
Towards a Standard Approach for Optimization
in Science and Engineering

Carlo Comin, Luka Onesti and Carlos Kavka
Research and Development Department, ESTECO SPA, Area Science Park, Padriciano 99, Trieste, Italy

Keywords: Optimization, BPMN 2.0, Scientific Workflows, Simulation.

Abstract: Optimization plays a fundamental role in engineering design and in many other fields in applied science. An
optimization process allows obtaining the best designs which maximize and/or minimize a number of
objectives, satisfying at the same time certain constraints. Nowadays, design activities require a large use of
computational models to simulate experiments, which are usually automated through the execution of the
so-called scientific workflows. Even if there is a general agreement in both academy and industry on the use
of scientific workflows for the representation of optimization processes, no single standard has arisen as a
valid model to fully characterize it. A standard will facilitate collaboration between scientists and industrial
designers, interaction between different fields and a common vocabulary in scientific and engineering
publications. This paper proposes the use of BPMN 2.0, a well-defined standard from the area of business
processes, as a formal representation for both the abstract and execution models for scientific workflows in
the context of process optimization. Aspects like semantic expressiveness, representation efficiency and
extensibility, as required by optimization in industrial applications, have been carefully considered in this
research. Practical results of the implementation of an industrial-quality optimization workflow engine
defined in terms of the BPMN 2.0 standard are also presented in the paper.

1 INTRODUCTION

Optimization is the process of finding the best
solution for a problem given a set of restrictions or
constraints. Typical problems faced nowadays in
engineering and applied sciences, both in research
and industry, are defined with multiple and possibly
conflicting objectives. This class of problems,
known as Multi-Objective Optimization (MOO)
problems, usually do not have a single solution, but
a set of trade-off solutions where no objective can be
enhanced without a deterioration of at least one of
the others. This set of compromise solutions, known
as Pareto front, represents the output of an MOO
process (Branke et al., 2008).

Formally, an MOO problem is defined as
follows:

ሻݔሺࡲ	௫݁ݖ݅݉݅݊݅ܯ ൌ ሾܨଵሺݔሻ, ,ሻݔଶሺܨ … , 	ሻሿ்ݔሺܨ
ሻݔሺ݃	ݐ	ݐ݆ܾ݁ݑݏ 0, ݆ ൌ 1, 2, … ,݉	

݄ሺݔሻ ൌ 0, ݈ ൌ 1, 2, … , ݁

where k is the number of objective functions, m is
the number of inequality constraints and e is the
number of equality constraints. The vector ݔ ∈ is	ܧ

the vector of design variables while F corresponds
to the objective vector function.

In most engineering and applied sciences
problems, the objective vector function F represents
a physical problem, which is usually evaluated by a
so-called solver defined in terms of simulated
processes running on computer systems. This
computational process can be rather complex,
involving a large number of simulation steps, which
need to exchange data between themselves and can
require execution on distributed systems like a Grid
or Cloud Computing system. The simulated process
is usually represented with a formalism known as a
scientific workflow (Lin et al., 2009), which
provides both a representation for the abstract view
(used by the engineer to represent the process) and
the associated execution model (used for the real
simulation). The abstract view is usually a human-
understandable graphic representation, while the
execution model is usually represented with XML.
This last model is used by a workflow engine in
order to execute the workflow and perform the
simulation.

However, even if scientific workflows have been

169Comin C., Onesti L. and Kavka C..
Towards a Standard Approach for Optimization in Science and Engineering.
DOI: 10.5220/0004490501690177
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 169-177
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

used successfully since many years, most of the
tools used for their definition and execution are not
based on standard technologies. A large number of
different graphic and execution formats are currently
in use, and there is no clear signs of convergence till
now. However, things are different in the area of
business processes, where many standards have
been defined for both the graphical and the
execution representation of business process
workflows. It is definitely true that most of the
business process standards cannot be used to
represent scientific workflows since they lack
enough expressive power to support specific
scientific workflow requirements. However, the
recent BPMN 2.0 (OMG, 2011) standard allows the
support of required characteristic for scientific
workflows at both levels, particularly due to its
powerful extension scheme, which can be used to
define the missing features. From now on, all
references with the acronym BPMN are intended as
references to version 2.0 of the standard.

While it is mostly accepted that BPMN can be
used to represent scientific workflows, this paper
will go one step forward. It will show that BPMN
can be used to represent a complete optimization
workflow, which includes not only the scientific
workflow used to represent the physical problem,
but also the optimization cycle supporting the
multiple patterns required by current optimization
problems. In this way, BPMN is opening the path for
the use of a single standard in optimization
workflows for engineering and applied science
applications, both in research and industrial fields.

The paper is structured as follows: Section 2
presents a short review of the state of the art, Section
3 describes optimization problems and the most
common optimization patterns in use today, Section
4 presents our proposal for the use of a standard
notations for optimization workflows and Section 5
presents results on a standard implementation by
considering specific requirements like execution
efficiency. The paper ends with conclusion and
references.

2 STATE OF THE ART

The use of scientific workflows for process
automation has been widely analyzed in the
literature (Lin et al., 2009). Many commercial and
open source implementations do exist. The most
widely used are Kepler (Ludascher et al., 2009),
Triana (Taylor et al., 2007), Taverna (Missier et al.,,
2010), Pegasus (Sonntag et al., 2010) and KNime

(Berthold et al, 2008), with many new frameworks
appearing continually. However, all these scientific
workflow frameworks are based in proprietary non-
standard formats. Attempts have been made to
represent scientific workflows by using standards;
for example, BPEL was proposed as the execution
representation for workflows using other models for
graphical representation, like BPMN or Pegasus
(Sonntag et al., 2010). However, the need to use two
different models, one for the abstract or graphical
representation, and the other for the execution
representation, prevented its widespread use in
industry.

Standards coming from the business process
area, like BPEL and the first version of BPMN had
some strong limitations to support all required
features. The latest release of the BPMN standard,
however, has open the possibility to use a single
standard in the context of scientific workflows due
to its powerful extension mechanism (Abdelahad et
al., 2012), even if in some cases the development
efforts can be important (Sonntag et al., 2010).

Concerning optimization workflows, there are
specific workflow systems defined for optimization
and also extensions of the previously mentioned
frameworks which can include optimization
components in them. As an example from the open
source community, Kepler through its module
Nimrod/OK, provides the possibility of defining
optimization cycles (Abramson, 2010). In the area of
commercial tools, there exists many options like for
example modeFRONTIER (ESTECO, 2012), widely
used in CAD/CAE engineering optimization.
However, again, all of them are based in proprietary
formats.

To the best of our knowledge, no current tool,
open source or commercial, can define optimization
workflows by using a standard workflow notation.

3 OPTIMIZATION PROBLEMS

An optimization session is defined through what is
usually know as an optimization plan (OP), which
consists at least in the specification of the design of
experiments strategy and the selection of the
optimization algorithm. Other elements, like robust
sampling or response surface models are usually
required in industrial applications (Branke et al.,
2008). The following subsections provide a short
description of these elements, together with an
specification of the most common optimization
patterns in use today.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

170

Figure 1: The most common optimization patterns: (a) simple, (b) sequential, (c) nested, (d) robust and (e) mixed robust.

3.1 Design of Experiments

A Design of Experiments (DoE) session usually
precedes the optimization stage. The aim of a DoE is
to test specific configurations regardless of the
objectives of the optimization run, but rather
considering their pattern in the input parameters
space. It provides an a-priori exploration and
analysis which is of primary importance when a
statistical analysis has to be performed later on.
Moreover, most optimization algorithms require a
starting population of designs to be considered
initially, eventually generating random input values
if no other preference has emerged yet.

3.2 Optimization Algorithms

The Optimization Algorithm (OA) implements the
mathematical strategies, or heuristics, which are
designed to obtain a good approximation of the
actual Pareto front. It is important to stress that real-
world optimization problems are solved through
rigorously proven converging methodologies only in
a very few cases, since the high number of input
parameters and the low smoothness of objective
functions involved limit the possible usage of
classical mathematical algorithms.

In many cases, the most widely used
optimization techniques tend to “over-optimize”,
producing solutions that perform well at the design
point but may have poor off-design characteristics. It
is important, therefore, that the designer ensures
robustness of the solution, defined as the system
insensitivity to any variation of the design
parameters. This effect is achieved through the use
of Robust Sampling (RS), which searches for the
optima of the mean and standard deviation of a
stochastic response rather than the optima of the
deterministic response (Bertsimas et al, 2010).

3.3 Response Surface Models

In real applications, the required simulation process
is usually computationally expensive since every
single execution can require hours if not days.
Therefore, multi objective optimization algorithms
are required to face the demanding issue of finding a
satisfactory set of optimal solutions within a reduced
number of evaluations. Response Surface Models
(RSM), can help in tackling this situation by
speeding up the optimization process (Voutchkov
and Keane, 2010). Previously evaluated designs can
be used as a training set for building surrogate
models, allowing a subsequent inexpensive virtual
optimization to be performed over these meta-
models of the original problem.

3.4 Optimization Patterns

The specification of an optimization problem in
terms of the interaction between the solver and the
optimization algorithm can follow different patterns.
The Optimization Patterns (OP) most widely used
nowadays in industrial and research applications are
presented in Figure 1 and described below:
1. Simple Optimization: The simplest pattern

which consists on a single optimization loop (see
Figure 1.a). The optimization algorithm (OA)
sends design patterns to the solver (S) for
evaluation, which in turn returns the computed
values for the objectives.

2. Sequential optimization: A sequence of two
simple Optimizations (see Figure 1.b). Usually,
the second optimization starts by considering the
best designs obtained by the first optimization. In
many cases, both solvers are the same, i.e. S’=S,
corresponding to a situation where two different
optimization strategies are applied to the same
physical problem. A typical use case is when the
first algorithm performs a rough and fast
optimization step, reducing the search space for a
second more precise but slower optimization.

(a) (b) (c) (d) (e)

OA

S

OA

S’

NOA
OA1

S

OA2

S’

RS

SRSM

OA

S

RSS

OA

Towards�a�Standard�Approach�for�Optimization�in�Science�and�Engineering

171

3. Nested Optimization: The optimization cycle
includes two optimization algorithms (see Figure
1.c). A typical use case consists in a main
optimization algorithm (OA) generating designs,
which are evaluated by using a solver and a
secondary optimization algorithm (NOA). This
last optimization cycle performs a kind of local
optimization in a fixed context defined by the
design provided by the first algorithm. The
design evaluation results are sent back to the
main algorithm only after this secondary
optimization has finished.

4. Robust Optimization: In this pattern, the
designs generated from the external optimization
loop are not sent directly to the solver (see
Figure 1.d). Instead, an internal loop performs
robust sampling (RS) by sending for evaluation a
fixed number of designs for each original design
submitted from the external loop, randomly
perturbed by following a probability distribution.

5. Mixed Robust Optimization: The designs
generated by the optimizer and perturbed by a
robust sampling algorithm, are evaluated with
the real solver or with a synthetic response
surface model (RSM) depending on a
probabilistic distribution. The objective is to use
an approximation of the real solver which can
help to reduce the computation time, without
losing precision (see Figure 1.e).

Note that there are no restrictions on the number of
designs to be evaluated concurrently if the
optimization algorithm allows it.

4 STANDARD OPTIMIZATION
WORKFLOWS

This section will show that BPMN can be used to
represent optimization workflows, supporting the
multiple patterns required nowadays by current
applications in engineering and applied sciences.

4.1 Requirements

Required features that are not directly supported by
BPMN can be defined through the standard
extension mechanism. Therefore, this section will
consider only the aspects that are required to fully
support optimization workflows. These specific
features are the following:
1. Optimization Data handling: The workflow

notation needs to support data objects that can
adequately represent the DoE, optimization plan,

design database, and subsets of it (like the Pareto
front for example). Also, suitable support for
data transformations must be provided (for
example, in order to filter a set of designs or
select the Pareto front).

2. Asynchronous Communication: Optimization
algorithms and related components like robust
optimization activities, require the evaluation of
designs in asynchronous terms, in such a way
that evaluation of a number of designs can be
requested without blocking the execution of the
algorithms.

3. Concurrent Execution: mechanisms must be
provided to support parallel execution of the
solver and other components, like response
surface models and robust optimization.

4. Instance Routing: Since there will be many
instances of the same process running
concurrently, the messaging system has to
deliver the messages to the particular instance to
which is addressed. This can be handled through
an adequate correlation model which can ensure
that data will flow between the components as
required.

Complete support for all these required features,
however, is not enough, since a standard workflow
model used for optimization needs to address also
execution efficiency both in terms of memory and
processing time. Next sections will show that BPMN
supports not only the required features, but also
allows specifying elements to guarantee efficiency
through its extension mechanism.

4.2 BPMN Support

The BPMN standard provides elements which can
support the requirements identified in previous
section. In particular:
1. Data Objects: The construction used to

represent data within the process, which can also
represent a collection of objects, as required for a
DoE or design databases. Transformation
expressions are allowed in data associations,
which are used to transfer data between data
objects and inputs/outputs of activities and
processes.

2. Messages: BPMN coordinates process
interaction by using the so-called conversations
and choreography processes. Coordination is
reached through asynchronous message
exchange between activities defined in different
pools.

3. Message-triggered Start event: A process with
a message start event will start its execution as

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

172

soon as a message of the appropriate type will be
received. In this way, the optimization algorithm
task can start many instances of the solver by
sending the appropriate number of messages to
the solver process.

4. Correlation keys: BPMN supports instance
routing by associating a particular message to an
ongoing conversation between two particular
process instances by using a correlation
mechanism defined in terms of correlation keys.

4.3 Optimization Patterns Support

With the appropriate elements identified in the
previous section, BPMN can support the most
widely used optimization patterns, as it will be
shown below.

Figure 2: Simple optimization pattern in BPMN.

A BPMN diagram with two pools representing two
participants, the optimization algorithm and the
solver respectively, can be used to model the simple
optimization pattern, as shown in Figure 2. The
optimization algorithm is defined with a process
with three nodes: a start event, a task that
implements the optimization algorithm itself, and an
end event that are executed in sequence. The
optimization task (labeled as OA) gets the initial set
of designs to evaluate from a data object (DoE) and
produce the final Pareto front in a second data object
(Pareto). The solver is implemented also by a three
nodes process: a message triggered start event, a task
that implements the solver itself and an end event
that generates a message. When the OA task
generates a message with the design to be evaluated
as payload, an instance of the second process is
started. The solver (S) evaluates the design and
generates a message with the corresponding metrics
as payload, which is sent to the optimization task
(OA) through the conversation defined between the
two participants. Multiple instances of the solver can

be run in parallel, each one of them started when
triggered by the message from the optimization
task.

A sequential optimization pattern can be
represented by adding a second optimization
algorithm task in the first process, as shown in
Figure 3. The first optimization task (labeled as

Figure 3: Sequential optimization pattern in BPMN.

OA1) gets the initial set of designs to evaluate from a
data object (DoE), performs the evaluation using the
first solver (S), producing as output a set of designs
which are assigned to a data object (Best designs).
The second optimization algorithm (OA2) uses this
data object as the initial population for the second
optimization loop, which in turn produces the final
Pareto front in a third data object (Pareto) by
repeatedly evaluating designs by using the second
solver (S’). Note that multiple instances of the solver
can be run in parallel for each optimization cycle.

Figure 4 presents the nested optimization
pattern represented in BPMN. The two optimization

Figure 4: Nested optimization pattern in BPMN.

ParetoO
A

S

OA

S

DoE

DoE Pareto

O
A

S

OA1

S

Best designs

OA2

S' S'

N
O
A

S'

S

S'

NOA

O
A

OA

ParetoDoE

Towards�a�Standard�Approach�for�Optimization�in�Science�and�Engineering

173

loops are implemented in different processes. The
first process (OA) implements the outer optimization
loop in the same terms as the loop in the simple
optimization pattern, sending designs for evaluation
to the inner optimization loop (NOA). An instance
of this process is started for every message

Figure 5: Robust optimization pattern in BPMN.

received, meaning that multiple inner optimizations
can be evaluated concurrently. The internal
optimization executes a solver (S), and based on
their output and the design sent from the external
optimizer, performs a local optimization by using
the nested algorithm (NOA). The nested algorithm
evaluates designs by using the second solver defined
in the third process (S’). Note that evaluations of the
this process can also be run concurrently.

Figure 5 shows the robust optimization pattern
in BPMN, which represents a very usual pattern in
industrial design. There is an optimization algorithm
task (OA) which sends through messages the designs
for evaluation to the second process. One instance of
this process is started for each design that is
received.

The robust sampling task (RS) generates a
number of messages for each design received from
the top level, which are in turn sent as messages to
the third process for evaluation by using the solver
(S). Note that if the first process generates n
messages for concurrent evaluation, n process for
robust sampling will be started concurrently, and if
the RS processes send each one m messages for
concurrent evaluation, a total of ݊ ൈ݉	solver
instances could eventually be run concurrently.

The mixed robust optimization pattern in
BPMN is shown in Figure 6. In this patter there is an
external optimization loop which send designs for
evaluation to the robust sampling process as in the
previous pattern (see Figure 5). This process
performs evaluations by using the real solver (S) or a
synthetic model of it (RSM) depending on a
probabilistic distribution, a decision that is
represented with the decision exclusive gateway
node in the second process.

4.4 Efficiency Considerations

The previous section has shown that BPMN can be
used to represent the most widely used patterns in
optimization. However, in order to use it effectively
in a real environment, execution efficiency has also
to be considered. Many aspects in the BPMN
specification can introduce execution difficulties for
optimization workflows. Nevertheless, the BPMN
extension mechanisms allows defining new elements
to effectively handle them. Since it is not possible to
describe all situations that have been considered, this
section presents a representative example that
shows how a typical problem with efficiency can be
handled with appropriate extensions. The next
section will present experimental results by using the
extension proposed.

As shown before, optimization patterns are

Figure 6: Mixed robust optimization pattern in BPMN.

heavily based on asynchronous communication. This
puts a strong pressure on the messaging system,

ParetoO
A

R
S

OA

RS

DoE

S S

S S

R
SM RSM

O
A

OA

ParetoDoE

R
S

VRS

RS

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

174

since optimization processes typically run for a long
time, with days or weeks being a common duration,
involving also a large number of task evaluations.
Hundreds of thousands of messages could be
exchanged in a single run. In a typical robust
optimization problem (as show in Figure 1.d), if the
optimization algorithm (OA) sends n designs for
evaluations, n concurrent instances of the robust
sampling (RS) process will be started (ܴ ܵ, 1 ݅
݊). If each one of these instances send m randomly
perturbed designs for evaluation, then nൈm
concurrent solver (S) instances will be started
ܵ , 1 ݅ ݊, 1 ݆ ݉). Messages sent back

from the Sij instance need to be addressed to the
correct RSi instance, and messages sent back from
the RS instances has be addressed to the correct OA
instance.

BPMN uses a correlation mechanism to
associate messages to particular instances involved
in a conversation (OMG, 2011). Exchanged
messages are correlated through the so-called
correlation keys, which are defined as a set of
name-value pairs. In simplified terms, when the first
message in a conversation is received, the receiver
process stores the correlation values for the key,
which must match in future interchange of
messages. In this way, messages can be routed to the
appropriate instance responsible for receiving the
message. For the robust optimization pattern (see
Figure 5), two correlation keys are required, one to
correlate messages between OA and RO, and other
to correlate messages between RO and S. The first
key can be the design ID, while the second can be a
combination of the design ID and the sequence
number of the perturbed design.

Note that a process needs to keep information
about all keys that are used in order to eventually
match future messages. This implies an extra
memory requirement to store the keys and
additionally, extra processing time to perform the
matching process every time a new message is
received. These problems can be easily solved by
adding an extension element to indicate the time to
live (TTL) for messages, representing the number of
steps expected in a conversation that uses a
particular correlation key. As can be noted from the
selected pattern, single request-response means that
the key can be discarded as soon as an answer
message is received, removing the need to store the
keys for checking future matching since there will
never be other answer. The following XML code
shows an example of the use of the extension TTL
added to the conversation element of BPMN:

<conversation id="_11">

 <extensionElements>
 <optimization:TTL value="1"/>
 </extensionElements>
 . . .
<conversation id="_11">

Of course, the TTL extension can be used at
workflow designer discretion, meaning that he or
she should include it only when it is clear from the
communication pattern.

5 IMPLEMENTATION

In order to demonstrate practically the effect of
efficiency enhancement by using the extension
mechanism, this section presents the experimental
results of the TTL extension presented in previous
section. The pattern considered is the robust
optimization flow, which has been presented in
Figure 5. In order to make more evident the effect
of the TTL enhancement, an unlimited value of ݉
as perturbation for robust optimization was selected.

Figure 7 presents the results of the execution in

Figure 7: Memory usage for a robust optimization
execution with TTL (continuous line) and without TTL
(dotted line).

terms of memory consumption. Memory usage
without TTL is plotted with a dotted line, while
memory usage with the TTL extension is plotted
with a continuous line. As it can be appreciated,
memory requested from the heap grows
continuously due to the need to store the correlation
keys when TTL is not used. The problem arises
because the RS process cannot discard a key, even
if its associated message has been received, since the
standard specifies that other messages with the same
key can eventually arrive. The optimizer workflow
designer knows by sure that this will never happen,
but there is no way in which he or she can specify it.
The continuous line plot in Figure 7 shows that with

Towards�a�Standard�Approach�for�Optimization�in�Science�and�Engineering

175

the TTL extension, the use of memory is stable,
updated only at regular intervals by the execution of
the garbage collector. This happens because
correlation keys are disposed as soon as a message
that matches the corresponding key is received,
releasing the memory that was occupied by the key.

A similar effect can be appreciated with the
processing time. Figure 8 presents the results of the
delay in the execution of the solver process over
time. Delay without TTL is plotted with a dotted
line, while delay with the TTL extension is plotted

Figure 8: Delay to start the solver with the TTL extension
(continuous line) and without it (dotted line).

with a continuous line. With the no-TLL approach,
every time a message arrives, the matching process
has to consider all correlation keys, including the
values that have successfully matched a message
before. The TTL approach instead presents no delay,
since correlation keys are removed as soon as the
message has been processed, with no need to include
them in the matching process.

6 CONCLUSIONS

Optimization workflows have been used
successfully over many years; however, the
currently available tools used for their definition and
execution are not based on standard technologies. A
large number of different graphic and execution
formats are currently in use, and there is no clear
signs of convergence until to date. This paper has
proposed the use of BPMN 2.0, a well-defined
standard from the area of business processes, as a
formal representation for both the abstract and the
execution model for optimization workflows. In
particular, it was shown that BPMN 2.0 can support
the most widely used optimization patterns required
today in industry. An implementation example that

illustrates the use of BPMN 2.0 extensions to solve a
representative execution efficiency problem has also
been presented.

It is expected that the use of a standard for
optimization workflows will facilitate the
collaboration between scientists and industrial
designers, enhance the interaction between different
engineering and scientific fields, providing also a
common vocabulary in scientific and engineering
publications.

REFERENCES

Abramson D., Bethwaite B., Enticott C., Garic S., Peachey
T., 2011. Parameter Exploration in Science and
Engineering Using Many-Task Computing. In IEEE
Transactions on Parallel and Distributed Systems, vol.
22, no. 6, pp. 960-973. IEEE.

Abramson D., Bethwaite B., Enticott C., Garic S., Peachey
T., Michailova A., Amirriazi S., Chitters R., 2009.
Robust Workflows for Science and Engineering. In
Proceedings of the 2nd Workshop on Many-Task
Computing on Grids and SupercomputersMTAGS’09.
ACM.

Abdelahad C., Riesco D., Comin C., Carrara A., Kavka,
C., 2012. Data Transformations using QVT between
Industrial Workflows and Business Models in
BPMN2. In The Seventh International Conference on
Software Engineering Advances ICSEA 2012. IARIA.

Berthold, M. et al, 2008, KNIME: The Konstanz
Information Miner. In Data Analysis, Machine
Learning and Applications, ed. Bock H, Gaul W.,
Vichi, M., pp. 319-326, Springer.

Bertsimas D., Brown D., Caramanis C., 2010, Theory and
Applications of Robust Optimization. SIAM Review,
vol. 53 no. 3, pp. 464-501. SIAM.

Branke, J., Deb, K., Miettinen, K., Slowinski, R., 2008.
Multiobjective Optimization, Interactive and
Evolutionary Approaches. In Lecture Notes in
Computer Science, vol. 5252, Springer.

ESTECO SpA, 2012, modeFRONTIER applications
across industrial sectors involving advanced
CAD/CAE packages, (online) Available at:
<http://www.esteco.com/home/mode_frontier/by_indu
stry>, (retrieved: 14 February 2013)

Lin C., Lu S., Fei X. at al, 2009, Reference Architecture
for Scientific Workflow Management Systems and the
VIEW SOA Solution. In IEEE Transactions on
Service Computing, vol. 2, no. 1, IEEE.

Ludascher B., Altintas I., Bowers S. et al., 2009. Scientific
Process Automation and Workflow Management. In
Scientific Data Management: Challenges, Technology,
and Deployment, edited by Shoshani A., Rotem D.
Chapman and Hall.

Missier P., Soiland-Reyes S., Owen S., Tan W., Nenadic
A., Dunlop I., Williams A., Oinn T., Goble C., 2010,
Taverna, Reloaded. In Lecture Notes in Computer

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

176

Science, vol. 6187, pp. 471-481, Springer.
OMG (Object Management Group), 2011, Business

Process Model and Notation. (online) Available at:
<http://www.omg.org/spec/BPMN/2.0> (Accessed 14
February 2012).

Sonntag M., Karastoyanova D., Deelman E. , 2010.
Bridging The Gap Between Business And Scientific
Workflows. In Proceedings of the 6th IEEE
International Conference on e-Science. IEEE
Computer Society.

Taylor I., Shields M., Wang I., Harrison A., 2007, The
Triana workflow environment: architecture and
applications. In Workflows for e-Science: Scientific
Workflows for Grids, I. Taylor et al., Eds. Springer.

Voutchkov I., Keane A., 2010, Multi-objective
Optimization Using Surrogates. In Computational
Intelligence in Optimization, ed. Tenne Y., Goh C., pp.
155-175, Springer

Towards�a�Standard�Approach�for�Optimization�in�Science�and�Engineering

177

