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Abstract: A novel framework called distributed compressive video sensing (DCVS), combining distributed video 
coding (DVC) and compressive sensing (CS), directly capture the raw video data as measurements with 
low-complexity and low-cost process. It meets the requirements of distributed system very well, because of 
its resource consumption shifting from encoder to decoder. Nevertheless, the issue of measurements 
transmission in bit error channel has not been considered yet in the previous work of DCVS. This paper 
improved the existing DCVS codec scheme by adding the quantization and inverse quantization process, 
and proposed a parity-based error control (PEC) method. This method is simple enough, and has high 
coding efficiency. The proposed method is shown to increase video recovery quality greatly under binary 
symmetric channel. 

1 INTRODUCTION 

In the framework of Wireless Media Sensor 
Network (WMSN) (Akyildiz et al., 2007), the sensor 
nodes must work under some resource constraints, 
such as lower computational capability and limited 
energy supply, so the problem of how to process the 
considerable video information efficiently has been 
brought into attention. 

Compared with traditional compression standard 
like H.264/MPEG, distributed video coding (DVC) 
(Girod et al., 2005), which is developed from the 
principle of distributed source coding (DSC) (Wyner 
et al., 1976), was proposed to reduce the encoding 
complexity via shifting the complicated motion 
estimation work as the major encoding cost to 
decoder. 

Another popular theory, compressive sensing 
(CS) (Candès and Wakin, 2008) also can shift the 
encoder burden to decoder, which has the similar 
structure to DVC. The CS theory, which combined 
sampling with compression, captures the abundant 
raw image information efficiently with a small 
amount of incoherent measurements at encoder, and 
recovers the image faithfully via linear programming 
at decoder. CS is particularly fit for the distributed 
systems because of the significant cost reduction of 

data acquisition. 
Motivated by the common principle of the two 

aforementioned theories, the framework of 
distributed compressive video sensing (DCVS) 
(Kang et al., 2009); (Do et al., 2009) was proposed. 
However, the previous researches just focus on the 
codec scheme without much concerning about 
compressed signal transmission problem. Based on 
the CS theory, the structure of compressed signal, 
which is composed of some incoherent 
measurements, differs a lot from the conventional 
source coding signal which is represented by the 
signal coefficients in frequency domain. Therefore, 
the transmission problem of CS signal in DCVS 
deserves our attention. There already has been some 
research on quantization of CS signal (Dai et al., 
2009). And measurements rate allocation for DCVS 
(Chen et al., 2010) was also proposed to enhance the 
recovered video quality. Moreover, we also do some 
work on video quality evaluation for DCVS (Chen et 
al., 2012). Main work in this paper is displayed as 
follows: 1, provided a suitable quantization for 
measurements of DCVS; 2, proposed a parity-based 
error control method for DCVS; 3, employed the 
proposed method for quantized measurements to 
alleviate the affect of binary symmetric channel. 

The organization of this paper proceeds as 
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follows. Section 2 gives the basic aspects of DVC 
and CS, section 3 describes the specific example of 
DCVS and proposed parity-based error control (PEC) 
method for DCVS, section 4 discusses the 
simulation results and section 5 is the conclusion 
and future directions of research. 

2 RELATIVE WORKS 

2.1 Distributed Video Coding (DVC) 

In distributed source coding (DSC), assumed that W 
and S are two statistically dependent discrete 
signals, which are encoded independently but 
decoded jointly. Slepian-Wolf theorem (Wyner et al., 
1976) asserted the achievable rate region for lossless 
coding is defined by Rw≥H(W/S), Rs≥H(S/W), and 
Rw+Rs≥H(W,S), where Rw and Rs are the encoding 
rates for W and S, respectively, H(W/S) and H(S/W) 
are the conditional entropy of W and S, respectively, 
and H(W,S) is the joint entropy of W and S. 
Additionally, S is known as the side information (SI) 
of W. 

In distributed video coding (DVC) (Girod et al., 
2005), the kinds of frames in a group of pictures 
(GOP) are divided into Key frame and WZ frame 
(Wyner-Ziv frame). The Key frames are intra-coded 
an intra-decoded like I-frame in conventional video 
compression standards. And some information 
derived from Key frame is viewed as side 
information (SI) at decoding end. At encoder, 
without motion estimation, the compression of WZ 
frame is achieved as parity bits (also called Wyner-
Ziv bits) by channel-encoding like turbo coding or 
LDPC coding. Decoder receives the parity bits of 
WZ frame viewed as W, and uses the SI S viewed as 
noisy version of W to perform channel decoding for 
reconstruction of WZ frame. 

2.2 Compressive Sensing (CS) 

In recent years, compressive sensing (CS) (Donoho, 
2006); (Candès, 2006); (Candès and Tao, 2006) 
provides a theory about broadband analog signals 
sampling. The CS as a new research focus gives a 
novel set of theoretical framework about signal 
representation, signal sampling and signal 
reconstruction. It points out that, if the signal x is 
sparse in time domain or sparse in some transform 
basis Ψ, then we can employ global measurement 
instead of local sampling with sampling speed far 
below the Nyquist frequency, get measurements y 
less than original sampling number through the 

measurement matrix Φ which is not coherent with 
sparse transform basis Ψ. After that, original high-
dimensional signal x can be recovered accurately 
with appropriate reconstruction algorithm from low-
dimensional measurements y. Unlike Nyquist 
sampling theory, the sampling rate is not dependent 
on bandwidth of signal, but on two basic criteria: 
sparsity and the restricted isometry property (RIP) 
(Candès and Tao, 2006). Theoretical framework of 
compressive sampling is shown in Figure 1. 

x̂
 

Figure 1: Compressive sampling framework. 

CS contains the following four steps based on the 
study of theory, shown as Figure 1.  

 Assume that the original N-dimensional signal 
can be sparse on the basis Ψ (N×N), then get the 
sparse signal θ. If the original signal is sparse 
already, skip this step. 

x  Ψ  (1)
 

 Devise the measurement matrix Φ (M×N) to 
acquire measurements y, where A=ΨΦ called the 
sensing matrix. 
 

y x    Φ ΦΨ A  (2)
 

 Solve the problem of minimum l0 norm as 
follows known Φ, Ψ and y, and reconstruct θ 
from measurements y. 
 

0
ˆ arg min || || s.t. =y   A  (3)

 

 Obtain the original signal x̂  using the inverse 
transform of basis Ψ. 
 

ˆx̂  Ψ (4)
 

Sparsity, measurement matrix and reconstruction 
algorithm in the above steps are three key parts of 
CS theory. 

Sparse signal in compressive sampling is defined 
as follows: if a signal only has finite number of non-
zero sample point (the number is K), and other 
sample point is zero or similar to zero, this signal is 
claimed as K-sparse and the sparsity is K. Ref 
(Baraniuk, 2007) shows that the original signal may 
be reconstructed accurately in large probability 
under the condition that the relation between 
measurements M and sparsity K should  satisfies 
M≥K·log(N), in other words, the signal recovery 
quality will be affected quitely if the measurements 
M is less than a certain number. 
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According to the above characteristics of 
compressive sensing, it has following advantages for 
video transmission: (1) The correlation of adjacent 
signal sampling points obtained by traditional 
method is robust, on the contrary, the redundancy of 
measurements observed by CS is in a very low state, 
it is in favor of large amount of data information 
processing like video transmission to avoid the 
waste of a lot of redundant information (Barakat et 
al., 2008); (2) The CS is suitable for distributed or 
portable terminal video transmission particularly due 
to resource consumption of computing and storage 
transferred from sender to receiver; (3) Because CS 
signal is unstructured presentation of image, and 
reconstruction algorithms leave far from the 
statistical radio channel interference constraints, so it 
possesses good characteristics of resistance to 
random channel errors. 

3 IMPROVED DCVS SCHEME 
AND PROPOSED PEC 
METHOD 

3.1 DCVS Codec Scheme 

In the Kang’s DCVS codec scheme (Kang et al., 
2009) shown in Figure 2, a video sequence consists 
of several GOPs, where GOP consists of a key frame 
and some followed CS frames. At the encoder, each 
frame xt , including Key frame and CS frame, is 
compressed via CS measurement process as: 

 

t ty x  (5)
 

where yt is the measurement vector with size Mt, and 
Φ is the scrambled block Hadamard ensemble 
(SBHE) matrix described in (Do et al., 2008). The 
sparse basis matrix Ψ used in the scheme is DWT. 
The significant difference between Key frame and 
CS frame is that the measurement vector size Mt of 
Key frame should be larger than that of CS frame, to 
guarantee the recovery video quality at decoder. The 
measurement rate for each frame can be defined as: 

 

/t tMR M N  (6)
 

where N is the size of video frame. 
At the decoder, each Key frame xt is 

reconstructed via Gradient projection for sparse 
reconstruction algorithm (GPSR) (Figueiredo et al., 
2007), which solve the convex unconstrained 
optimization problem described as: 

 

2

2 1

1
min || || || ||

2t
t ty At

     (7)

 

where yt is a vector with size Mt,  yt =Φxt, A= ΦΨ is 
a Mt×N matrix, and  is a non-negative parameter. 
GPSR is essentially a gradient projection algorithm 
applied to a quadratic programming formulation of 
Eq.(7), in which the search path for each iteration is 
acquired by projecting the negative-gradient 
direction onto the feasible set, and the default initial 
solution for θt is a zero vector. 

Before reconstructing a CS frame xt, the decoder 
will generate its SI St by motion-compensated 
interpolation from the reconstructed neighboring 
Key frames first, which can be viewed as a noisy 
version of xt. In the same scene, the successive 
frames should have a certain similarity. Hence, the 
SI derived from the neighboring Key frame, should 
be similar to this CS frame. So, each CS frame is 
reconstructed via the modified GPSR with the initial 
solution set by SI. To get a good quality for CS 
frame, it is required to have a good initialization 
derived from Key frame which is served as reference 
frame. That is why the measurement vector size Mt 
of Key frame should be much larger than that of CS 
frame. 

3.2 Quantization for Measurements 

The measurements of DCVS frame is discrete in 
time but continuous in amplitude. Hence, the 
quantization is the indispensable part of codec 
scheme. In order to improve the above-mentioned 
DCVS codec scheme, the uniform quantization and 
inverse quantization are added to the system for 
digital transmission. Scale quantization is employed 
on account of complexity of encoder. Quantizing 
process is described as: 

 

1

1

round(2 )

2

Q

Q

t
t

y
z




  (8)

 

where yt is the measurements vector of a frame, zt is 
the quantized measurements vector, Q bits refers to 
the number of bits per measurement, also implies the 
quantitative accuracy, and 2-(Q-1) refers to 
quantization step. Define the quantization noise as: 

 

t te z y   (9)
 

In addition, we need one bit to represent the sign of 
measurement. Then we can get the number of bits 
ratio per frame of DCVS, shown as: 

( 1)t tR Q MR N     (10)

A�Parity-based�Error�Control�Method�for�Distributed�Compressive�Video�Sensing

107



 

 

 

Figure 2: DCVS codec scheme.  

where Rt is the number of bits ratio per frame, MRt is 
the measurement rate for each frame, and N is the 
size of a frame.  

Currently, we only know the value of Q is just 
the trade-off between reconstructed video quality 
and compression ratio, and how to quantize the 
measurements more efficiently, which will be left 
for our future work. 

3.3 PEC Method for DCVS 

The dequantized measurements yt constitute a 
random and incoherent combination of the original 
frame pixel, which has been already studied in 
(Chen et al., 2012). That is also to say, no individual 
measurement is more important than any other 
measurement for frame reconstruction. This means 
that, the number of correctly received measurements 
is the main factor in determining the quality of video 
recovery. For this characteristic of measurements, 
discarding a small amount of measurement will not 
cause quality decline greatly, which will be shown in 
next section. There will be badly impact on quality if 
the measurements containing some error bit are used 
for the reconstruction. 

With the limitation of channel resource and 
energy constraint, traditional ARQ (Automatic 
Repeat re-Quest) error control scheme can’t be 
adopted. And other FEC (Forward Error Correction) 
methods such as LDPC, Turbo coding are also 
inapplicable to the DCVS due to the additional 
encoding complexity, even though the FEC scheme 
shows stronger error correction capabilities. For the 
above reasons, we proposed a simple parity-based 
error control (PEC) method for resistance of random 
channel error in DCVS. It is realized by using an 
even parity bit added after each measurement at 
encoder. If the parity check is failed, than dropped 
this measurement immediately at receiver or at an 
intermediate node. This method has the following 
two benefits: 1, it is simple enough to adapt to the 
requirements in the codec; 2, parity-based coding 

efficiency is high extremely with low coding 
redundancy. The coding efficiency of a frame can be 
defined as: 

 

( 1)

( 1)

t

t t

Q MR N
P

Q MR N MR N

  


    
 (11)

 

where MRt×N  presents the number of parity bits. 
Improved DCVS system is shown in Figure 3. 

4 SIMULATIONS RESULTS 

In this paper, we choose the ‘coastguard’ CIF video 
sequence with frame size 352×288as the test video, 
and GOP size is set to 3. The MRt of Key frame 
equals to 70%, and MRt of CS is 30%. In the CS 
measurement process, SBHE matrix is used as 
sensing matrix Φ, and DWT is employed as sparse 
basis matrix Ψ. GPSR algorithm is used for video 
reconstruction at decoder. Quantitative accuracy Q is 
set to 8 bit. Random channel error is simulated by 
Binary Symmetric Channel (BSC). Ultimately, we 
choose conventional Peak Signal to Noise Ratio 
(PSNR) to evaluate the quality of recovery video.  
Figure 4 shows the first Key frame of video 
sequence in DCVS. (a) is the original frame, (b) is 
the recovery frame without channel error. (c) is the 
recovery frame which employ our PEC method 
under channel bit error rate (BER) 10-2. (d) is the 
recovery frame without any error control method 
under BER 10-2. 

We pick up 1-7 frames in the video sequence to 
present the video reconstruction quality under 
channel BER 10-2,10-3,10-4, and the ideal channel 
without error, which is shown in Figure 5 and Figure 
6. 1st, 4th, 7th frame are Key frames and 2nd, 3rd, 
5th, 6th frame are CS frames. Figure 5 shows the 
quality with our proposed method, and Figure 6 
shows the quality without error control. Figure 7 
shows PSNR of recovery the 4th frame which is Key 
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Figure 3: Improved DCVS codec scheme. 

 

Figure 4: 1st Key frame of test video sequence: (a) original frame; (b) the recovery frame without channel error; (c) the 
recovery frame under 10-2 BER with our PEC method; (d) the recovery frame under 10-2 BER without any error control 
method. 

frame under the different BER and Figure 8 shows 
PSNR of recovery the 3rd frame which is CS frame 
under the different BER. For all reasonable BER, 
our proposed method achieved the better 
performance. Figure 9 shows that under different 
BER, the true measurement ratio of Key frame and 
CS frame in fact are received at decoder end.  

5 CONCLUSIONS AND FUTURE 
WORKS 

Nowadays compressive sensing is on its growing 
stage and we still have long way to go before putting 
it into practice. How to convert analog information 
into digital compressive information (Analog-
Information Converter) by the method of 
compressive sensing is a tough issue. But 
compressive sensing system has already been proved 
to be feasible technically, and we firmly believe that 
it shall be another important way for information 
acquisition in the near future. In this paper, we 
described a whole framework of DCVS, proposed a 
parity-based error control method for CS 
measurement of DCVS frame. Its good performance 
has been shown in simulation results. Next, in 
DCVS, we will focus on the measurement 
quantization and entropy coding, alterable 
measurement rate allocation, and video recovery 
quality evaluation. These also attracted a lot of 
attentions of many researchers in this field. 

 

Figure 5: Recovery quality of 1st-7th frame in test video 
under different BER with our PEC method. 

 

Figure 6: Recovery quality of 1st-7th frame in test video 
under different BER without error control method. 
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Figure 7: PSNR of recovery the 4th frame (Key frame) 
under the different BER. 

 

Figure 8: PSNR of recovery the 3rd frame (CS frame) 
under the different BER. 

 

Figure 9: the true measurement ratio of Key frame and CS 
frame in fact under different BER. 
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