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Abstract: Databases are able to store, manage, and retrieve large amounts and a broad variety of data. However, the task
of understanding and reacting to the data is often left to tools or user applications outside the database. As a
consequence, monitoring applications are often relying on problem-specific imperative code for data analysis,
scattering the application logic. This usually leads to island solutions which are hard to maintain, give raise to
security and performance problems due to the separation of data storage and analysis. In this paper, we identify
missing database functionalities which overcome these problems by allowing data processing on a higher level
of abstraction. Such functionalities would allow to employ a database system even for the complex analysis
tasks required in evolving monitoring scenarios.

1 INTRODUCTION

Database applications enable users to deal with the
ever increasing amount and complexity of data and
knowledge. However, the process of problem solving,
which requires understanding and tracking the current
status and evolution of data, knowledge, and events, is
still handled mostly by humans and not by databases
and their applications (Wieringa, 2003). Therefore,
the KIDS database model has been proposed as a
blueprint to extend database technologies to manage
data, knowledge, directives (processes), and events in
a coherent way (Liu et al., 2012; Chan et al., 2012).
The acronym KIDS stands for the most important el-
ements of this model by means of Knowledge, Infor-
mation, factual Data, Directives and Social interac-
tions. KIDS distinguishes among three classes of data
(facts, information, and directives) and three classes
of knowledge (classification, assessment, and enact-
ment). Solving problems entails the capturing and the
reduction of emerging and historical facts into infor-
mation by applying classification knowledge. Then
such information is used to assess the situation and
prescribe/describe the directives for dealing with the
situation. Finally, the directives have to be executed
by applying enactment knowledge. As directives are
enacted, newly emerging facts will again be captured

and classified; this determines whether a situation has
been resolved or not.

As an example, consider a health care scenario
where patient’s data are continuously captured as
EMRs (Electronic Medical Records). The review and
the interpretation of medical data is becoming in-
creasingly time consuming and controversial. There-
fore, modern patient care applications have to pro-
vide significant help to handle such challenge; i.e.,
doctors need a system that transforms EMRs into
compact information, applying the codified medical
knowledge, and providing the most likely interpreta-
tions and their probabilities. This must be done on
demand as well as proactively in real time to alert
doctors and nurses about adverse and time critical sit-
uations. Once the doctor is alerted of the situation
and supplied with the information summarizing the
patient condition along with the relevant facts, s/he
can assess the situation and decide on the course of
action. The support should also help doctors select-
ing the most appropriate protocol of care, e.g. by in-
dicating which medicine or combination of medicines
has been successful with patients in a similar situation
and also which tests are most advisable to reduce the
level of uncertainty of the diagnosis. Once the or-
ders are submitted, the system needs to help in the
supervision and documentation of the execution. In
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Figure 1: The overall architecture of complex reactive systems designed with the KIDS model inside.

essence, KIDS provides doctors comprehensive sup-
port in all phases of the treatment including: the cap-
turing of the facts (EMRs), the extraction of informa-
tion from these facts, the assessment of the relevant
information, the determination of the course of ac-
tion (directives - orders), and the enactment of such
directives. A comprehensive support for managing
such data processing is beneficial in various monitor-
ing scenarios, e.g. air traffic control, network man-
agement or load balancing in cloud processing. In all
these applications, KIDS allows for distinguishing the
different forms of data processing steps and indicates
the cyclic dependencies among them.

The KIDS model provides an innovative
database-centric methodology to design large-scale
knowledge-intensive applications in a systematic
way. It is however still too abstract to be implemented
into existing DBMS right away. In this paper, we
therefore apply this model to analyze a practical
patient-care use case and identify functional require-
ments needed for KIDS. As a result, we indicate
the way how relational database technology should
be further extended in order to be well-suited for
realizing evolving monitoring applications.

The remainder of this paper is structured as fol-
lows: Section 2 gives a brief introduction about the
KIDS model. In Section 3 a patient care use case is
described and analyzed using the KIDS model. Func-
tional requirements to extend DBMS to support KIDS
are proposed in Section 4 with the concept of phases
as a feasible approach in Section 5. Section 6 shows
related work and Section 7 concludes this paper and
includes future work.

2 KIDS MODEL REVISITED

Traditional relational databases are designed to store
facts about the real world in an effective and efficient
manner. Facts represent uninterpreted quantitative in-
formation about the world. However, facts are of-
ten only a small part of a larger data model, usually

incorporated in the application logic where the raw
facts have to be analyzed, conclusions drawn, and
actions have to be initiated. This discrimination be-
tween database and application however, is not a nat-
ural one. It arises from the inherent inability of tradi-
tional database systems to store and process anything
but factual data. This is where the KIDS model kicks
in. It introduces the necessities to leverage a relational
database to include more then just factual data.

The acronym KIDS represents the four most im-
portant concepts in this data model: Knowledge, In-
formation, Data and Social interactions (Chan et al.,
2012). The dependencies among the KIDS’ con-
cepts are illustrated in Figure 1 with an emphasis on
the Fact-Information-Directive (FID) loop. The two
top-level concepts in KIDS are data and knowledge.
There are three different types of data: fact, informa-
tion and directive which are represented in Figure 1
as blue filled rectangles. Facts are raw data like “tem-
perature is 39�C”. Information is the interpretation
of facts, e.g. “temperature of 39�C possibly means
fever”. Directives are actions which need to be per-
formed to check or affect the environment, e.g. “apply
drug X to treat the fever of patient Y”. As illustrated in
Figure 1, knowledge is used to support three different
processes: classification, assessment and enactment
which are represented as red filled ellipses. The clas-
sification process utilizes knowledge to convert facts
(raw data) into information (interpretations). Simi-
larly, the assessment process generates actions based
on the information and available knowledge. To close
the loop, the enactment process tries to track the ex-
ecution of directives and gather further related events
from the environment.

3 USE CASE

In this section, a practical use case in the clinical con-
text is presented which shows common workflow pat-
terns for a patient monitoring system. This use case is
typical for patients where the diagnosis is not obvious
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Figure 2: Work flow of the use case consisting of the past treatments and the future prognoses.

at first sight. Instead, different hypotheses with prob-
abilities are made and corresponding tests have to be
conducted to exclude or confirm certain hypotheses,
or even generate new hypotheses. Often, a couple
of iterations are needed to achieve the final diagno-
sis. During this process physicians have to consider
various information about the patient (e.g. the entire
treatment history, current status, etc.) and apply their
professional knowledge to make the final decision.

Our use case is extracted from an episode of the
TV series “Dr. House”1. A patient suffers from ane-
mia and a scar looks unusual. The first hypotheses
of the patients illness are either tuberculosis or BLEB
(large blister filled with serous fluid, in this case in
the lung) or an unknown liver problem. The tubercu-
losis is quickly ruled out by a PPD (purified protein
derivative) test. On the contrary, the probability of
the hypothesis about “unknown liver problem” is in-
creased through a Gallium scan. Based on the expe-
riences of physicians, the BLEB hypothesis remains
with a low probability and is therefore not followed
any more. To further strengthen the hypothesis about
the unknown liver problem, an MRI is scheduled. The
result of MRI is expected to be obtained in an hour
and it will be used as the main evidence to reconsider
the “unknown liver problem” hypothesis. A graph-
ical summary of this part of the entire work flow is
depicted in Figure 2.

Let us now apply the KIDS model to differentiate
the different types of entities within the use case. As
indicated by the KIDS model, a database should not
only store factual data but incorporate a circular rep-
resentation of facts, information, and directives. This
FID loop can easily be found in this example.

At first, factual data, in this case that the patient
is suffering from anemia and a scar is looking in a
abnormal way, is observed. This qualitative data has
to be entered into the database is a standardized way,
enabling an automatic processing of the data. In the
medical context, often sensor readings like temper-
ature or blood pressure are gathered. These are of
course easier to analyze in a database system, as they

1http://house.wikia.com/wiki/Abigail Ralphean

are simple numerical values with a fixed domain and
well defined meanings.

These facts are then classified, that is hypotheses
for matching diagnoses are searched in the system.
In the medical context, this classification is done by
doctors, not fully automatic. However, it is important
that sufficient decision support is given to the medical
personnel in order to take all facts into account. Here,
three hypotheses are found: Tuberculosis, BLEB, and
liver problem. Of course, in this step, medical knowl-
edge about various diseases stored in the database is
incorporated.

The resulting hypothesis are stored in the database
as information. The key here is to have both all in-
formation of a patient safely stored and on the other
hand be able to quickly present the most important
pieces of information to a querying doctor. This could
e.g. be the most severe illness the patient is suffer-
ing, the most abnormal sensor reading, or even, at a
very abstract level, the current state (e.g. ‘critical’ or
‘guarded’). In most scenarios, each piece of informa-
tion will have a probability value attached to it. In
the medical context, each diagnosis has a degree of
uncertainty, which has to be reflected in the system.

These hypotheses are then presented to a doctor,
who assesses this information. S/he is assisted by the
database, which proposes tests or medications which
have successfully been used before on patients in a
similar state. In other scenarios, a fully automatic as-
sessment will be feasible. In this use case, a PPD test
for tuberculosis could be suggested. The decision is
supported by the probability values for each of the hy-
pothesis, and the information gain of the PPD test, as
it has a yes/no result and therefore has a great influ-
ence on all of the hypothesis for this patient. To have
such a decision support system alone is already valu-
able, since it could reduce costs and ensure a faster
cure, because the right diagnosis can be given faster.

After that, directives to cure the illnesses or en-
sure a certain diagnosis are determined. These direc-
tives should also be stored in the database. In the use
case, the doctor agrees with the automatic suggestion
and decided that the tuberculosis hypothesis should
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be followed and a test be made.
The effect of this enactment then deliveres new

facts, which close the FID loop. Note that the en-
actment takes place in the real world, however the
database has to store the back-link between new facts
and a directive. This ensures that in a retrospective
analysis the changing vitals can be associated with
the initiating directive. In this use case, the test for
tuberculosis was negative, thus the hypothesis can be
deleted.

4 REQUIRED DBMS
FUNCTIONALITIES

Ideally, the underlying database would automatically
support doctors in all phases of the treatment includ-
ing: the capturing of the facts (EMRs), the extrac-
tion of information from these facts, the assessment
of the relevant information, the determination of the
course of action, and the enactment of such directives.
Obviously, a complex set of user-defined functions
(UDFs), triggers, materialized SQL views, stream
processing techniques, etc. could be used to model
the desired behavior within a database. However, this
would be very problem specific and not leverage one
of the key concepts of a database: having an uni-
versal, declarative querying language. In particular,
we need database support in order to query the en-
tire chain of cause and effects, to propose suitable
directives and disease hypotheses, and to automati-
cally check the expected results for an issued direc-
tive. If the database would maintain auxiliary infor-
mation about the chain of cause and effects, a cor-
responding query could be much easier formulated.
Therefore, some extensions to existing database tech-
nologies are needed to fully provide all of the aspects
the KIDS model offers in a user-friendly way.

Support Temporal Reasoning. Obviously, all en-
tities of the KIDS model require a direct support of a
time concept by the DMBS. Due to the many differ-
ent ways facts are transferred from their observation
to storing in the database, e.g. directly (a sensor with
build-in network capabilites) or by manually entering
data into the database (e.g. the interpretation of an
MRI scan), it is necessary to support both applica-
tion and system time (Snodgrass, 1995). It should be
noted that time in this case is not a simple attribute
which is added to each tuple. Instead, it is used as
a basis to enable the interconnection of all elements
within the database. This means that almost every op-
erator has to be augmented to take the timing of the
tuples processed into account.

Provenance. Especially in the medical context,
provenance is of high importance. There are two fac-
tors which are of interest. The first one is to have the
chain of cause and effect fully available within the
database system. For example, it must be possible to
determine the reason why a certain treatment (such as
an MRI) has been performed. In our use case, the rea-
son was to increase the confidence on the existence of
a liver problem and this information has to be made
queryable.

On the other hand, it must be possible to retrospec-
tively investigate the knowledge that was present at a
specific point in time. For example when a drug given
to support the functioning of the liver leads to a sud-
den deterioration of the patient due to a infection with
tuberculosis, it is important to have the knowledge at
the time of applying the drug available. Having the
concept of phases, a quick overview can be given,
which shows that a liver problem was the most proba-
ble hypothesis of the patient’s state, and that the tuber-
culosis hypothesis had been followed but was aban-
doned for sound reasons. This quickly shows that the
deterioration of health for the patient was unforsee-
able.

Data provenance in databases is an active research
area (Simmhan et al., 2005). Efficient, intuitive
and scalable approaches to computing provenance in
databases on a fine-grained level is still a challeng-
ing task (Karvounarakis et al., 2010). To our best
knowledge, there is still no practical methods pro-
vided by commercial DBMS to efficiently support
complex and fine-grained provenance. Application
developers have to implement their own ad-hoc algo-
rithms to deal with provenance in specific domains.
In order to fully unleash the power of KIDS however,
the built-in support of fine-grained provenance track-
ing with an intuitive interface is essential. It can pro-
vide a systematic and robust platform for complex re-
active system designers and can significantly simplify
the development cycle.

Evolving Knowledge Management. Knowledge
plays a central role in the KIDS model as illustrated in
Figure 1. Systematically representing knowledge in a
computable form has a long research history, in par-
ticularly in Artificial Intelligence (Davis et al., 1993).
It is however not the focus of KIDS to develop a new
and innovative knowledge representation formalism
suitable for DBMS. Existing approaches like infer-
ence rules with deductive reasoning have been suc-
cessfully integrated into modern DBMS since a long
time. The management of knowledge evolvement is
however still pretty weak in contemporary DBMS.
For example, it is still difficult to semantically query
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the whole evolving history of certain knowledge de-
fined as views in today’s DBMS.

Knowledge in complex reactive systems is nor-
mally changing dynamically. For example, the rules
and experiences of physicians to make diagnoses
are not fixed. They are evolving dynamically ei-
ther through education, learning or social interac-
tions. In modern patient monitoring systems, these
kinds of knowledge are modeled by system devel-
opers through careful and thorough communication
with physicians. This kind of “knowledge trans-
fer” is rather complicated and the correctness can
not be guaranteed. If the knowledge from physicians
has evolved, the corresponding formal representations
have to be synchronized. Existing solutions handle all
these by themselves in application logics. For large
systems it is very time-consuming and error-prone.

To support KIDS, existing DBMS should be ex-
tended to support sophisticated and efficient knowl-
edge management and treat knowledge as a first-class
citizen as data. This includes a declarative means
to formally represent knowledge, an efficient mecha-
nism to store and query knowledge, a scalable way to
handle the evolving of knowledge. Besides of that the
ability to manage personalized knowledge is essential
since knowledge is an individual asset 2.

Classification. In this context, classification can
both be a problem which can be solved by the
database alone, or a human operator also has to add
its knowledge and expertise. In automated systems,
the classification of incoming facts, e.g. sensor read-
ings, is a typical stream processing problem. Several
solutions already exist, either as stand-alone software
(e.g. Esper) or already integrate into the database
management system (e.g. Oracle). That is, the ba-
sis for an automated classification exists, however for
a fully functional implementation of the KIDS model
it has to be tightly integrated into the DBMS. It must
be possible to define the stream processing rules from
within an SQL interface. As stated in the beginning
of this paragraph, integration of external classifica-
tion by e.g. doctors has to be processed as well. As
example, the classification that a certain patient has
tachycardia, derived from a stream of sensor readings,
could be:

CREATE CONTINUOUS QUERY as
SELECT patientID, count(patientID) as c
FROM ICU_Stream
WHERE heart_rate>110

2Though a set of common knowledge exists for different in-
dividuals, for complex reactive systems however the personali-
sation is important since the application of different knowledge
can result in completely different interpretations of data.

PARTITION BY patientID
RANGE 10 minutes
HAVING c > 10

A problem which is inherently difficult to model
in current querying languages is the absence of cer-
tain facts or a sequence of facts. When e.g. the heart
beat of a patient rises in a non-critical way, that event
should not be reported. The cause could be a sim-
ple movement of the patient. However, if the heart
rate does not return to its previous value after a short
amount of time, a doctor should be notified to further
investigate this abnormal behaviour.

Information. As illustrated in Figure 1, complex
reactive systems are used to continuously monitor
their environments and react to situations-of-interest
(Wieringa, 2003). In general the reactive system does
not know exactly what is happening in the environ-
ment. What the reactive system can do is trying to
approximate the situations in the environment based
on the sequence of captured events.

In KIDS the approximation of the environment is
modelled as a set of hypotheses. Each hypothesis is
associated with a probability. The size of the whole
hypothesis space varies in different application do-
mains. Contemporary DBMS should be extended to
provide efficient and scalable built-in support for hy-
pothesis management in a declarative manner. This
is a challenging task and to our best knowledge ex-
isting DBMS still miss a systematic means to handle
hypotheses in a declarative manner.

Decision support (Eom et al., 1998) on the other
side is a fundamental component in knowledge-
intensive reactive systems. It has been extensively ap-
plied in the clinical context (Kawamoto et al., 2005)
to assist physicians to make diagnosis. Ideally, for
a reactive system, most required knowledge and data
are stored in a database as required by the KIDS
model. This provides an excellent and feasible foun-
dation to enable complex decision support in timely
fashion. Different approaches and formalisms are in-
troduced in (Eom et al., 1998) for decision support. In
order to provide a full KIDS stack, DBMS should be
extended to integrate them and provide a declarative
interface to simplify decision support development in
complex reactive systems.

All of these requirements can be dealt with by us-
ing phases. They comprise an abstract overview of
complex situations, like an illness of a patient. An in
depth discussion on the concept of phases is given in
the next section (5).

Assessment. Like classification, assessment is
rather a process which might take place outside of the
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database than a fact that could easily be stored as a
relational tuple. However, this process might be sup-
ported by an automated analysis of the available in-
formation. This is supported by the phase concept. It
allows a labeling of phases, e.g. ‘critical’, ‘guarded’
and ‘stable’ in the medical domain. This helps doctors
to immediately identify which patient needs her/his
attention most.

An important aspect here is that the labeling can-
not be determined by viewing a single phase alone, it
is always influenced by other phases which are active
in parallel. A typical question of a doctor is, which of
the patients is in the most severe condition and need
attention next.

Directives. When directives are stored, they are ex-
pected to have a result after a certain period of time. It
is therefore crucial that a time-based trigger (Behrend
et al., 2009) or a DB job is started and the outcome is
checked after its firing. In its most primitive form, a
simple string along with a trigger expression could be
used.

INSERT INTO
patientDirectives(patientID, directive)

VALUES
(id3, "PPD test for tuberculosis"@IN(3h))

This string would then be presented to the primary
doctor after a three hour interval has elapsed, such
that s/he can then assess whether the examination has
taken place. A more sophisticated method would be
to take the domain knowledge stored in the database
into account.

It is important to note here that using such a mech-
anism does not only store the temporal relationship
between entities. It also enables a causal relation-
ship between the directive, its execution and the re-
sults. This is essential for fully implementing the
KIDS model, establishing a causal chain between the
items stored in the database.

Enactment. Enactment refers to the physical world,
meaning that a directive is executed. From a database
point of view, it is not obvious why this should be
stored. In most cases, the database will not even be
notified (and does not need to be notified). Also, the
process can take a long time, e.g. a long running test
for a certain type of bacteria. The database will, how-
ever, implicitly be notified when a directive has been
carried out by new or changing facts, e.g. the result of
a test or changing vitals of a patient. It is still very im-
portant to keep track of these enactments, to be able
to provide a full provenance. If a change in the sensor
readings is detected, a link to the directive has to be

stored, to allow to retrospectively analyze the chain of
cause and effect.

In general, this is a complex task, even for a hu-
man. There are many factors which can be the cause
of e.g. a drop of the heart rate. However, it is im-
possible to model all of the aspects, therefore we will
assume that each directive, e.g. applying a drug, has
a limited number of effects. This domain knowledge
has to be programmed into the database. Also, the
knowledge is enhanced with a time window, in which
the effect is expected to occur. This means that when
a directive is deployed, several CEP queries have to
be started to watch for the changes. Once an expected
behavior is observed, it has to be stored as an enact-
ment for further reference and the CEP query can be
terminated. After the time has elapsed, the remaining
queries can be terminated, and if none of them fired a
doctor has to be notified that a directive did not have
the desired effect, as explained above.

5 PHASE SUPPORT IN DETAIL

The concept of phase has been proposed in our pre-
vious work (Schüller et al., 2012; Schmiegelt et al.,
2013). It provides a high-level and feasible database-
centric approach to design complex monitoring sys-
tems (air traffic, patient, etc.). In this section the
phase concept is further developed to support KIDS-
like complex reactive system design with database
technologies in mind.

5.1 Introduction of Phases

A phase is used to describe the general abstract state
of an entity (an airplane, a patient, etc.) within a time
interval. For example, if a person has fever starting
from January 1st, 2000 and it lasts for one week, then
this can be modelled as a phase denoting the status
of the person during that period. This time interval
does not necessarily have a fixed end. Its end can be
continuously evaluated, e.g. the “fever” phase ends
when a normal temperature has been observed, and
until then the phase has the ending timepoint “un-
known”. Formally, a phase p is defined as a tuple
p = ho;n;b;e;a1; : : : ;ani, with

o the object to which the phase belongs
n the name of the phase
b the begin time of the phase
e the end time of the phase

ai related attributes

(1)

where b < e. The ai are attributes attached to a phase.
For example, in case of the “fever” phase, this could
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be the temperature of the patient. With this definition,
the following questions can be answered:

� Which phases did/does an entity have?

� Which entity was/is in a certain phase?

� At which point in time did/does a certain phase of
an entity begin or end?

5.2 Derivation of Phases

Phases are derived either directly from factual data or
from other phases. Phases can be mapped in the KIDS
model as the information and hypothesis. In Figure 2
phases are represented as filled ellipses. For exam-
ple, “stable”, “liver problem”, “tuberculosis” etc. are
all phases with certain probabilities. These phases are
generated based on the observed symptoms of the pa-
tient. The probability for each phase should be com-
puted automatically, based on the known facts and the
entire set of (partially) matching hypotheses.

In realistic database-centric reactive systems,
phases can be defined with the CREATE PHASE
clause. For example, the phase “liver problem” in
Figure 2 can be defined as follows:
CREATE PHASE liver_problem
SELECT patientId
FROM PatientData
WHERE symptom = ’scaris strange, anemia’;

At runtime, the “liver problem” phase with proba-
bility 0.6 is derived automatically when a record is
inserted into the database with the specified symp-
tom. The probability, start and end time points are
assigned automatically by DBMS. Subsequent symp-
tom descriptions with the same value does not cause
the system to derive new “liver problem” phase, but
just change the end time point to the new “valid” time
3. Similarly two other “liver problem” phases with
different probabilities can be defined as follows:
CREATE PHASE liver_problem
SELECT patientId
FROM PatientData pd, liver_problem lp
WHERE lp.prob=0.6

AND lp.patientId=pd.patientId
AND pd.gallium_scan=’No bright spot’;

CREATE PHASE liver_problem
SELECT patientId
FROM PatientData pd, liver_problem lp
WHERE lp.prob=0.7

AND lp.patientId=pd.patientId
AND pd.MRI=’No masses found’;

All these three phases can be considered as hypothe-
ses in KIDS. The provenance of the refinement of hy-

3The transactional time can also be used depending on
system requirements.

potheses in the use case introduced in section 3 can
be queried as follows:
SELECT PROVENANCE OF liver_problem
WITH PROBABILITY 0.8
WHERE patientId=1;

This query returns the direct provenance of the phase,
i.e. the MRI test with the result “No masses found”.
To query the whole provenance as a transitive closure,
the “ALL” keyword can be used:
SELECT ALL PROVENANCE OF liver_problem
WITH PROBABILITY 0.8
WHERE patientId=1;

This will retrieve the whole evolving history as prove-
nance for the given phase. Besides of that the phase
definitions which have contributed to the evolving of
phases are also returned. Since the phase definitions
are mappings of domain knowledge which can change
over the time, it leads to one of the core functionalities
in the phase concept to support evolving knowledge
management as discussed in section 4.

5.3 Version Control of Phase Definitions

The definition of phases represents the knowledge in
the KIDS model for the classification, assessment,
and enactment processes. Knowledge is not only a
personalised asset but also intrinsically dynamic. This
makes the provenance management in KIDS a chal-
lenging task since the knowledge elements in prove-
nance can change.

In the phase concept the ability to store different
versions of phase definition is supported as an internal
mechanism. The transaction time of phase definitions
is used to retrieve a specific version of the phase def-
inition at a certain time point or during a given time
period. For example, the following query can be used
to retrieve the phase definition of “Fever” at January
1st, 2010:
SELECT PHASE DEFINITION OF Fever
WHERE time_contains(’Jan 1st, 2010’);

This query returns exactly one result or NULL. It is
also possible to retrieve a set of different versions of
phase definition during a time period:
SELECT PHASE DEFINITION OF Fever
WHERE time_between(

’Jan 1st, 1999’, ’Jan 1st, 2010’);

Depends on the evolving history of the phase defini-
tion of “Fever”, this query can return several different
versions of the definition of “Fever”. All these fea-
tures are deeply embedded in the DBMS and can be
accessed declaratively. Comparing to the ad-hoc solu-
tions implemented in the application logics, this pro-
vides a more effective and robust approach to manage
evolving knowledge.
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5.4 Phase Properties

Exclusivity. Phases can be either exclusive or non-
exclusive. For example, a patient can either be in the
phase “Bradycardia” or “Tachycardia”. It is however
not possible to have both phases at the same time. On
the other side, a patient can have a phase “Bradycar-
dia” along with a phase “Fever” since these two sta-
tuses for a patient can co-exist in real life. This leads
to the following formal definition:

Two types of phases P1;P2 are called exclusive if
and only if the condition

8o ::9pi;2 P1; p j 2 P2 :
(p j:b� pi:b^ pi:e� p j:e)_
(pi:b < p j:b^ pi:e > p j:e)

(2)

holds.

Phase Functions. Phase provides an essential set of
functions to enable high-level temporal and functional
phase management in a declarative manner. These
functions serve as a fundamental basis for bitemporal
reasoning and fine-grained provenance generation as
discussed in section 4.

The boolean function Is an entity in a phase re-
turns true if and only if the entity o is within a phase
named n at a certain point in time t:

isInPhase(o;n; t) =

8>>><>>>:
true; if 9p 2 P :

p:b� t � p:e^
p:o = o^ p:n = n

false; else

(3)

A temporal order for exclusive phases p1 and p2
on the same object o can be defined by:

p1 �t p2, p1:b� p2:b (,def 2 p1:e� p2:e) (4)

This allows to define the boolean function Se-
quence, which returns true if and only if two phases
were active on an object in temporal sequence. The
Strict Sequence can be used to ensures that no third
(or more) phase was active between two phases.

Of special interest are methods which allow for
an advanced pattern matching, possibly on unlimited
regular expressions. A detailed discussion is, how-
ever, out of the scope of this paper. The interested
readers can find deeper insight in (Cadonna et al.,
2011). The functions defined there can be applied
analogously for the handling of phases.

Both functions Previous/Next return the previous
and the next phases that are recorded in the history for
a given object at a certain point in time:

prev(o; t) = max(fPjp:e < t ^ p:o = og) (5)

next(o; t) = min(fPjp:b > t ^ p:o = og) (6)
with the temporal order defined in (4). Obviously
previous and next can only be used on exclusive func-
tions.

Transition Graph. One of the key functionalities
in the phase concept is the ability to define possible
transitions between two phases. All phase definitions
and phase transitions form a phase transition graph.
The transition graph implicitly enables the treatment
of all other transitions which do not exist in the graph
as “forbidden” transitions, i.e. they are abnormal and
should not happen at runtime. For example, based
on the experiences of physicians, normally the status
changing of a patient from the “tachycardia” to the
“bradycardia” should not happen. If the sensor read-
ings of a patient indicate that such a phase transition
has actually occurred, an alarm should be triggered to
alert physicians that something abnormal is happen-
ing. This is a advantage, as it is usually much eas-
ier to specify which transitions are allowed, instead
of trying to explicitly specify transitions that corre-
spond to abnormal behavior. A provenance query can
be issued after an alert to find out the reasons for this
illegal phase transition.

Ranking of Phases. Another essential feature in the
phase concept is the ability to rank phases based on,
e.g. their relative importance given by domain ex-
perts. For instance, if a patient is in the phase “Fever”
and “Hemodynamic Instability”, then the Fever phase
has lower rank based on the rules given by physicians.
Of course, the rank can change dynamically. One of
the attributes assigned to each phase can be used to
store a numerical value, representing its importance.
The assessment of a phase rank also depends on a
phases’ attributes. For example, a Fever phase with
a temperature of 38 degrees Celsius is of little impor-
tance, whereas a temperature of 41.2 degrees Celsius
indicates a very critical situation resulting an higher
rank.

Non-occurrence of Events. Another problem
which is difficult to express with standard SQL is the
non-occurrence of events within a given time interval.
Consider e.g. the application of an antipyretic drug,
where the temperature is expected to decline over a
certain period of time. If the desired effect does not
occur (non-event), then appropriate measures have
to be taken. An automatic mechanism to support
the detection is especially useful in complex reactive
system. For example, in patient monitoring systems,
where physicians work in shifts and the reaction to a
medication might not be visible during a single shift.
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6 RELATED WORK

Reactive system design has a long history. Different
kinds of design methods have been proposed to facili-
tate the development of reactive systems (Wieringa,
2003). The database-centric approach for complex
reactive systems is still quite new and various exten-
sions for contemporary DBMS are need. There are al-
ready some extensions of standard SQL providing the
syntactic instruments to handle phase-like concepts.
One of them is SARI-SQL (Rozsnyai et al., 2009)
which introduces events with a time interval, where
start and end timestamps can be queried separately.
TSQL2 (Snodgrass, 1995) introduces the concept of
states, it does however, differ from the approach pro-
posed in this paper: in TSQL2 neither identifiers for
states are provided nor methods on the transitions be-
tween states are introduced. Also related to this work
are the achievements made by the stream processing
community (Krämer and Seeger, 2004). Precise se-
mantics are defined and concrete syntactic extensions
to standard SQL are proposed; a systematic means to
manage evolving knowledge and explicit provenance
support is however still missing.

Knowledge representation (Davis et al., 1993) is
a fundamental research topic in computer science.
Expert systems try to use production rules to form
a computable knowledge base have gained success-
ful applications (Shortliffe, 1976). These technolo-
gies however do not scale well for large datasets.
Supporting the management of ontological dataset
as knowledge in DBMS is gaining more attractions
from both academia and industry (Das and Srinivasan,
2009). Based on the relational database, the storage
and query of these graph datasets are rather efficient,
however a systematic approach to explicitly utilise the
knowledge to analyse the captured data is still miss-
ing.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we applied both the KIDS model to a
typical use case from the medical domain. We then
analyzed the functional requirements to a traditional
relational database system to be able to fully support
KIDS. The concept of phases integrates as a means
to model uncertainty in the derived information in
KIDS. In our future work we plan to further ana-
lyze and reveal the potential of phases, in particular
the prediction model and decision support. Besides
of that SQL extensions are going to be implemented

along with a prototype embedded in a commercial re-
lational database management system.
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