
Desired Quality Characteristics in Cloud Application Development

Leah Riungu-Kalliosaari, Ossi Taipale and Kari Smolander
Department of Software Engineering and Information Management, Lappeenranta University of Technology,

Lappeenranta, Finland

Keywords: Cloud Computing, Cloud Applications, Quality Characteristics, Software Development.

Abstract: This qualitative case study describes how software development organizations reach for their own context-
dependent quality in cloud application development. The study collected the data from selected
organizations through interviews and applied the grounded theory method in the analysis. The study
concludes that the desired quality varies among the organizations. However, usability was found to be an
important quality characteristic in all the organizations. The organizations involved a set of three similar
activities to attain the desired quality characteristics. These activities are summarized as (1) Selecting a
suitable life-cycle model, during which (2) the customer is engaged and (3) the most suitable tools are used.
The organizations incorporated these activities so as to establish supportive working practices for acquiring
the desired quality.

1 INTRODUCTION

Every software organization aims at developing
products and services that meet their specified
requirements in order to achieve specific quality
goals. Software quality has for a long time remained
an elusive target in software organizations (Blaine
and Cleland-Huang, 2008). Different factors within
an organization, such as communication and
outsourcing (Kasurinen, et. al, 2011), can affect
software quality. When developing software
applications, organizations seek to meet both the
functional requirements, e.g. functional correctness
and non-functional requirements, e.g. reliability.
This is sometimes a task that can be challenging to
balance (Blaine and Cleland-Huang, 2008).

Cloud computing avails a suitable environment
for developing and hosting different applications
(Yau and An, 2011). Hence, cloud applications are
applications that are built, deployed and hosted in
cloud environments which are spread across any of
the service delivery models – Infrastructure as a
service (IaaS), platform as a service (PaaS) or
software as a service (SaaS) (Hobfield et al., 2012).
Developing cloud applications entails that the
developer uses a number of pre-defined architectural
structures, resources, interfaces or service access and
discovery mechanisms. This may emphasize certain
quality requirements, e.g., the need for strict

conformance and high interoperability. Therefore, it
is important to know the desired quality and to
understand how it reflects on the way
cloudapplications are developed and vice versa. In
other words, the development of cloudapplications
needs to be aligned with the quality expectations and
cloud environment may affect reaching of certain
quality characteristics, for instance scalability.

According to the ISO/IEC 25010 standard
(ISO/IEC, 2010), software product quality is the
“degree to which the software product satisfies
stated and implied needs when used under specified
conditions.” The ISO/IEC 25010 quality standard
contains two parts - product quality model and
quality in use model. The product quality model is
made up of eight characteristics; functional
suitability, reliability, performance efficiency,
usability, security, compatibility, maintainability,
and portability (ISO/IEC, 2010). The system quality
in use model is made up of effectiveness, efficiency,
satisfaction, freedom from risk and context coverage
together with their associated subcharacteristics
(ISO/IEC, 2010). The ISO/IEC 25000 series
standards (ISO/IEC, 2005) are used in this study as a
starting point in exploring the desired quality
characteristics.

The aim of this paper is to evaluate the important
product quality characteristics as perceived by
software organizations developing cloud-based

303Riungu-Kalliosaari L., Taipale O. and Smolander K..
Desired Quality Characteristics in Cloud Application Development.
DOI: 10.5220/0004489303030312
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 303-312
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

applications or hosting applications in the cloud. We
look at the development and testing activities that
the studied organizations incorporate in order to
achieve the desired quality. To that effect, our
research questions are: (1) What quality
characteristics do developers consider to be
important for cloud-based applications? (2) What
activities support developers in achieving these
quality characteristics? To answer these questions,
we decided to perform a case study of organizations
that are either developing cloud-based applications,
or whose applications are hosted in the cloud. We
used the grounded theory analysis steps (Strauss and
Corbin, 1990) to generate the observations related to
the research questions.

Due to the different nature of the software
applications developed by the participating
organizations, the important quality characteristics
vary between the organizations. Thus, our aim is to
outline a set of quality characteristics that might be
essential while developing cloud-based software
applications. These quality characteristics may be
used towards the creation of specific cloud-based
development and testing techniques and tools that
can help to achieve the quality desired by cloud
applications developers. Therefore, this paper
contributes towards understanding the activities that
support development of cloud applications. In
addition, the paper identifies the quality
characteristics that can be seen as essential for
cloud-based applications and can be used as building
blocks for evaluating the quality of a cloud-based
software application.

The rest of the paper is organized as follows:
Section 2 describes related work and Section 3
presents our research approach in the study. Section
4 describes the findings, followed by a discussion
about the results in Section 5. Section 6 concludes
the paper.

2 RELATED WORK

Developing and delivering (or hosting) software
applications in the cloud is becoming more
common-place and so are research efforts in
improving the quality of cloud-based software
applications. Lee et al. (2009) propose a quality
model for evaluating SaaS cloud services. They first
define the main features of SaaS and then map them
onto corresponding quality characteristics derived
from the ISO/IEC 9126 standard (ISO/IEC 2001).
For example, they map SaaS features reusability and
customizability to reusability, which is one of the

ISO/IEC 9126 quality characteristics, along with
justification for mapping and defining the quality
attribute. Consequently, they describe the
appropriate metrics for each quality attribute. Their
quality model may be used by both service providers
and consumers to evaluate the quality of SaaS
services.

Zheng et al. (2009) developed a ranking
framework for evaluating the quality of different
components that make up a cloud application. The
framework enables a user to select the best-
performing components for the application. By
doing so, this is expected to improve the
application’s quality of service (QoS).

Every service provider wishes that the users
would have an enjoyable experience when using the
provider’s service(s). The quality of experience
(QoE) associated with cloud management has been
evaluated as a critical goal for cloud service
providers (Costa et al., 2012); (Jarschel et al., 2011);
(Kafetzakis et al., 2012); (Qian et al., 2011). One
way to evaluate the users’ QoE is by an analytical
approach that enables the service provider to
accommodate the changing needs of the users
without compromising the users’ QoE (Qian et al.,
2011). Another is by a systematic cloud-based
service delivery framework which enhances the QoE
through personalized services to the users (Costa et
al., 2012).

Effective management of tools used across
distributed teams in global software development
(GSD) projects has been cited to be a challenge for
which cloud computing provides a solution.
Chauhan and Babar (2012) outline a set of quality
characteristics that they estimate to be essential for
cloud-based infrastructure that can be used to
provide tools as a service (TaaS) to globally
distributed teams. The quality characteristics are
mostly functional in nature, spanning aspects such as
multi-tenancy, supporting multiple devices as well
as compatibility with commercially available tools.

Application development and hosting in cloud
computing environments and platforms holds
promise for various business operations. Along with
that, and as suggested by the literature mentioned in
this section, there are different ways to dissect
quality constructs related to cloud-based software
applications. The literature we have presented
describes the quality of cloud applications based on
their features, functionality and expected quality of
experience (QoE). However, it does not tell about
the real life practices that can be applied to generate
the quality in the cloud applications. Thus, we take
an approach that evaluates how the different

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

304

organizational activities contribute to the quality of
the developed cloud applications. In particular, our
study focuses on the quality of cloud applications
from the developer’s perspective.

3 RESEARCH APPROACH

We conducted a qualitative multiple case study
composed of five organizations. The cases were
selected because their applications were connected
to cloud computing. Table 1 contains details about
the interviewed participants and their respective
organizations. We selected the five organizations
from eleven interviewed organizations during
October – December 2011. We applied theoretical
sampling (Pare and Elam, 1997) and chose cases to
provide examples of polar types (Eisenhardt, 1989).
Theoretical sampling is used to select cases that can
be compared (Glaser and Strauss, 1967), aiming at a
deeper understanding of the studied cases along with
the identified concepts and their relationships.
According to polar type sampling, the organizations
were different in size and varied in the type of
applications that they produced.

We used semi-structured, theme-based
interviews to collect the data. The main themes
included software development, testing, quality and
change management. The themes and interview
questions are available at
http://www2.it.lut.fi/project/STX/. All except one
interview were face-to-face, and were conducted at
the interviewees’ work locations. The exception was
answered by use of Google Docs – because the

interviewer and interviewees were located in
different countries. Google Docs was chosen so as
to allow two persons from the organization to have
access to the same document and answer the
questions. Later on, the first author also accessed the
document and downloaded it for archiving and
analysis. All the face-to-face interviews were tape-
recorded and transcribed for analysis. The interviews
generated a sum of 73 standard A4 pages (Times
New Romans Font, Size 12).

We applied the grounded theory approach
(Strauss and Corbin, 1990) in the analysis. Grounded
theory includes three coding steps namely open,
axial and selective coding. In open coding, the data
is classified into groups, themes or families, which
are more specifically referred to as categories
(Strauss and Corbin, 1990). The interview questions
and themes were used as seed categories for
conceptualizing the data into different categories.
We used the ATLAS.ti software in coding the data.

Axial coding follows after a sensible set of
categories has been developed. During this step, the
categories are analysed deeper in order to identify
connections and relationships between them. In the
final selective coding, the core category is
established, and this depicts the central phenomenon
or concept that covers most if not all of the
categories. In this study, we focused on the theme
related to quality as outlined within the interview
questions. Therefore, we concluded the core
category for this study to be “Activities that aid in
attaining desired quality characteristics of cloud-
based applications”.

Table 1: Interviewees and organizations.

 Description
Role of

interviewee(s)
Company profile and relation to cloud

Company
size(EC, 2005)

Case A
IT

company
Two testing
managers

Provides IT, R&D, and consulting services. Runs a
cloud-based service for test management.

Large

Case B
Software
company

R & D manager
Quality assurance

manager

Provides a web-based system for managing IT assets.
One of this company’s customer is running the system

in their own private cloud.

Medium

Case C
Cloud

computing
start-up

Owner

One-man cloud computing startup that provides
consulting and educational services and acts as a cloud
service broker, providing a system that lets customers

buy server instances from large cloud providers,
targeting the developer community within small- and

medium-sized enterprises

Micro

Case D
Cloud

computing
start-up

CEO
Tester

A cloud-computing start-up that is building an
international social web site integrated with the world’s

most popular social networks
Micro

Case E
Software
company

CTO
The organization uses Amazon EC2 environment, for

example, in running windows servers and software
applications

Micro

Desired�Quality�Characteristics�in�Cloud�Application�Development

305

4 FINDINGS

4.1 Categories

In this study, we focused on how the organizations
targeted and sought to achieve the quality
characteristics that they deemed to be most
important for their respective applications. The
analysis started with reading through the transcribed
interviews for each organization. This was
accompanied by making open codes, and writing
memos corresponding to the codes. On a separate
document, high level notes were taken highlighting
the impressions about each organization. The
impressions were noted either as text, or in reference
to codes. As an example, we made this reference to a
code for Case A: “Check the code: organizational
change/perceiving future changes – about user
experience being important for the end user, and
therefore organizations need to bring that value to
the user.”

We wrote the following text as part of the
impressions about Case D: “They are developing a
cloud application. The team is using their previous
experiences in deciding the development approach
and tools. The development was taking place at the
time of the interview. Changes [in requirements]
would be addressed along the way. Quality
requirements are adjusted according to the
performance of the end product/service and the user
preferences. Quality section in the interview has
interesting views.”

The impressions noted about the organizations
were then used to identify the potential categories.
For example, from the impressions mentioned
above, some of the identified potential categories
were “Type of developed application”,
“Development approach and tools”, “Choice of
development approach and tools” and “Perceived
future changes”. After identifying the potential
categories, we went through the text again - during
which we refined the categories based on the
similarities, correlations and differences among
them. The process of deriving the final categories
was iterative, mostly focusing on finding the
common thing that the organizations were talking
about, and establishing how it related to other
categories. As the end result, we derived the
categories that affected how the important quality
characteristics were targeted and achieved. Table 2
summarizes the categories together with their
associated observations and information.

The category life-cycle model and tools describes
the software development life-cycle model and the

tools used to produce the software. Waterfall,
incremental and agile development featured among
the organizations, with agile development being the
most popular. The development tools used were
mainly chosen due to the developers’ familiarity
with them, which helped the organizations to focus
on the development rather than using valued time in
learning to use new tools.

The category software application describes the
type of software that the organization is developing.
Case A provided a cloud-based test management
solution and Case B provided a software product,
which was installed in different devices and
controlled via a web console. One of Case B’s
customers was running the software product in their
(customer’s) private cloud. Case C provided
infrastructure-as-a-service (IaaS) in the cloud and
Case D was developing a software-as-a-service
(SaaS) application. Case E provided web-based
services, which were not necessarily running in the
cloud, but the organization made use of cloud
platforms to host some of their application services.

The category important quality characteristics
focused on those aspects of quality that the
organizations found to be must-haves, or at least
most desirable in their respective software
applications. There are different definitions of
quality in literature. Gavin (1984) gives five
definitions for quality based on transcendent,
product-based, user-based, manufacturer-based and
value-based views. In this study, we concentrate on
quality from the perspective of the software
application provider, and specifically, the developer
point-of-view. These quality characteristics were
likely those that were considered to “make or break”
the application with obvious economic impacts on
the organization’s business. The important quality
characteristics mostly included functional suitability,
reliability, and security. Overall, usability featured in
all organizations as an important quality
characteristic.

In the category practices for handling
requirements, we observed that the organizations
had different mechanisms for handling the
requirements. Even though different, these
mechanisms were geared at facilitating a smooth
development process that would aid in achieving the
targeted quality characteristics. There was a
difference in the origin of the requirements. The
initial set of requirements for Cases B, C, and D
came from the developers themselves, stemming
from their previous experiences, needs and ideas for
the software. Once the software had been rolled out
to customers, the user feedback was used for

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

306

Table 2: Categories and observations.

Category/ Case Case A Case B Case C Case D Case E

Life-cycle
model and tools

Commercial
testing tools for
test management

Agile
development

(scrum)

Agile
development;

Drupal, Amazon
web services,
Google App

Engine
Python, PHP, C

Incremental
development;

Codeignite, FIT
and Selenium;

JIRA, wiki,
Google docs,
spreadsheets

Agile
development ;

Drupal
Amazon EC2

Software
application

Cloud based test
management

service (SaaS)

Web-based
system for

managing IT
resources

Amazon web
services-based
value adding
service for

Infrastructure as a
Service (IaaS)

Cloud-based
application for
an international
social website
integrated with

the world’s
most popular

networks (SaaS)

Web-based
applications

Important
quality

attributes

Availability,
functional
suitability,
reliability,

usability, security

Functional
suitability,
security,
usability,

performance
efficiency

Security, usability

Functional
suitability,

performance
efficiency,
reliability,
security,

operability,
usability

Functional
suitability,
reliability,
security,

operability,
usability

Practices for
handling

requirements

-Varies depending
on customer;

-Aim at
measurable

requirements;
Internal

guidelines are
used throughout

development;
-Unclear

requirements
passed down from

the business
people

-Lack of good
developers;

Customers not
knowing exactly
what they want

-User feedback
the most critical

input to
requirement

changes.
-Documentation
becoming more

important as
organization

grows.
-Quality (non-

functional)
requirements

are not clearly
defined.

-More work
than the internal

capcity can
handle

-Timing
constraints.

-User feedback,
back-end analysis
of the usage of the

system and
market evolution
provide input to

requirement
changes.

-Documentation is
in the form of
notes that are

relevant only to
the writer.

-No problems in
handling

requirements at
the time of the

interview.

-Requirements
can be refined at

any stage.
-Reinforced
consistency

most important
approach.

-Documentation
is critical for

communicating
changes.

-Problems with
unpredictability

of user
preferences.

-Small team,
everything is
discussed and

there is not
much

documentation.-
Customers are

involved in
prioritizing the
requirements.

-Customers not
knowing exactly
what they want.
-Customers not

able to
communicate

their needs
clearly.

Customer
involvement

External
customers

determine the
processes, and

approaches to use.

Customers
actively

engaged in
giving feedback

about the
system.

Customers
actively engaged

in giving feedback
about the system.

None at the time
of the interview.

Organization
was developing

the service.

None at the time
of the interview.

Organization
was developing

the service.

improving the software. In Cases A and E, the
requirements came from the customer, and these
varied depending on the customer’s needs and
preferences.

The organizations also experienced different
problems while handling the requirements. We
observed a connection between these problems and
the important quality characteristics for the

Desired�Quality�Characteristics�in�Cloud�Application�Development

307

organizations. For example, Case D had a set of
requirements that it wished to incorporate in the first
version of the software, and deemed functional
suitability as important quality characteristic. The
organization wanted to develop a functional system,
but it anticipated problems when the requirements
(and subsequently, the functionality) change due to
user preferences after the application was ready for
use.

The category customer involvement deals with
the effect the customer has on the development
process throughout the software development life
cycle. Cases A and E often dealt with different
customers and this meant that a substantial level of
flexibility was required in order to address the
unique demands of each customer. In Cases B and
C, the customer was not involved during the
development of the software. However, after
releasing the software, these organizations relied on
customer feedback to improve the software
applications. In Case D, the customer was not
involved, mainly because the organization was
developing the first version of its software.

4.2 Observations

After deriving the categories, we continued with the
analysis by evaluating the commonalities and
differences between the categories. We wanted to
produce general observations that would explain
these commonalities and differences. Below we
summarize these findings.

Observation 1: The most important quality
characteristics vary among the organizations, but
usability was important in all the organizations.

When developing software, it is often that the
application domain defines the most important
quality characteristics, but common important
characteristics also exist. The interviewees were
asked to evaluate the ISO/IEC 25010 software
product quality characteristics in order of
importance. The quality characteristics were
evaluated differently within each organization.
Three of the organizations stated functional
suitability to be one of the most important
characteristics. Case A found it most important to
provide excellent quality of service by ensuring that
the systems were readily available and that the
customers could get support services whenever
needed. Case B mentioned usability as the most
important characteristic and security became more
important when running the software in the
customer’s private cloud. For Case C, security was
most important. Case D noted functional suitability

to be most important, but also emphasized
performance efficiency because a wide customer
base was expected to have simultaneous access to
the system.

Security was generally mentioned and was
motivated by the organizations’ intentions to satisfy
the customers’ needs for data integrity and
confidentiality. In connection with security,
developers using cloud platforms for developing
their applications find themselves with the need for
strict conformance to the cloud platform provider’s
guidelines. This also calls for adhering to strict rules
to ensure interoperability between the developed
application and the cloud provider’s development
platform.

“Before releasing a product, the most important
quality for me has been [the] security issue. Because
I'm using the [cloud] APIs … if the security could be
breached, then that would first of all break the
whole service, and second of all compromise my
relationship with the platform [provider]. And that's
the key quality issue that I'm worried about before I
release the product” – Owner, Case C

Overall, although not on the same ranking, all the
organizations mentioned usability to be an important
quality characteristic.

“Functional suitability is obviously important
since product is targeted to suit a wide range public,
to satisfy [user] needs and be easy and friendly
enough to use for clients to stay with the service.” –
Tester, Case D

 “…customers are expecting an easy-to-use tool,
which has all the possible functionalities, and it
shouldn't cost anything, so all this in one picture,
easy to take into use, I would like to pay only when
I'm using something, and it should be so that I can
handle as much as I can on my own.” - Testing
manager 2, Case A

The emphasis on usability was interesting and
unique because it was mentioned by all the
organizations as being among the important
characteristics for the respective software
applications.

Observation 2: Agile development methods are
preferred when developing cloud-based
applications.

Cloud-based applications are subject to changes
due to factors such as changes in the cloud platforms
and user preferences. Agile methods were
considered to be most suitable because they allowed
the organizations to react to changes and therefore,
keep up with the quality expectations. The
development iterations enabled Cases B and C to
ensure that the security requirements were intact.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

308

Case B used agile methods so as to implement new
features and improve the software product
periodically. Agile development methods helped
Case C to keep up with the new features that are
released by the cloud platform providers and thereby
creating valuable services for the market. Doing so
also facilitates quick development and publishing of
new features, which might be slower when using
life-cycle models such as the waterfall approach.
Agile methods enabled Case E to adjust to different
customer needs and requirements.

Agile methods also supported the development
of most important features first, with room for
improvement during subsequent development
sprints. Customers’ were reported to be more
accommodating of incomplete features, as long as
there were no risks to the customers’ businesses.

“There are no fool proof systems I guess, but
when it comes to cloud I guess the tolerance levels
[to errors] are much higher. Users don't expect the
services to be perfect. When using cloud services,
there might be some small broken things or [some]
quirks, but they will eventually be fixed.” – Owner,
Case C

The interviewees in Case A dealt mainly with
testing activities, and were mainly involved in
testing of software that has already been at the hand
of developers – following a waterfall life-cycle
model that incorporated a feedback system. The
feedback system was relevant for clarifying the
customer needs so as to improve the quality of
service. However, the interviewees reported that
some of their customers were taking agile
development approaches into use.

Observation 3: Customer input is valued at
different stages of the development.

The organizations interacted with the customers
at different stages of the development, depending on
whether the requirements came from the customer or
the developer. In situations where the customer
presents a need and requirements for the software
(as in Cases A and E), the organizations work
together with the customers in developing a unified
understanding of the requirements. The customers’
feedback was a valued input to the development, but
the biggest barrier was often times the customers’
inability to translate their needs into clear
requirements for the developers.

“They [customers] all think that they know [what
they want]. Seldom do they actually know what they
are after…” – CTO, Case E.

“I feel that there are too many customers who
really don't understand what testing means.” –
Testing manager 2, Case A

Cases B and C developed the first version of
their software based on their previous experiences
leading to the identification of possible software
solutions. Therefore, the initial requirements were
drawn solely by the development team which had a
clear picture of what the software was required to
do. After releasing the software, cases B and C
incorporated a steady interaction with the customer,
with the aim of improving the usability aspects of
the system. The customer feedback was also
regarded as a vital source of information on how to
improve the system in general.

“We get a lot of feedback directly from
[customers], in different ways - by email and by
customer visits and so on. But then we also have this
kind of development workshops with the main
customers … coming up with ideas … and then they
present and prioritize them.” – R & D manager,
Case B

“We also realize that there might be some
deficits that need to be fixed, but it's really hard to
pinpoint them before you have the interaction with
the end users and end customers.” – Owner, Case C

Case D was developing the first version of their
software following the same approach as Cases B
and C, i.e. the organization was initially in full
control of the requirements. The software was aimed
at a wide variety of customers, and this posed a
potential for future changes in the software to fit
with different customer needs, and hence changes in
the functionality of the system. The organization
anticipated the changes to occur according to user
preferences.

“Obviously there may be problems with
requirement changes, since it is almost impossible to
predict what functionality is going to be more
preferred or demanded by users. Statistics are going
to be used to track [the changes] and monitor how
they affect user activity on web.” – Tester, Case D.

Observation 4: The developers choose
development tools according to their knowledge,
skills and familiarity with the tools.

Each organization was most familiar with some
development tools, systems and programming
languages. In most cases, these were used in
developing the software, and any additional tools
required were chosen based on their learnability,
usability and appropriateness for the intended need.
Case B was looking to improve the development
activities and this motivated the choice for a suitable
test management tool. On the basis of offering cloud
brokerage services, Case C used the APIs provided
by the cloud platform provider and this was
appropriate for adhering to the security guidelines

Desired�Quality�Characteristics�in�Cloud�Application�Development

309

provided by the cloud platform provider. Cases D
and E chose their respective development
frameworks because they were appropriate for
building web-based applications.

“…because some of our programmers had
experience with it [the tool used] and we chose it as
the best option for our needs.” – CEO, Case D

“I decided to have it [the test management tool].
I had to have some tool for managing the test plans,
and we didn’t have it earlier.” – Quality assurance
manager, Case B

For organizations whose software was heavily
based on cloud platforms, as in Case C, the
developer was constantly on the look-out for new
tools or application programing interfaces (APIs)
that would support further development of the
software.

“Whenever Amazon or Google for example
release a new API or new feature, if you want to
benefit from it and create something new that has
market value, you have to move fast.” – Owner,
Case C.

4.3 Summary of the Observations

We observed that the desired quality varied among
the organizations. However, usability was found to
be important in all the organizations. Despite the
differences in desired quality, we observed that the
organizations involved three activities geared
towards attaining the desired quality characteristics.
These activities are represented in the second to
fourth observations. We summarize them as (1)
Selecting a suitable life-cycle model, during which
(2) the customer is engaged and (3) the most suitable
tools are used. The organizations incorporated these
activities so as to establish supportive working
practices for acquiring the desired quality.

The life-cycle models were such that they
allowed the developers to interact with the
customers and cloud platform providers. Interacting
with the customers helped in improving
requirements, and consequently, the functionality of
the software. This was especially useful for
enhancing the usability of the end-products. On the
other hand, Interacting with the cloud platform
provider helped the developers to align the
functionality of their (developers) applications
according to the specific platforms within which the
applications are developed. The developers used
development tools that were deemed to be most
relevant for the software being developed. For
example, by selecting development frameworks
suitable for building web-based applications, Cases

D and E were able to focus on developing the
important application features.

The observations we have described above relate
to the activities that the organizations incorporated
to develop cloud applications. Building cloud
applications is no doubt a complex process, which
requires multidisciplinary techniques for providing
traceable links between development activities and
the desired quality. The use of cloud computing
platforms for developing and hosting applications
necessitate the need for close interaction between the
cloud platform providers and the application
developers.

5 DISCUSSION

The purpose of this study was to observe how
organizations incorporate various activities in their
development and testing processes in order to
achieve the desired quality of cloud applications.
The studied organizations had software applications
that were either developed and/or hosted in the
cloud. The activities that supported the development
of the cloud applications involved the use of
appropriate life-cycle models and tools.
Furthermore, the customer view was incorporated in
order to enhance the value that the applications give
to the customer.

It seems that cloud applications need to have a
“good first impression” and this is likely why all the
organizations mentioned usability to be important. It
is also an indication that using the cloud for
developing and delivering software might draw
more attention to usability and user experience
aspects. Cloud-based software applications may be
expected to be intuitive and easy to use. Providing
good user experience may be particularly important
for small organizations, motivated by their intention
to attract and retain customers. Cloud-based services
and products are essentially Web 2.0 applications,
whose success is claimed to “depend on loyal rather
than casual users” (Orehovacki, 2011). Therefore, it
is important for the developers to evaluate their
application’s quality in order to meet the customers’
needs and generate profits.

Notwithstanding the common cloud aspect and
usability’s value, there was a variation in other
important quality characteristics for the software
applications developed in each organization. This
confirms Gavin’s (1984) argument that even for one
product, there would be different definitions of the
product’s quality by different stakeholders. The
quality characteristics functional suitability, security,

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

310

performance efficiency and reliability were each, to
a certain extent, regarded to be important. In
addition, developers using cloud platforms have to
ensure conformance to the cloud provider’s
guidelines and interoperability with the platforms.

The studied organizations generally preferred
agile development methods. When using cloud
platforms to develop cloud applications, the
application developers are not in full control of some
components. Cloud platform providers frequently
release new features, and using agile methods would
allow an organization the opportunity to take
advantage of the new features to enhance the
existing services or build new ones. Agile
development methods also enable an organization to
involve the customer as early as deemed appropriate
during the development activities. Customer
feedback was also appreciated in providing
suggestions for refining the requirements and
improving the software in subsequent sprints. The
observed alignment to agile practices in the studied
organizations correlates to the extended agile
process model proposed by Patidar et al. (2011). The
model accommodates interaction between the
developers and cloud providers with a focus on
enhancing the effectiveness of cloud application
development.

Releasing the software to the market as soon as it
is able to deliver some value to the customer, even if
not fully ready, was seen to be an acceptable
approach in finding those bottlenecks that may not
be seen prior to the customer using the software. The
view that end users are more tolerant to some errors
might be more subjective from a cloud start-up’s
perspective, and it would be interesting to compare
this view with that from other cloud start-ups and
larger organizations. It seems that the organizations
selected the tools, systems and programing
languages that were most familiar to them in order to
avoid learning curves that come with using new
tools, systems and programing languages. Sodhi and
Prabhakar (2011) suggest a method for evaluating
different cloud oriented platforms for application
development. They divide the platforms into three
groups - traditional non-cloud, virtualized and cloud
aware platforms – and suggest a selection criteria
based on the targeted non-functional quality
attributes (NFQAs). For example, their selection
criteria showed that cloud aware platforms are best
suited “for achieving high scalability and
availability” (Sodhi and Prabhakar, 2011).

From our original sample of eleven
organizations, we selected five “polar point”
organizations for the study. External validity deals

with the extent to which the results can be
generalized (Runeson and Höst, 2009). Case study
settings impose some limitations to the possibility of
generalization. The results can only be directly
generalized when discussing comparable
organizations. However, we believe that our findings
may be relevant to other organizations developing
cloud applications. Our study confirmed that the
application domain strongly affects the most
important quality characteristics, but also common
important quality characteristics exist. Specifically,
we observed an emphasis on usability as a much
highly desired quality characteristic for cloud-based
software applications. We used grounded theory for
analysis, as described by Strauss and Corbin (1990).
The development of a theory is a dynamic process,
whereby the theory can be extended by observing
additional cases. Therefore, it is logical to expect
that our findings can be extended to provide more
insight on cloud application development practices.

6 CONCLUSIONS

This focused on the desired quality characteristics of
cloud applications and the activities that developers
undertake to achieve the desired quality. The results
are based on experiences of software organizations
whose software applications were either developed
and/or hosted in the cloud.

To achieve the desired quality goals, the
organizations incorporated activities that encourage
the use of appropriate life-cycle models and tools
while keeping the customer engaged during the
development. We found that even for cloud
applications, quality is context-dependent, and varies
across organizations. We also observed that usability
was of general importance. Industrial practitioners
can take the experiences discussed in this study and
use them to enhance their development practices
focused on producing cloud applications that bring
value to the customer.

The research community can take the findings in
this study and conduct in-depth studies related to the
development of cloud applications. In the future, we
intend to use the elicited quality characteristics to
widen the scope and impact of the study in
understanding the desired quality characteristics of
cloud applications along with testing techniques that
can be used to test corresponding quality
characteristics.

Desired�Quality�Characteristics�in�Cloud�Application�Development

311

ACKNOWLEDGEMENTS

The STX project (http://www2.it.lut.fi/
project/STX/), the Finnish Funding Agency for
Technology and Innovations (TEKES), the
companies involved in the project and the Graduate
School on Software Systems and Engineering
(SoSE) supported this study.

REFERENCES

Blaine, J. D., Cleland-Huang, J., 2008. Software quality
requirements: How to balance competing priorities.
IEEE Software, Issue 2, Volume 25, pp. 22-24.

Chauhan, M. A., Babar, M. A., 2012. Cloud infrastructure
for providing tools as a service: Quality attributes and
potential solutions. Proc. IEEE/IFIP Conference on
Software Architecture & European Conference on
Software Architecture, pp. 5-13. .

Costa, P. M., Pitt, J., Cunha J. F., Galvao, T., 2012.
Cloud2Bubble: enhancing quality of experience in
mobile cloud computing settings. Proc. 3rd ACM
workshop on mobile cloud computing and services, pp.
45-52, doi: 10.1145/2307849.2307860

Eisenhardt, K. M., 1989. Building Theories from Case
Study Research. Academy of Management Review,
vol. 14, no. 4, pp. 532-550.

European Commission, 2005. The New SME Definition:
User Guide and Model Declaration, Enterprise and
Industry Publications. http://ec.europa.eu/enterprise/
policies/sme/files/sme_definition/sme_user_guide_en.
pdf

Gavin, D. A., 1984. What does "product quality" really
mean? Sloan Management Review, Issue 4, pp. 25-43.

Glaser B., Strauss, A.L., 1967. The Discovery of
Grounded Theory: Strategies for Qualitative
Research, Aldine Publishing Company, Chicago.

Hobfield, T., Schatz, R., Varela, M., Timmerer, C., 2012.
Challenges of QoE Management for Cloud
Applications, IEEE Communications Magazine, pp.
28-36.

ISO/IEC, 2001. ISO/IEC 9126-1 Software Engineering –
Product Quality – Part 1: Quality Model.

ISO/IEC, 2005. ISO/IEC 25000 Systems and software
engineering - Systems and software quality
requirements and evaluation (SQuaRE) - System and
software quality models.

ISO/IEC, 2010. ISO/IEC 25010 Systems and software
engineering - Software product quality requirements
and evaluation (SQuaRE) - Quality models for
software product quality and system quality in use.

Jarschel, M., Schlosser, D., Scheuring, S., Hibfeld, T.,
2011. Gaming in the Clouds: QoE and the Users'
Perspective. Mathematical and Computer Modelling.

Kafetzakis, E., Koumaras, H., Kourtis, M. A., Koumaras,
V., 2012. QoE4CLOUD: A QoE-driven
Multidimensional Framework for Cloud

Environments. Proc. International Conference on
Telecommunications and Multimedia, pp. 77-82.

Kasurinen, J., Taipale, O., Vanhanen, J., Smolander, K.,
2011. Exploring perceived quality in software
organizations. Proc.5th IEEE International Conference
on Research Challenges in Information Science, pp. 1-
12.

Lee, J. Y., Lee, J.W., Cheun, D. W., Kim, S.D., 2009. A
quality model for evaluating software-as-a-service in
cloud computing. Proc. 7th ACIS International
Conference on Software Engineering Research,
Management and Applications, pp. 261-266.

Orehovacki, T., 2011. Perceived quality of cloud based
application for collaborative writing. Book chapter in
Business Systems and Services: Modeling and
Development, Information Systems Development, pp.
575-586, doi: 10.1007/978-1-4419-9790-6_46

Pare, G., Elam, J. J., 1997. Using Case Study Research to
Build Theories of IT Implementation. Proc.
International Conference on Information Systems and
Qualitative Research (IFIP TC8 WG), pp. 542 – 568.

Patidar, S., Rane, D., Jain, P., 2011. Challenges of
software development on cloud platform. Proc. World
Congress on Information and Communication
Technologies, pp. 1009-1013.

Qian, H., Medhi, D., Trivedi, K., 2011. A hierarchical
model to evaluate quality of experience of online
services hosted by cloud computing. Proc. 12th
IFIP/IEEE International Symposium on Integrated
Network Management, pp. 105-112.

Runeson, P., Höst, M., 2009. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering, vol. 14,
Issue 2, pp. 131-164, doi: 10.1007/s10664-008-9102-8

Sodhi, B., Prabhakar, T. V., 2011. Assessing suitability of
cloud oriented platforms for application development.
Proc. 9th Working IEEE/IFIP Conference on Software
Architecture, pp. 328-335.

Strauss, A., Corbin, J., 1990. Basics of qualitative
research: Grounded theory procedures and
techniques, SAGE Publications, Newbury Park, CA,
USA.

Yau, S. S., An, G. H., 2011. Software engineering meets
services and cloud computing. IEEE Computer, 44, 10
pp. 47-53, doi:10.1109/MC.2011.267.

Zheng, Z., Shang, Y., Lyu, M. R., 2010. CloudRank: A
QoS-driven component ranking framework for cloud
computing. Proc. 29th IEEE Symposium on Reliable
Distributed Systems, pp. 184-193.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

312

