+V(maX{QHea”’_A})a

with 0 > 0, y>> 1. The term—ok(t) decreases
k(-) exponentially, while the second term ensures a
quadratic increase &f(-) when||y(t)| is outside the
A-strip. Therefore, Adaptor 1 offers two terms which
are active simultaneously and counteract each other.
Depending on the situation, one of the terms over-
comes the effect of the other and results in a global
decrease or increase &f-). This law often leads

to oscillatorybehavior (maybe limit cycles) and even

as to achieve a good tracking behavior. Therefore, achaoticone of the system. Hence, this adaptor has to

sufficiently largey > 1 should be used. But, if we

be treated carefully, because the dynamical behavior

choosey too large, we arrive at high feedback values. gepends crucially on the parameters 0. Therefore,
Furthermore, these high values keep the sensor notye will not focus on this adaptor type in sequel.

really to be sensitive to extraordinary impulses, gen-
erally speaking, the receptor is “blind” if the signal is

The idea is now to split the part of increase and
decrease of the gain as follows Adaptor 2 (Behn

forced once into the tube, because it cannot detect the; g Steigenberger, 2009)

peak in observing the output. The last requirement to
the controllers is not fulfilled: the closed-loop sensor
system has to be sensitive to recurring excitation sig-
nals — fade it out and wait for further new informa-

tion. This is not realized yet. We are able to dominate
the system, but we are not able to get information on
the environment in observing the output. This is ad-

dressed in the next section — design of new adapta-

tion laws — to identify the (whole) ground excitation
or only some basic characteristics of it.

7 ADAPTORS

The drawback of th&Classical’ Adaptor:

. 2
k(t):y(max{O,He(t)H—)\}) ,

isk(t)>0,vt>0,ie.,
t

tF»mn:kwy+/y(mw{QanH—A})%rzo
0

thus implies monotonic increase kf-). Typically,

the classical high-gain adaptive controllers (feedback
law including adaptation law) yield a non-decreasing
gain, which is usual. Now we propose some new
adaptation laws, which léq-) decrease wheais in

the tube.

v(lle)]|-3)",  [let)
—ok(t), le(®)]| <A,

kay:{

with o > 0, y>> 1. This adaptor shows alternating
increase and exponential decreasg(of.

It could happen that rapidly traverses thi-tube.
Then it would be inadequate to immediately decrease
k(-) aftere entered the tube. Rather we should distin-
guish three cases:

1. increasin(-) while eis outside the tube,

2. constank(-) aftere entered the tube - no longer
than a pre-specified duratidgof stay, and

3. decreasind(-) after this duration has been ex-
ceeded.

So, a another adaptation law of this kindNdaptor 3
(Behn and Steigenberger, 2010)

v([le®][~2)", et = A,
0, (|le®)]| <A) Alt—te <ta),
—ak(), ([le®] <A) A (t—te > ta),

k(t)

with giveno > 0,y>> 1, andty > 0, whereas the entry
timetg is an internal time variable.

If the norm of the error valude| is close to the
A-strip, i.e., the system outpytis already close to
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Table 1: Global simulation parameters (dimensionless).
the A-tube, and < ||e]| — A < 1 holds, an exponent P ( )

of p= 2 leads to an even smaller number. This is Sensor massi 1

the main disadvantage in such a way, that]yif is damping coefficiend 5

already close to tha-strip around the prescribed ref- | SPring stiffness 10
erence signal, the adaption process, i.e., the increase initial values(y(0),y(0)) | (—a(0),~&(0))
of k(-), is very slow. ~ tolerance\ 0.2

In order to make the attraction of the tube stronger, it initial gain valueko o
would be advantageous to use different exponents ref. signalt — yrer(t) 0 (rest position)
with better performance such as a square root. Hence, ground excitation t— at) = sin(2mt)

a kind of scheduling ok is introduced, different ex-

ponents for large/small distances from the tube, see ©°3 ‘ ‘ ‘ ‘
(Behn and Steigenberger, 2010) akdhptor 4: e /slube 777777 7/@13 ]
2
(el =)’ e =2+
05
t) = y(lle®ll=2) " A+1> [[e®)] > A, of
0, (||e(t)|| <)\>/\(t—tE<td), -0.4
—~ok(t), (|le®)] <) Alt—te >ta). sl T R e
()
with g,y,tq4,te as before. 03
Let A > 0 be chosen in regard of certain require-
ments given by the context. To ensure that the system **

outputy stays within thaf-tube along the reference ‘ ‘ ‘ ‘ ‘ t
signal € will not leave theA-strip after entering the 0 oy ' 2 % %
strip) is to track a smaller safety radie < A, sug- Figure 6: Outpuy(-) and tubes.

gestions for adaptation laws are nédaptor 5: 70
2
y(llell—er)", e = er+1,
1
) = y(llell—en) " en+1> e =en, | = )
0, ([left)]] <€A) A (t—te <ta), ol |
—ak(t), ([le)]| <eA) At —te > ta), \F \F \
30 4

with g,y,tq4,te as before. "

8 SIMULATION

We point out, that the adapt_ive nature of the con- ° Figur:7: Gairlsparaméitk(-). “ ¥
trollers is expressed by tharbitrary choice of the
system parameters. Obviously numerical simulation In former simulations, the output apparently pe-
needs fixed (and known) system data, but the con-riodically leaves the\-tube. TheneA-tracking (we
trollersadjust their gain parametéo each sebf sys- will call this kind of trackinge-safeA-tracking) with
tem data. The numerical simulations will demonstrate € = 0.7 makese not to leave the desired+tube, see
and illustrate that the adaptive controllers work suc- Fig. 6.
cessfully and effectively. The steep increase &f-) at the beginning is due to
Choosing the parameters from Table 1 (which are the “switching on” of the controller and the small ini-
arbitrarily chosen, not measured or identified from tial value ofk(0) = ko = 0. This could be prevented
the biological paradigm, just for simulation purposes) in choosing a largekg. But, it depends on the system
ande = 0.7 we get the results shown in Figs. 6 and 7 data which is unknown a-priori. The constant high
in applying Adaptor 5. level is due to the (only) monotonic increase of the

342



Modeling the Behavior of Hair Follicle Receptors as Technical Sensors using Adaptive Control

gain. This problem is addressed in the next section.
Comparing the simulation results and the sensor be-
havior of the gain parametk(-) in Fig. 7 with the im-

pulse sequences in Fig. 3, one clearly recognizes that

we achieved the behavior of the biological paradigm.

9 EXPERIMENT

This section is devoted to the experimental verifica-
tion of the successful implementation of the controller
(feedback including Adaptor 5) developed above. For
this purpose, we built up a demonstrator in form of an
electrical oscillating circuit, the test rig is presented i
Fig. 8.

Figure 8: Test rig with electrical oscillating circuit: 1 -
1/0-system (BNC-2110), 2 - DAQ-6036-PCMCIA-card, 3
- demonstrator, 4 - PC with LabView.

The demonstrator, see (3) in Fig. 8, is shown in
Fig. 9.

h i

Figure 9: Circuit: 1 - capacitorQ = 800uF) , 2 - resistor
(R=100Q), 3 - one inductor (overall inductandgyes =
640mH), 4 - communication to PC.

Then, the equations of motion are, using La-

grange’s equations of the 2nd kind

LA +RAM + 290 =U® +ul). (A1)
The system output shall be the chargfe). The goal

is to adaptively compensate changed ¢f) by means

of the control inputu(t) to A-trackgrei(-) = 0. As a
rule, the charge is measured due to the voltage at the
capacitor in form of

alt) = CUc(t).

Due to the small system parameter values the kiajn
will increase tremendously and we need high comput-
ing capacity. To avoid this we will directly control the
voltageUc(-) which depends linearly on the measured
q(+), see above.

We apply Adaptor 5 to guarantee that the error will
not leave the\-tube in tracking a tube of smaller ra-
diuseA. We have

e excitation:t — U (t) =Up sin(wt) with amplitude
Up =5V and frequency = 0.5Hz;

e Adaptor 5: y=1000,A = 0.03V, eA = 0.02V
(much smaller tolerancey,= 0.05,ty = 6.

We perform this experiment in using LabView to
handle and to control the circuit. By means of a pro-
grammed LabView control panel, see Fig. 10, we are
able to switch on/off the excitatidd (-) and the con-
trol strategyu(-). Furthermore, several signals are dis-
played via this panel:

e in the top window (actual measured data): the
control inputu(-) (orange line), the system output
Uc(-) (red line), the excitation sign& (-) (blue
line);

the bottom window (data on time horizon): the
depicted curves are capacity voltage(-) (i.e.,
the outputy(-), red line), theh-strip (blue lines),
and gain parametés(-) (green line), in only one
window.

The plots of the exported data-files from LabView
are shown in Fig. 11 and 12.

The capacitor voltage (output) never leaves
the A-tube, the adaptor works effectively. Further
experiments can be found in (Behn, 2013).

Comparing the simulation results with=0.05 in
Fig. 12 with the impulse sequences in Fig. 3 and the
adaptation behavior in Fig. 2, we conclude that this
technical device offers the behavior of the biological
paradigm.
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10 CONCLUSIONS

The development of new control strategies and sen-
sor models was motivated by the open question which
occurred during analysis of the functional morphol-
ogy of vibrissal sensor systems. The vibrissa re-
ceptors are in a permanent state of adaption to fil-
ter the perception of tactile stimuli. This behavior
now may be mimicked by the artificial sensor sys-
tem. The sensor system was modeled as a spring-
mass-damper system with relative degree two and the
system parameters are supposed to be unknown, due
to the complexity of biological systems. Using a sim-
ple linear model of a sensory system, adaptive con-
trollers have been considered which compensate un-
known permanent ground excitations. Classical adap-
tors suffer from a monotonic increase of the control
gain parameter, thereby possibly paralyzing the sen-
sor’'s capability to detect future extraordinary excita-
tions. The existing adaptive controllers from literature
were improved with respect to performance, sensitiv-
ity and capabilities. Various modifications of existing
controllers are made and new controller designs were
discussed:

- tuning parametengand gain exponerg increase
the growth rate of the gain parameker

- new adaptors allow for gain parameter decrease
that improves the sensor system’s sensitivity to
further ground excitations;

- asmallereA-tube is introduced to prevent the out-
puty from leaving the\-neighborhood.

These proposed and modified adaptors avoid the
drawbacks from literature and do not invoke any
estimation or identification techniques. The working
principle of the new controller (feedback law includ-
ing Adaptor 5) is shown in a numerical simulation
which proves that this controller in fact works
successfully and effectively. This controller is simple
in its design: its adaptation law is not complex
as current adaptive control strategies in literature.
Moreover, a practical implementation of this con-
troller to a demonstrator in form of an electrical
oscillating circuit results in a successful experiment
which confirms the theoretical results. However, the
preceding simulation results shed some light upon the
behavior of the sensor system under the governance
of various adaptive controllers. It becomes clear that
both the choice of controller type and the tuning of
the chosen controller (optimize controller data) is a
delicate task. Simulation and experiment show that
the developed adaptive control strategy applied to the
mechanical sensor system achieve the fast adapting
behavior of the biological receptor.
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