
Web Service to JSON-RPC Transformation

Christian Samsel, Sevket Gökay, Paul Heiniz and Karl-Heinz Krempels
RWTH Aachen University, Informatik 5, Ahornstr. 55, 52074 Aachen, Germany

Keywords: Web Services, XML, SOAP, WSDL, JSON, JSON-RPC, Transformation, Mobile Development.

Abstract: During the last years JavaScript Object Notation Remote Procedure Call (JSON-RPC) emerged as the de
facto standard for service calling on mobile devices. Unfortunately many enterprise services are still only
available as traditional Web Service accessible via Web Services Description Language (WSDL) and Simple
Object Access Protocol (SOAP). In this paper we introduce the Web Service to JSON-RPC adapter tool which
offers JSON-RPC ports matching the SOAP ports in a WSDL-based web service definition. The adapter
automatically translates JSON-RPC requests incoming on these ports to a responding SOAP message and
forwards it the SOAP server. The SOAP response is translated back to JSON-RPC and delivered to the original
client. Our adapter enables software developers to use a JSON-RPC client which is well supported on mobile
platforms to access SOAP-based Web Services without altering the server nor requiring additional software
on client side.

1 INTRODUCTION

Since the Internet gains more and more importance in
our lives there is an explosive growth of information
in the world. To cope with such big data, an environ-
ment of automated and interactive systems is needed.
This causes a shift from an Internet where humans
were the only actors who request information to the
Internet of things, where applications and devices can
also communicate with each other.

Such application communication services are real-
ized between a client (sevice requester) and a server
(service provider). The interaction involves the client
sending a request message with some parameters to
the server to execute a procedure and the server send-
ing a response (return values) back to the client. This
is called a Remote Procedure Call (RPC).

A Web Service is a software system designed
to support interoperable machine-to-machine
interaction over a network. It has an interface
described in a machine-processable format
(specifically WSDL). Other systems interact
with the Web Service in a manner prescribed
by its description using SOAP-messages, typ-
ically conveyed using HTTP with an XML
serialization in conjunction with other Web-
related standards.1

In this work we stick to this definition of Web Service.

The later described JSON-RPC is explicitly exclude
from the definition of Web Service for an easier dis-
tinction.

An alternative way of realizing the communica-
tion between a client and a server is JavaScript Ob-
ject Notation Remote Procedure Call (JSON-RPC)
(JSON-RPC Working Group, 2012). In JSON-RPC
the messages are encoded in JSON which is a data
representation, serialization and interchange format
with similar purpose as Extensible Markup Language
(XML). JSON is part of the JavaScript standard but
still language independent. JavaScript Object Nota-
tion (JSON) is very simple and therefore easy to gen-
erate, to parse, and has only a small memory footprint.

We deliberately do not use the term RESTful in
this paper to not mix up Representational State Trans-
fer (REST) and JSON-RPC. REST is a collection of
paradigms whereas JSON is a technology which even-
tually can fulfill REST. Our tool purely works on a
technology level and does not deal with paradigms.

1.1 Motivation

Web Services induce a massive overhead in terms of
file size and parse effort mainly due to the use of XML

1Definition Web Service in http://www.w3.org/TR/2004/
NOTE-ws-gloss-20040211/

214 Samsel C., Gökay S., Heiniz P. and Krempels K..
Web Service to JSON-RPC Transformation.
DOI: 10.5220/0004499502140219
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 214-219
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

as serialization format (Lawrence, 2004; Cook and
Barfield, 2006; Pautasso et al., 2008; Nurseitov and
Paulson, 2009; Sumaray and Makki, 2012). For ex-
ample, compare the size of the JSON-RPC and Sim-
ple Object Access Protocol (SOAP) requests in 1 and
2. Both essentially contain the same payload. For
stationary computers and servers these drawbacks are
negligible because of the usual high internet connec-
tion speed and high processing powers for these de-
vices. But in todays Internet the percentage of mo-
bile and low power devices like smartphones, tablets,
embedded systems (e.g. in cars), etc is high. RPC
using Web Services is not desirable for such devices.
Instead, JSON is emerging as new standard for mo-
bile service calling. Frameworks for JSON are a built
in part of every noteworthy mobile platform develop-
ment environment.

Additionally, many existing enterprise solutions
are solely available through Web Services, but these
are not well supported by mobile development kits.
Unfortunately, both Web Services and JSON-RPC are
not interoperable. We propose a solution to this issue.

The remainder of this paper is structured as fol-
lows: In 2 existing approaches and the used tools are
discussed. 3 describes our approach to the problem on
an abstract level, whereas 4 introduced our prototype
implementation. In 5 an evaluation is proposed and 6
concludes the work.

2 RELATED WORK

This section lists recent related research and the used
tools.

(Wang, 2011) describes the process of translating
between XML and JSON for web applications. Un-
fortunately, no proof-of-concept nor implementation
details are given. Instead of operating on real Web
Services and real data encoded in SOAP and JSON-
RPC, it is only vaguely spoken of XML and JSON.
It is questionable if the approach can be applied to
real world applications and if the evaluation results
are valid.

2.1 Tools

Apache Camel2 is a framework for enterprise appli-
cation integration. Its main part is a routing-engine
builder which is used to define routing rules, data
sources and destinations. It also supports protocol
conversions. It is a mature open source project.
Apache Camel is the basis for our tool (Ibsen et al.,
2011).

StAXON3 allows to read and write JSON using
the Java Streaming API for XML, thus it is a con-
venient tools for syntactic translation between JSON
and XML.

All presented tools are available under the Apache
Software License, Version 2.04.

3 APPROACH

This section describes our approach on an abstract
level from the view of the developer using our tool.
Assume the following scenario: A developer intends
to create a mobile application using a specific existing
Web Service. This Web Service is traditionally SOAP
/ Web Services Description Language (WSDL)-based
and cannot be changed. Unfortunately, most mobile
frameworks only support JSON / JSON-RPC for ser-
vice calling.

3.1 Workflow

We opted for a two-stage approach to this problem. A
few preparation steps are required to shove the tool be-
tween the Web Service (WS) server and JSON-RPC
client. The developer has to login into the manager
(see 4.1) configuration interface and enter the URL to
the WSDL which describes the Web Service of inter-
est. After the processing is done, the developer can
choose to start the adapter (see 4.3) or if preferred
download the archive instead (e.g. to deploy it else-
where). From now on no additional runtime configura-
tion is required. The adapter presents an informal de-
scription of the JSON-RPC interface on a status web
page, which then can be used as a guide to implement
the JSON-RPC client. The description contains in-
formation about the base URL, the available function
names, their expected parameters, and corresponding
return values. The GUI utilities JSON Editor Online5

for user interaction and presentation. It also contains
a JSON-RPC simulator for debugging purposes.

3.2 Translation

For translation between XML and JSON we use
StAXON (see 2.1) which employs the BadgerFish
convention scheme. It consists of nine simple conver-
sions which are powerful enough to project the pay-
load of XML to JSON and vice versa. Here you can
see an example rule:

2https://camel.apache.org
3https://github.com/beckchr/staxon
4https://www.apache.org/licenses/LICENSE-2.0
5https://github.com/josdejong/jsoneditoronline

Web�Service�to�JSON-RPC�Transformation

215

Adapter

Adapter

 Web Service

WSDL
 Web Service

WSDL
Clients

Controller

Adapter

Manager

Web Interface

 Web Service

WSDL

Figure 1: System Architecture. Using manager and controller the user creates and controls independent adapter instances
which are responsible for the actual translation between Web Service and JSON-RPCs Clients.

Rule 2: Text content of elements goes in the $
property of an object.
<alice>bob</alice>
becomes
{ "alice": { "$" : "bob" } }6

Using these approaches the developer can conve-
niently use JSON-RPC without changing the existing
Web Service and also profit from its advantages for
mobile development (e.g. lightweight memory foot-
print).

4 IMPLEMENTATION

The Web Service to JSON-RPC translator is imple-
mented as a group of Java servlets. It is designed to
run under the Apache Tomcat Java application server.
The translator consists of the manager and controller
combined in one Java servlet (see 4.1 and 4.2) and one
or more adapters (4.3) each as independent servlet.
The general architecture is presented in 1.

4.1 Manager

The developer interacts with the frontend component,
called manager. The manager is a lean web interface
similar to the standard Apache Tomcat servlet man-
ager. The developer can access the manager using
username and password and then add, start, stop and
delete adapters. To add an adapter the developer en-
ters the URL of the respective WSDL file into the web
interface. The manager will then download and ana-
lyze the WSDL file and generate a standalone adapter
in form of a Java servlet. This Java servlet can ei-
ther be directly deployed to the local Apache Tomcat
instance or downloaded as a WAR archive for deploy-
ment on a different host. Locally deployed adapters
can also be started, stopped, removed or exported via
the manager.

4.2 Controller

The controller is the backend component. It accepts
commands received from the manager and is respon-
sible for controlling the independent adapters, e.g.,
starting and stopping adapter servlets.

4.3 Adapters

2 presents the implementation of the adapter.
Adapters are independent servlets specific per WSDL
file and therefore per Web Service. The adapters are
responsible for the actual translation between JSON-
RPC and SOAP. The JSON-RPC client sends a JSON-
RPC request to the adapter. The request is parsed and
unmarshalled to plain JSON. Using StAXON (2.1)
the JSON data is transformed to a XML tree and
then embedded into a standard compliant SOAP mes-
sage and send to the target Web Service. StAXON
implements a slightly customized BadgerFish (3.2)
scheme. On the reverse path the corresponding SOAP
response is unmarshalled to plain XML and converted
to JSON using StAXON. After embedding the JSON
into JSON-RPC the response is delivered to the origi-
nal Client.

Hereafter, we present a complete Web Service to
JSON-RPC transformation session using the listAll
function call from the Study Web Service present
OpenClinica. It returns all clinical trials listed in
OpenClinica to which the authenticated users has ac-
cess. OpenClinica7 is a prominent open source appli-
cation for conduction clinical trials. It contains multi-
ple well documented Web Services with different de-
gree of complexity.

4.3.1 JSON-RPC to SOAP Transformation

We start with a simple JSON-RPC request as it has
been generated by a mobile client in 1. The JSON-

6http://www.sklar.com/badgerfish/
7https://www.openclinica.com

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

216

 Adapter
RequestProcessor

StaxonConnector

ResponseProcessor

JSONXML payload

JSONXML payload

XML tree params element

result elementXML payload

ClientWeb Service SOAP JSON-RPC
JSON-RPC PortSOAP Port

Figure 2: Adapter Implementation. The adapter receives a JSON-RPC request on its JSON-RPC port which is then translated
to a analogous SOAP message and sent to the respective SOAP port. The accruing SOAP response is parsed and translated
back to JSON-RPC and delivered to the original client.

RPC field id is set by the client to an arbitrary
alphanumeric value (usually just integers) and car-
ried over in the response so the client can corre-
late unordered responses to their respective requests.
The SOAP-HEADER is transformed to a XwsSecurity8

header for authentication as expected by the Open-
Clinica Web Service.

1 {

2 "jsonrpc": "2.0",

3 "id": 1337,

4 "method": "v1:listAllRequest"

5 "params":

6 [

7 "SOAP-HEADER":

8 ["username": root,

9 "password": 123456]

10]

11 }

Listing 1: JSON-RPC Request. A minimal JSON-RPC call
only containing the required elements jsonrpc and id plus
the authentication credentials and the method name.

The id is not used in the SOAP request but instead
handled by an internal state in the adapter. The SOAP
request shown in 2 is enriched with XML namespace
information extracted from the WSDL file.

1 <?xml version="1.0"?>

2

3 <soapenv:Envelope

4 xmlns:soapenv="http://schemas....oap/envelope/"

5 xmlns:v1="http://openclinica.org/ws/study/v1">

6

7 <soapenv:Header>

8 <wsse:Security soapenv:mustUnderstand="1"

9 xmlns:wsse="http://docs.oas...secext-1.0.xsd">

10 <wsse:UsernameToken wsu:Id="UsernameToken-..."

11 xmlns:wsu="http://docs.oas....tility-1.0.xsd">

12 <wsse:Username>root</wsse:Username>

13 <wsse:Password

14 Type="http://docs.o....ofile-1.0#PasswordText">

15 password</wsse:Password>

16 </wsse:UsernameToken>

17 </wsse:Security>

18 </soapenv:Header>

19

20 <soapenv:Body>

21 <v1:listAllRequest/>

22 </soapenv:Body>

23

24 </soapenv:Envelope>

Listing 2: SOAP request (shortened). A minimal SOAP
call only containing the required SOAP elements; authenti-
cation credentials and the method name. Namespace infor-
mations have been trimmed.

4.3.2 SOAP to JSON-RPC Transformation

We start with the response created by the OpenClinica
Web Service in 3. It contains a result status field with
the contents success and the requested payload object
studies. The object studies contains one object of
complex type study containing information about the
respecting study like the unique identifier.

The translated response is shown in 4. It contains
the result distilled from XML to JSON plus the re-
quired JSON-RPC fields. It is valid JSON-RPC and
can be parsed easily by common JSON frameworks.
Complex types like study in 3 are converted to a rep-
resentation of Arrays and Strings.

4.3.3 Security

For confidential transmission the client to adapter con-
nection can be SSL-secured using the the standard
Apache Tomcat facilities. For example an externally
signed certificate can be used. The adapter to Web

8https://static.springsource.org/spring-ws/sites/1.5/reference/
html/security.html

Web�Service�to�JSON-RPC�Transformation

217

1

2 <?xml version="1.0"?>

3

4 <SOAP-ENV:Envelope

5 xmlns:SOAP-ENV="http://schemas...oap/envelope/">

6 <SOAP-ENV:Header/>

7

8 <SOAP-ENV:Body>

9 <listAllResponse

10 xmlns="http://openclinica.org/ws/study/v1">

11 <result>Success</result>

12 <studies>

13 <study>

14 <identifier>default-study</identifier>

15 <oid>S_DEFAULTS1</oid>

16 <name>Default Study</name>

17 </study>

18 </studies>

19 </listAllResponse>

20 </SOAP-ENV:Body>

21

22 </SOAP-ENV:Envelope>

Listing 3: SOAP response (shortened). A minimal SOAP
response only containing the required SOAP elements; au-
thentication credentials and the result array.

Service connection is used as noted in the WSDL9,
either with SSL or in plaintext. If SSL is used, a cer-
tificate check can be optionally forced. The manager
is secured by default using a username / password au-
thentication to prevent abuse. If required, the adapters
can also be protected to restrict access.

4.3.4 Availability

The adapter has no special failover or other redun-
dancy features incorporated. Instead the idea for a
reliable function is to deploy the same adapter mul-
tiple times to different locations and use them in a

1 \vspace{-1cm}

2 {

3 "jsonrpc": "2.0",

4 "id": 1337,

5 "result": {

6 { "result" : success }

7 { "studies" :

8 ["study" :

9 {"identifier": "default-study",

10 "oid": "S_DEFAULTS1",

11 "name": "Default Study"}

12]

13 }

14 }

15 }

Listing 4: JSON-RPC response. A minimal JSON-RPC re-
sponse only containing the required elements jsonrpc and
id plus the requested playload containing the study name.

round robin fashion. Alternatively a load balancer can
be used to distribute incoming requests to different
adapter instances. Although, more components might
increase the aggregate delay to a point the user expe-
rience suffers.

4.3.5 Error Handling

The adapter itself only does syntax checking on in-
coming transmissions. Neither JSON-RPC nor SOAP
messsages are checked for conformity to e.g. the re-
spective schema. Instead we rely on the checks on the
endpoints and just pass-through potential error mes-
sages using the approriate measures for JSON-RPC
(error object) and SOAP (Fault element). This also
applies to miscellaneous error message, for example,
in case of an overloaded server.

5 EVALUATION

Proof of functionality of our tool and the approach to
a performance evaluation of our tool are presented in
this chapter.

5.1 Functionality

For functionality demonstration we use an existing
test installation of OpenClinica, an Open Source ap-
plication for clinical research. Excerpts of a real ses-
sion can be found in 4.3. Additionally, we tested Web
Services available online, including but not limited to
entries in 1.

5.2 Performance

Performance measurements are currently a subject of
work in progress. We will evaluate the overhead in-
duced by the adapter in both terms of additional delay
and processing overhead. To calculate the overhead
delay we will time simulated JSON-RPC requests us-
ing the adapter to a test Web Service and compare the
results to equivalent direct SOAP requests. For effi-
ciency measurement we will add the adapter to the
host running the Web Service and compare served
requests per second for equivalent requests in both
JSON-RPC and SOAP. As the setup processing only
occurs once, we consider its effort negligible.

9Depending whether URL starts with https:// or http://

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

218

Table 1: List of tested public Web Services.

Name Function WSDL Uniform Resource Locator (URL)

BLZService Get bank name by BLZ (german identifica-
tion number for banks)

http://www.thomas-bayer.com/
axis2/services/BLZService?wsdl

ConvertSpeeds ConvertSpeed units (e.g. mph to kmh) http://www.webservicex.net/
ConvertSpeed.asmx?WSDL

Weather Provides weather information in USA by
zip code

http://wsf.cdyne.com/WeatherWS/
Weather.asmx?WSDL

Calculator Performs arithmetic operations http://soaptest.parasoft.com/
calculator.wsdl

6 CONCLUSIONS AND FUTURE
WORK

We presented a tool which translates JSON-RPC re-
quests to SOAP requests and SOAP responses to
JSON-RPC responses based on information present
in WSDL. This approach enables mobile JSON-RPC
clients to access traditional Web Services without al-
tering the Web Service application and only requiring
JSON-RPC support on client side (instead of the more
complex SOAP support).

6.1 Future Work

We are currently working on a mechanism to deliver
functioning client stub classes for the iOS and An-
droid plattforms in addition to the informal descrip-
tion of the generated interface. This will simplify mo-
bile development even further.

The architecture of our tool leaves open space to
support more RPC standards. We are considering
adding support for additional protocols on both client
and server sides.

REFERENCES

Cook, W. and Barfield, J. (2006). Web Services versus Dis-
tributed Objects: A Case Study of Performance and
Interface Design. IEEE International Conference on
Web Services (ICWS’06), pages 419–426.

Ibsen, C., Anstey, J., and Zbarcea, H. (2011). Camel in
Action. Manning.

JSON-RPC Working Group (2012). JSON-RPC 2.0 Speci-
fication.

Lawrence, R. (2004). The space efficiency of XML. Infor-
mation and Software Technology, 46(11):753–759.

Nurseitov, N. and Paulson, M. (2009). Comparison of
JSON and XML data interchange formats: A case

study. In 22nd International Conference on Comput-
ers and their Applications in Industry and Engineer-
ing (ISCA’06).

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
Restful web services vs. big’web services: making the
right architectural decision. 17th International Confer-
ence on World Wide Web (WWW’08), pages 805–814.

Sumaray, A. and Makki, S. (2012). A comparison of Data
Serialization Formats for Optimal Efficiency on a Mo-
bile Platform. In Proceedings of the 6th International
Conference on Ubiquitous Information Management
and Communication (ICUIMC’12).

Wang, G. (2011). Improving Data Transmission in Web
Applications via the Translation between XML and
JSON. 3rd International Conference on Communica-
tions and Mobile Computing (CMC’11), pages 182–
185.

Web�Service�to�JSON-RPC�Transformation

219

