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Abstract: MapReduce frameworks proved to be a good solution for storing and processing large amounts of data. Thanks
to data parallelism, they allow to move computations very close to the storage and therefore to reduce an
influence of “I/O bottleneck”. Workflow Management Systems, in turn, are widely used for modeling of
scientific applications. Users that are willing to use MapReduce frameworks in their workflows have to run
separate environment to develop Map/Reduce operations. In this paper we propose an approach that will
allow to extend existing application models by MapReduce routines. Our solution bases on DSL constructed
on top of Ruby programming language. It follows examples of Sawzall and Pig Latin languages and allows
to define Map/Reduce operations in minimalist way. Moreover, because the language is based on Ruby, the
model allows to use user defined routines and existing Ruby libraries. A particular model of the workflow
management system can be extended with our DSL letting users to use one environment for developing the
workflow and MapReduce application.

1 INTRODUCTION

The term data-intensive applications refers to a com-
puter software that process large volumes of data. Re-
cently, we observe an explosion of data and clearly,
these kind of applications are going to play more im-
portant role in science. As authors of (Hey et al.,
2009) point out today’s computers have relatively low
I/O performance. It implies that algorithms has to be
designed in a different way and should follow the rule
which says that the computation should be performed
as close to the place where data is stored – in a sense
of time distance – as possible. Building larger, wider
clusters and data centers will not solve the issue of
“I/O bottleneck”.

MapReduce is a programming model that has abil-
ities of processing large volumes of data since the
computations are moved as close to data storage as
possible. On the other hand, Workflow Management
Systems proved to be an easy and efficient way of de-
scribing complex systems and being adaptable to use
new technologies. In (Goble and Roure, 2009), au-
thors define the workflow as a ”precise description of
a scientific procedure – a multi-step process to coordi-
nate multiple tasks, acting like a sophisticated script”.
As a task they consider ”a running program, submit-
ting a query to database, submitting a job to a com-
pute cloud or grid or invoking a service over the Web

to use a remote resource”. Clearly, workflows have to
find their place in a data-centric research as a tool for
efficient and easy orchestration of tasks.

There are many ways of implementing Domain
Specific Languages. Newly designed language can be
created together with parsers and interpreters but also
it can be built on top of an existing one. Ruby pro-
gramming language has special abilities for this kind
of purposes. It proved to be very malleable in many
projects based on DSLs such as Rake, Cucumber or
Sinatra. It has a good reputation as a language for
designing DSLs also among users of other technolo-
gies (Ford, 2013).

The main objective of our work is to unify models
of MapReduce and Workflow Management System
(WMS) to provide one environment that will allow
users to define their computations in efficient way. If
there is a need to use data stored in a MapReduce-
oriented storage like Hadoop Distributed File System
(HDFS), one has to develop two applications, the one
that gains data from a storage (MapReduce) and the
second one that processes the data (workflow). Con-
ventionally, they have to be defined using two differ-
ent environments. We intend to simplify this process
by defining MapReduce operations and a workflow in
one model. Moreover, we would like to propose a so-
lution which would not resign from MapReduce ele-
gance and would follow MapReduce origins of func-
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tional programming and their valuable features such
as minimalism. The main contribution of this paper
is an efficient approach to combine a workflow model
with a MapReduce model to provide a complete solu-
tion that would gain data from MapReduce resources
and then consume them in a workflow.

This paper is organized as follows. In section 2,
we describe the MapReduce model, its implementa-
tions and MapReduce specific DSLs. Section 3 con-
tains information about workflow systems and their
integrations with MapReduce frameworks and other
works related to the topic of this paper. VLAM appli-
cation is described in section 4 and a design of our so-
lution in 5, it is succeeded with a section about imple-
mentation – 6. The whole paper is completed with an
example application in section 7 and section 8 which
discusses future work.

2 MapReduce MODEL

The MapReduce (Dean and Ghemawat, 2008) pro-
gramming model was designed for processing large
datasets by Google. It is inspired by map and re-
duce functions from Lisp and other functional pro-
gramming languages. The computation consumes a
set of input key/value pairs, passes each of them to a
map phase where they are transformed to intermediate
key/value pairs. Then, intermediate values that are as-
sociated with the same key are grouped together and
passed to reduce phase where whole set is processed
and the final answer is calculated. As it takes the ad-
vantage of data parallelism, recursive data structures
are impossible to process.

Beneath, there is a description of Hadoop frame-
work – as an example of MapReduce implemen-
tation – and its most important features that are
used in our work. Domain Specific Languages cre-
ated for MapReduce model, such as Pig (Olston
et al., 2008) Latin (woks in Hadoop environment) and
Sawzall (Pike et al., 2005) are also mentioned.

Hadoop is an open source MapReduce frame-
work inspired by Google’s work on MapReduce and
Google File System. It is implemented in Java pro-
gramming language together with closely related ap-
plications such as Hadoop Distributed File System.
Map/Reduce operations are defined in Java program-
ming language as classes that implement a required
interface.

Pig Latin (Olston et al., 2008) is a hybrid SQL-
like declarative language with MapReduce approach.
It was created by Yahoo Research team for Pig ap-
plication that is built on top of Hadoop in a purpose
of providing easier interface for MapReduce process-

ing. Map/Reduce operation are compiled from the
SQL-like statements that use special commands such
as LOAD for loading data set, FILTER for specifying fil-
tering condition or GROUP for grouping records. The
important feature of Pig environment is a support for
User-defined functions (UDFs) – currently they can
be written in Java and used in any construct includ-
ing FILTER or GROUP. Sawzall (Pike et al., 2005) in
turn, was created by Google to process large num-
ber of log records with a MapReduce methodology.
The name Sawzall refers to a whole MapReduce en-
vironment and, in particular, to the programming lan-
guage which is used to describe Map operations. It is
a statically typed language that is compiled to a ma-
chine code. It supports complex data types like lists,
maps and structures. Two fundamental features of this
tool are as follows: operations can be performed only
on single records and the result of an operation is re-
turned by emit statement which sends data to an exter-
nal aggregator. Aggregators are implemented in C++
to gain the maximum possible efficiency. They can
occupy thousands lines of code describing how a data
flow is managed.

Existing solutions do not fulfill our needs, Sawzall
is a programming language that cannot be used out-
side of its ecosystem, Pig Latin is also strongly tided
to the Pig application. Other tools – open source
oplications like MRToolkit (created by New York
Times team) and Dumbo (Last.fm) are designed to
use streaming interface in Hadoop, however, as we
explain in the following section, introducing type
specification in Map operation and using Reducers
implemented in Java can lead us to the more efficient
model.

3 MAPREDUCE AND
WORKFLOW SYSTEMS

There are workflow systems that provide access to
MapReduce solutions from a workflow model level.
Because they present different approaches, the experi-
ence gained by their authors can be exploited to eval-
uate our concepts.

The Kepler Project (Ludäscher et al., 2006) is a
system created for designing, executing and sharing
workflow models. Applications can be constructed
from entities called actors that represent computa-
tional components and channels that specifies data
flow. The execution of a workflow is managed
by entity called director that consists execution pa-
rameters and that coordinates actor execution order.
In (Wang et al., 2009), authors describe how they exe-
cute MapReduce tasks from Kepler. Authors mention
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Table 1: Comparison of MapReduce oriented DSLs.

Feature Sawzall Pig Latin
Execution environment Sawzall Pig / Hadoop
Programming model for Map op-
erations

They are developed in Sawzall
programming language (statically
typed, compiled to machine code)

In Pig Latin (a hybrid of SQL like
declarative language with MapRe-
duce approach), map operation is
compiled from a FILTER and GROUP
statements

Programming model for Reduce
operations

Only name should be specified in
Sawzall code. Aggregator is im-
plemented in C++ to achieve the
best efficiency

Reduce phase is compiled from
GROUP command

that they wanted to focus on a solution that would pro-
vide the universal interface to MapReduce and would
not be limited to any particular domain. In fact, their
solution where Map/Reduce operations are defined as
separate workflows fulfills this requirement and can
easily handle any data structure. In order to execute
MapReduce operations on Hadoop, the MapReduce
actor has to be created. It consists two sub-workflows
that are responsible for two phases - the Map phase
and the Reduce. Kepler execution engine and MapRe-
duce sub-workflows are distributed to working nodes
to perform MapReduce tasks (Wang et al., 2009). In
the experiment authors measured execution times im-
plementing MapReduce application using Kepler and
using Java implementation – without Kepler engine.
They found that Java implementation is four to six
times faster than the solution based on Kepler. Af-
ter further experiments they conclude that this over-
head is due to Kepler engine initialization and work-
flow parsing. Authors do not consider using Reduce
functions implemented in Java as well as Map/Reduce
functions from Hadoop library that allows to perform
Map/Reduce operations more effectively. It may sig-
nificantly speedup execution for more complex Re-
duce operations and for simple one such as word
count (benchmark example in (Wang et al., 2009)) it
may decrease slowdown caused by Kepler initializa-
tion and workflow parsing.

MRGIS (Chen et al., 2008) (MapReduce-enabled
GIS) is a workflow system with MapReduce integra-
tion for Geographical Information System (GIS). It
works with Hadoop to provide a computing platform
for GIS applications. Using the environment of MR-
GIS, users are able to define tasks using Graphical
User Interface or Python scripts. Authors show that
this solution solves an issue very efficiently, however
it is very specific to its domain and it can not be ap-
plied to solve more generic issues.

The approach of defining workflows in program-
ming languages is also worth to mention. In (Bara-
nowski et al., 2013b), there is a try of transform-

ing applications written in general purpose program-
ming language (Ruby) into workflows. In (Thain
and Moretti, 2010), authors describe an approach of
describing complex applications using scripting lan-
guage similar to Makefile syntax.

Hadoop framework is the only MapReduce open
source application that is widely used thus it seems
to be an obvious choice of MapReduce environment.
There are solutions that integrate Hadoop with work-
flow systems, their authors had different goals –
Kepler-based solution was intended to provide easy-
to-use MapReduce environment for workflow users
while the aim of MRGIS system was to improve a
workflow execution.

4 WS-VLAM WORKFLOW
MANAGEMENT SYSTEM

The goal of our work is to enrich WS-VLAM ap-
plication model with MapReduce constructs to allow
defining Map/Reduce operation in workflow descrip-
tion.

WS-VLAM is a workflow management system
which covers the entire lifecycle of scientific work-
flows from design through execution phase to shar-
ing and reuse complete workflows and their compo-
nents (Cushing et al., 2011). As it is shown in Fig-
ure 1, the center point of VLAM architecture is a mes-
sage queue. On the left side, there are modules re-
sponsible for coordinating task execution (Task Auto-
Scaling, Submitter and Monitor) and on the other
modules responsible for a connection with resources.
Monitoring is performed at both the workflow level
and workflow component levels. At the workflow
level, the end user can follow the state of a workflow
submission and check whether the workflow is pend-
ing, submitted, running, or completed (Belloum et al.,
2011). VLAM workflow model bases on a directed
graph representation.

A solution described in (Baranowski et al., 2013a)
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Table 2: Comparison of integrations of workflow and MapReduce systems.

Feature Kepler+Hadoop MRGIS
MapReduce framework Hadoop Hadoop
Implementing Map/Reduce opera-
tions

Map and Reduce operations are
implemented as Kepler workflows

operations are provided by the en-
vironment

Execution of Map/Reduce opera-
tions

Kepler engine has to be deployed
on each worker to parse and exe-
cute Map/Reduce subworkflow

Needed operations were wrapped
so they can be executed on
MapReduce platform

Main goal Easy to use High performance

Enactment
Engine

Task
Auto-Scaling

Message
Router

Pluggabe
Task

Task Harness

Resource
Submission
Scheduler

Pluggabe
Task

Task Harness

Pluggabe
TaskPluggabe

Task

Task Harness

Fault 
Tollerance

monitor

Submitter

monitor

Submitter

monitor

Submitter

Data Store

Resources: Grid, Cloud

Message Queues

Figure 1: Architecture of VLAM.

investigates possibility of using a scripting program-
ming language to describe MapReduce operations in
WS-VLAM workflow systems and the current paper
is a direct continuation of this work.

5 MapReduce DSL

We choose Hadoop as a targeting environment for
our solution and Ruby programming language as a
base for newly designed Domain Specific Language
(DSL). There are two ways of using Hadoop environ-
ment – by Java classes and by the streaming interface
that we want to focus on. Following the thought from
Section 3 about Sawzall where aggregators are de-
fined in C++, we would like to propose a language for
defining Map operations and keep Reduce operations
implemented in Hadoop native way – the suitable set
of Reduce operation will be provided. To argue the
chosen approach, we would like to refer to (Pike et al.,
2005) where authors count out arguments:

� Map operations are frequently changed during de-
veloping process and every often written from
scratch,

� most of the time spent in the execution of Map
operations is spent on waiting for I/O events, not
on computations itself,

� users use a small set of Reduce operations,

� reduce operations have big influence on overall
performance.

Thus, it is important to provide environment in
which Map operation is implemented in a way that
ensures cheap maintenance and modifications. On the
other hand, the map/aggregate phase is implemented
using a technology that provide maximum efficiency
– possibly the tool’s native technology and, a set of
the most commonly used reduce/aggregate function
is provided to release a user from this duty and to
achieve better robustness thanks to code reuse.

To define the Map operation we should pass a
block to the function named map. Block takes two
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Listing 1: The example of Map function defined using DSL.

map do |c, v|
[c.string(v[0]), c.d_number(1)]

end

reduce(:max)

arguments, the first one (variable c in Listing 1)
provides helper functions that can specify a type
of the returning data. Basing on that information,
our application is able to select proper Aggregator
– e.g. if the user selects Max as a Reduce opera-
tion, depending on the type of returned data (string
or long), LongValueMax or StringValueMax will be se-
lected from Hadoop Aggregator library. Right now,
user can select from three data types: l_number which
stands for Long, d_number for Double and string data
type. The second passed variable (variable v in List-
ing 1) stands for the data that is suppose to be pro-
cessed in the Map phase. Designed environment does
not restrict user from defining classes and functions
that can be used in map operation, also Ruby libraries
can be included into Map definition.

To define a new Reduce operation, developer has
to specify its name – as in the last line in listing 1,
the execution of MapReduce operations relies only on
recognizing a relation between data types returned by
Map and the name of Reduce operation.

6 IMPLEMENTATION OF
MapReduce DSL

Apache Hadoop was chosen as a MapReduce frame-
work. To control its execution, we choose JRuby
(Ruby implementation based on Java Virtual Ma-
chine). Thanks to that, constructed Domain Specific
Language (DSL) possess similar advantages as men-
tioned Sawzall and Pig Latin languages.

6.1 Implementation of Map Operation

Similar approaches based on scripting language based
solution were used in commercial tools such as MR-
Toolkit created by New Your Times which uses Ruby
programming language and Dumbo framework devel-
oped by Last.fm which in turn is made with Python
programming language.

A routine which specifies Map operation – block
passed to the function map in Listing 1 is interpreted
by JRuby as Map operation. Because it specifies data
types, returned values are cast to corresponding Java
data types.

6.2 Implementation of Reduce
Operation

As it was mentioned before, Reduce operations is im-
plemented in a native way. A set of already imple-
mented operations are provided and action of a work-
flow user will be limited to selecting a desired oper-
ation from a list. Knowing the data type (they are
specified in DSL) will let to use Hadoop Aggregate
Package. For example, if a user in the Result phase
wanted to sum records returned by the map function
from Listing 1, LongValueSum would be selected as the
Aggregator.

7 EXAMPLE APPLICATION

Word counter application became a standard example
application for MapReduce frameworks. Map opera-
tion splits a text or texts into words and for each word
it emits a pair [<word>, 1] where <word> stands for
one word from the text. Then, in Reduce operation
these records are grouped basing on <word> and all
values are added. The user is suppose to choose Sum as
a Reduce operation. Basing on that information, our
application is able to select LongValueSum Aggregator
from Hadoop library as the adequate Reduce opera-
tion. Because there are as many records as word oc-
currences in a text, the sum stands for a total number
of occurrences of a particular word.

The implementation of the Map operation is
shown in Listing 2, it splits the line of the text and
emits the list of variable res. The last line of the list-
ing specifies reduce operation which is sum.

The word count application was used to test elabo-
rated approach. Tests were performed in DAS-4 envi-
ronment that consists 8 nodes with Hadoop installed.
Each node has dual quad-core 2.4 GHz CPU and 24
GB memory each connected with InfiniBand and Gi-
gabit Ethernet. We prepared 2.6 GB of English books
in a plain text format taken from Project Gutenberg.
They were stored in HDFS and used in tests as a
whole set and also in smaller pieces. Texts were pro-
cessed and results that were produced were correct.

8 SUMMARY AND FUTURE
WORK

The elaborated approach implements the environment
for defining MapReduce queries in workflow models.
It follows the examples Pig or Sawzall applications
where Map/Reduce operations can be defined using
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Listing 2: Map operation of word counter application.

map do |c, v|
res = []
v.split.each do |i|

res << [c.string i, c.number(1)]
end
res

end

reduce(:sum)

convenient Domain Specific Languages. However, to
prove the elaborated solutions to be easy and efficient,
more complex applications have to be investigated in
the future and execution times has to be measured and
compared with native Hadoop implementation.

Proposed solution can be extended into more
generic form – as a pluggable application that can be
used to extend models of other applications. In or-
der to provide such a functionality, targeting applica-
tion should implement a set of routines that will co-
ordinate MapReduce tasks from the execution engine
specific to particular application. The elaborated DSL
is not more complex than existing MapReduce DSLs
such as Sawzall and Pig Latin. It lets user to define a
Map operation in a convenient way without resigning
from such features as user-defined functions or Ruby
libraries. Developed DSL does not require other li-
braries but standard Ruby distribution, if we add that
there is an implementation of Ruby for Java Virtual
Machine (JRuby), we can conclude that created ap-
plication can be reasonably easily adopted to many
existing solutions as a separate module run in a Ruby
process or in the existing JVM instance. It can be also
considered that the proposed solution can be merged
with an existing DSL for the other domain.

In future work, other programming languages can
be considered as an alternative to Ruby. All the lan-
guages that have features required in metaprogram-
ming such as macro instructions, templates or that are
modifiable in runtime, can be considered. Special at-
tention should be paid to statically typed languages
based on Java Virtual Machine platform such as Scala
programming language (Odersky et al., 2010). These
modern languages can provide good constructs for
metaprogramming approach and at the same time,
they can directly use Java type system to allow bet-
ter integration with Hadoop.

Metaprogramming approach can be also consid-
ered to describe other features of Workflow Manage-
ment Systems. It can be used to enrich workflow
models with a configuration of resources or security
policies.
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