
AVON
A Fast Hash Function for Intel SIMD Architectures

Matt Henricksen1 and Shinsaku Kiyomoto2
1Institute for Infocomm Research, 1 Fusionopolis Way #21-01 Connexis (South Tower), 138632 Singapore, Singapore

2KDDI R & D Laboratories Inc, 2-1-15 Ohara, Fujimino-shi, 356-8502 Saitama, Japan

Keywords: Hash Functions, SHA-3, Single-instruction Multiple-data.

Abstract: In this paper, we propose a hash function that takes advantage of the AES-NI and other Single-Instruction
Multiple-Data operations on Intel x64 platforms to generate digests very efficiently. It is suitable for appli-
cations in which a server needs to securely hash electronic documents at a rate of several cycles/byte. This
makes it much more efficient for certain applications than SHA-2, SHA-3 or any of the SHA-3 finalists. On
the common Sandy Bridge micro-architecture, our hash function, AVON, has a throughput of 2.65 cycles per
byte while retaining a high degree of security.

1 INTRODUCTION

Following the successful analysis of MD-5 and SHA-
1 (Wang and Yu, 2005)(Wang et al., 2005), the aca-
demic community, and to an extent, industry have
been looking for replacement hash functions. In 2007,
NIST launched the SHA-3 hash function competi-
tion (National Institute of Standards and Technology,
2007), as a multiple-phase effort to find suitable hash
functions to complement or replace the standardized
SHA-2, which seemed at the time to be vulnerable to
the same set of attacks.

Of the 51 submissions, five were chosen as final-
ists. These were Blake, Grostl, JH, Keccak and Skein.
In 2012, Keccak (Bertoni et al., 2011) was selected as
the winner. There has been criticism that these final-
ist hash functions are too slow to meet industry needs
(see Table 1, which provides median throughputs for
long messages on different Intel microarchitectures
(ECRYPT, 2012)). Some calls have been made for
hash functions with a throughput of 2-5 cycles/bytes
(Gligoroski, 2010).

One of the reasons for the conservative speed of
the SHA-3 finalists is that in order to be competi-
tive in processes such as the NIST SHA-3 hash func-
tion competition, the hash functions must offer many
properties, above and beyond the well known trinity
of pre-image, second pre-image and collision resis-
tance. The hash functions must also perform well on
a large number of platforms.

This means that these hash functions are not well

Table 1: Throughput of the SHA-3 finalists (and SHA-2) in
generating 512-bit digests for long messages (cycles/byte).

Hash Function Westmere Sandy Bridge Atom

BLAKE 8.06 5.66 12.80
Grostl 30.32 26.05 110.2

JH 15.56 13.85 30.28
Keccak 12.14 10.86 21.43
Skein 7.27 6.38 9.96

SHA-2-512 12.50 11.67 15.41

suited to niche applications. The industry request
that inspired this research identified an application in
which a server rapidly hashes very many electronic
documents. In this application, although the clients
may use a diverse range of processors, there is no
reason why the servers cannot be a specific type of
processor, for which the hash function is targeted and
optimized. The hash function should be very fast
on the server, with throughput around the cited two
cycles/byte. After the documents and their digests
are distributed, each client can verify the digests on
some subset of documents without the same severe
time/throughput constraint.

In this paper, we investigate how to construct
a hash function that offers pre-image and second-
preimage resistance, but not necessarily collision-
resistance, on Intel x86-64 architectures using Single-
Instruction Multiple-Data (SIMD) sets with SSE
(Streaming SIMD Extensions) and AVX (Advanced
Vector Extensions). This processor family is very
popular. The hash function’s performance require-

482 Henricksen M. and Kiyomoto S..
AVON - A Fast Hash Function for Intel SIMD Architectures.
DOI: 10.5220/0004502104820487
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 482-487
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ments are asymmetric: it must perform very effi-
ciently on the Intel x86 server using SIMD operation,
but on the client, throughput is not critical. Pre-image
and second pre-image resistance are required, since a
rogue client might try to modify a received document
without altering the digest.

In Section 2, we describe SSE/AVX in terms of
relevant instructions. In Section 3 of this paper, we
present the new hash function AVON, built using the
well-known sponge construction, with a permutation
specially designed to use SIMD instructions. In Sec-
tion 4, we outline our design decisions. In Sections
5 and 6, we analyse the security and efficiency of the
cipher. We provide concluding notes in Section 7.

2 PRELIMINARIES -
STREAMING SIMD
EXTENSIONS

Recent Intel architectures offer SIMD functionality,
through the SSE and the newer AVX instruction sets.
SSE instructions operate on dedicated 128-bit XMM
registers, and AVX instructions operate on 256-bit
YMM registers. This is in contrast to general pur-
pose instructions, which are restricted to 32- or 64-bit
registers. On recent architectures, such as Westmere,
Sandy Bridge and Ivy Bridge, SSE and AVX instruc-
tions are implemented efficiently so that for many
applications, increases in throughput result by using
these larger register sets.

As an example of the increased power offered
by SSE/AVX, consider the instruction PBLENDW,
which takes two 128-bit operands and an immediate
value. The operands are notionally divided into eight
sixteen-bit blocks. The instruction creates a target
word using blocks chosen from either of the operands,
according to the bit pattern of the immediate value.
This instruction can be synthesized in 32-bit C code
by masking each of the source words in 32-bit blocks,
and exclusive-oring the blocks together, which takes
at least three cycles on general purpose registers, but
only one cycle when using PBLENDW.

Of particular interest to cryptographers are the
AES-NI instructions, which enable very fast im-
plementation of the Advanced Encryption Standard
block cipher and variants. The foremost instruction is
the AESENC instruction, which performs one round
of the AES, incorporating the non-linear SubByte
(SB) operation (comprising sixteen parallel invoca-
tions of an optimal 8× 8 s-box), and the ShiftRows
(SR), MixColumns (MC) and AddKey (AK) opera-
tions. On Westmere, the instruction is executed with

a throughput of six cycles and a latency of two cycles.
On Sandy Bridge, the instruction is executed with a
throughput of eight cycles and a latency of one cycle
(Agner, 2012). So, for independent operands, Sandy
Bridge is more efficient, but for a sequence of iterated
rounds, Westmere is more efficient.

AESKEYGENASSIST is also part of the AES-NI,
although its use is less straight-forward than AES-
ENC. The AES round key schedule needs to pro-
vide 128-bit round keys for each round of AES plus
one additional 128-bit key for pre-whitening. It does
this in different ways for 128-, 192- and 256-bit mas-
ter keys. AESKEYGENASSIST operates in such a
way that it simultaneously provides support for all
these master-key lengths by computing s-boxes and
other operations on two of the four 32-bit words in
the source operand. This provides more non-linearity
than required by the weak AES key schedule, so sig-
nificant manipulation is required to derive the AES
keys. If we use the instruction directly, rather than
manipulating it to derive the keys, we are actually
benefited by the additional non-linearity it provides as
well as processing more quickly than if deriving the
keys. The form of the instruction isAESKEYGENAS-
SIST target, source, imm, where imm is a hard-wired
round constant.

3 SPECIFICATION

The AVON hash function is based on the sponge func-
tion construction to provide an easy trade-off between
security and efficiency, by altering the rate at which
message material is added to, or digest material is
leaked from the state. The sponge function construc-
tion also provides certain guarantees about security,
if its core permutation is considered ideal, simplify-
ing analysis. In this section, we show how to imple-
ment AVON by using the sponge function with the
core permutation. We also provide the details of the
permutation.

3.1 Construction

The sponge function, as defined by Bertoni, Daemen,
Peeters and Assche (Bertoni et al., 2007), shown in
Figure 1, is a generalization of a hash function (with
variable input length and fixed output length) and a
stream cipher (with fixed input length and variable
output length). It iteratively applies a (bijective) per-
mutation to ant-bit state, which is divided between a
capacity component of sizec and a rate component of
sizer. The permutation does not require an inverse or
a key schedule.

AVON�-�A�Fast�Hash�Function�for�Intel�SIMD�Architectures

483

Figure 1: The sponge construction.

Generating a digest requires initializing the state
with a fixed constant (for example, the all-zero string),
then running absorbing and squeezing phases. Dur-
ing the absorbing phase, message material is itera-
tively added to the state inr- bit blocks (mi). After
each block is absorbed, the permutationP is called
to mix the state. The absorbing state is followed by
the squeezing state, in whichr′- bit blocks (zi) are
emitted from the state in between iterations of the per-
mutation. These blocks are concatenated to form the
digest. We assume in this article thatr = r′.

AVON uses an internal state of 384 bits (divided
between three double quadwords of 128 bits each,
termedX0, X1 andX2). The initial state is set to the
all-zero string. The rate for absorbing and squeezing
is r = 128. The capacity is set toc = 256.

During the absorbing phase, the message is broken
into blocks of 128 bits. The last block is padded ac-
cording to the rules given in Section 3.3. Each block
is absorbed into the sponge state, by combination with
the 128-bit rate componentX2, using binary addition.
After each combination, the permutationP (Section
3.2) is executed.

Once the absorbing phase has finished, the
squeezing mode commences to produce the digest.
This is formed by extracting the 128 bits of state that
is stored in the rate componentX2, invoking the per-
mutation, then iterating. Then-bit digest is formed by
concatenating thex blocks of extracted state.

3.2 Permutation

The permutationP operates on a 384-bit state
X0||X1||X2, where each variableXi is a 128-bit dou-
ble quadword, and|| represents concatenation. The
permutation consists of iterating theSubRound func-
tion three times. TheSubRound function is shown in
Figure 2.

AESENC encrypts its inputP with one round of
the AES using the round keyRK, as documented in

Figure 2:Subround - one third of the permutation.

(Daemen and Rijmen, 2002). The round keys for the
AESENC operations in theX2 sub-state are defined
as:

RK0 = (X0& mask0,r)⊕ (X1& mask1,r)

RK1 = KG(X1,cr)

The masks vary according to round number 0≤
r ≤ 2. The series mask1,r are the inverse of mask0,r.

mask0,0 = {0xFFFFFFFF,0x00000000,

0xFFFF0000,0xFFFF0000}

mask0,1 = {0xFFFF0000,0xFFFF0000,

0xFFFFFFFF,0x00000000}

mask0,2 = {0xFFFFFFFF,0x00000000,

0xFFFF0000,0xFFFF0000}

The operation to deriveRK0 can be implemented
using PBLENDW, with constants 0xCA for sub-
rounds 0 and 2, and 0xAC for sub-round 1. The
KG operation can be implemented using AESKEY-
GENASSIST with constants 0x1, 0x3 and 0x9 for
r = 0,1,2 consecutively.

The permutationP is implemented as:

Y0 = AESENC((X0+X1)⊕X1,Y2)

Y1 = AESENC(AESENC(X2,RK0),RK1)

Y2 = ((X0+X1)≪128 32)+ ((X0+X1)⊕X1)

At the end of the sub-round, the sponge state is up-
dated as(X0= Y0,X1= Y1,X2= Y2).

3.3 Padding

We use the simplest sponge compliant padding rule
pad10*, which consists of padding the last block of
the message with a 1 bit, followed by as many 0-bits
as required to ensure that the padded message length
is a multiple of the block size, eg.n × r for some
integern.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

484

4 DESIGN PRINCIPLES

4.1 Sponge Construction

We use the sponge construction because it is the most
scalable construction to trade-off efficiency and secu-
rity, simply by varying the rater. It also offers some
proofs of security, given a randomized permutation.
In particular, resistance against collisions, pre-images
and second-preimages can be computed as (Guo et al.,
2011):

• Collision: min(2
n
2
,2

c
2)

• Second Preimage: min(2n
,2

c
2)

• Preimage: min(2min(n,t)
, max(2min(n,t)−r

,2
c
2))

We set the size of the construction (t = c+ r) to
384 bits so that we only need to use three registers
to store the state, with a few other registers for tem-
porary values (in 32-bit mode, there are only eight
XMM registers available). Setting the capacity (c) to
256 bits means that if there are no flaws in the permu-
tation, then for generating a 256-bit digest (n = 256),
collision resistance = 2128, second-preimage resis-
tance is 2128, and pre-image resistance is 2128.

4.2 The Permutation

The permutationP is designed to meet the following
requirements:P must make use of AESENC and SSE
instructions; every output byte ofP depends upon ev-
ery input byte;P must provide similar diffusion and
confusion to one full AES encryption; using SSE,
the permutation must complete within 48 cycles and
without SSE, it must complete within 256 cycles.

The permutation is a combination of ARX design
and components of the AES. This combines both the
well-established properties and efficiency of the AES,
with some uniqueness in its design permitted by the
SSE instruction set. Choosing the permutation to be
a combination of AES and ARX should be more re-
silient than either in isolation.

ARX designs tend to be popular because addition
is generally faster than an s-box lookup (addition is an
atomic operation, an s-box lookup is a sequence of in-
structions). However, access to the AES-NI changes
this, since an s-box lookup can be performed in an
average of less than12 cycle. There is no way to use
any s-box other than that of the AES in a competitive
manner on the Intel x86-64, and due to its optimal se-
curity properties, nor is there any need.

The permutation is designed to exploit SIMD ar-
chitectures. SIMD instructions are designed for spe-
cialized operations such as graphics acceleration, so

is more limited than for those of the general purpose
registers. For example, Intel SSE instructions are in-
capable of generic indirect addressing, such as used
in s-boxes implemented using lookup tables.

However, AES-NI provides a single s-box imple-
mented on chip, and accessible through SIMD. The s-
box, used by the AES, is optimal against differential
and linear cryptanalysis for that table size. The rele-
vant instruction, AESENC computes sixteen s-boxes
in parallel with a throughput of six to eight cycles. So
it does not make sense to implement any other s-box.
The AES-NI instruction set also provides AESKEY-
GENASSIST, which partially computes round keys.
It provides more non-linearity than is used in the key
generation for round keys (eight s-boxes per 128 bits
rather than four). This should be exploited rather than
discarded.

We also use a number of other instructions,
including PBLENDW, for computing the round
keys for both AESENC operations per SubRound.
PBLENDW completes in one cycle, so is ideal for
computing the first round key. AESKEYGENAS-
SIST can start to compute the second round key at
the same time, since its operands are not modified by
PBLENDW. So the round keys are computed respec-
tively one cycle, and 6-8 cycles after the start of the
SubRound. As two AESENC operate in serial, the
second round key is not required until at least six cy-
cles after the start of the round.

5 ANALYSIS

AVON uses the sponge construction, and it is proved
in (Bertoni et al., 2008) that if the underlying permu-
tation is ideal, then the hash function constructed us-
ing a sponge function is indifferentiable from a ran-
dom oracle. This means that we only need to concen-
trate on the security of the permutation. A more full
analysis will be presented in an extended version of
this paper.

5.1 Statistical Analysis

We performed statistical analysis on AVON to mea-
sure the diffusion and confusion of the permutation
for 227 pairs of inputs with one-byte, two-byte or ran-
dom differences. 98% of samples produced at least
47 active bytes over the permutationP, showing that
three rounds ofSubRound is sufficient for diffusion
purposes. All samples produced at least 35 active s-
boxes, and 99% of samples with random differences
produced 166, 167 or 168 (the maximum) active s-
boxes. This means that even if the attacker has direct

AVON�-�A�Fast�Hash�Function�for�Intel�SIMD�Architectures

485

access to the input ofP, which is not possible when
using the sponge function construction, he is unable
to control the differences in order to produce a colli-
sion in a 256-bit digest that is more efficient than a
generic attack. This is because the maximum proba-
bility of an input difference passing through an AES
s-box to a specific output difference is 2−6, and pass-
ing through 35 active s-boxes is 2−210.

5.2 Cryptanalysis

5.2.1 Differential and Linear Cryptanalysis

The security of AVON against differential and lin-
ear cryptanalysis rests on the security of the AES,
which has been well studied. The maximum probabil-
ity of any non-zero input difference passing through
the AES s-box to any specific output difference is 2−6,
and the maximum bias of the s-box is 2−3. SinceP ac-
tivates at least 35 active s-boxes, it seems unlikely that
any differential path with a probability of more than
2−210, and any linear approximation with bias of less
than 2−105 is unlikely, and the attacker will be unable
to generate a collision.

5.2.2 ARX Cryptanalysis and Rotational
Distinguishers

Rotational distinguishers are applied to ARX ciphers
in (Khovratovich and Nikolic, 2010). The aim is
to analyse how the difference between a pair of in-
puts, where one is a rotated version of another, passes
through the components of an ARX cipher. Only the
addition component of the cipher alters the difference,
and the number of additions required to effect n-bit
security can be simply quantified.

AVON-2 uses an ARX component which can be
analysed in isolation by the rotational cryptanalysis
method. However, the non-linear s-boxes in the AES
component are not readily analyzable, and also pro-
vide higher non-linearity than the equivalent addi-
tions. So rotational distinguishers are unlikely to ap-
ply to AVON-2. The attacker might try to build a
rotational distinguisher by carefully controlling how
difference propagate through the s-boxes, either by
fixing the difference or fixing values. But the large
number of activated s-boxes means this approach is
very unlikely to succeed.

5.2.3 Rebound Attacks

Rebound attacks (Mendel et al., 2009) combine meet-
in-the-middle attacks with truncated differentials, to
allow the attacker to efficiently control an intermedi-
ate segment of the hash function rounds, so that the

input differential of the segment and the output dif-
ferential converge to the same pattern midway. The
attacker aims to reduce the number of active s-boxes
subsequent to, and preceding the segment, allowing
the attack to be probabilistically extended in the for-
ward and back directions over a further number of
rounds.

Rebound attacks assume full control over the in-
termediate values of the round function, and are dif-
ficult to convert to full hash functions that use the
sponge function construction. Rebound attacks are
known to be ineffective in the presence of ARX com-
ponents, so seem unlikely to apply AVON.

5.2.4 Algebraic Attacks and Cube Testers

Cube attacks and cube testers are described in (Au-
masson et al., 2009). To date there has been no mean-
ingful progress in applying algebraic attacks to the
AES. Since each message block is modified by 162
s-boxes, it is infeasible to apply this attack to AVON.

6 IMPLEMENTATION

The SubRound core is iterated three times, with dif-
ferent constants, to compriseP. The first instance of
SubRound is shown, using SSE assembly, here:
#define SUBROUND1 \
vpblendw $0xCA, %%xmm1, %%xmm0, %%xmm3 \
vaeskeygenassist $1, %%xmm1, %%xmm5 \
vaesenc %%xmm3, %%xmm2, %%xmm4 \
vpaddw %%xmm1, %%xmm0, %%xmm0 \
vpxor %%xmm1, %%xmm0, %%xmm1 \
vpshufd $0x93, %%xmm0, %%xmm0 \
vpaddw %%xmm1, %%xmm0, %%xmm0 \
vaesenc %%xmm5, %%xmm4, %%xmm2 \
vaesenc %%xmm0, %%xmm1, %%xmm1 \

The throughput of the cipher is limited by the
serial nature of the AESENC operations on theX2
word.

This cipher was implemented on an Intel Core i7
Extreme 990X running at 3470 MHz based on the
Westmere microarchitecture, and on an Intel Core i7
2600 running at 3400 MHz based on the Sandy Bridge
architecture. The permutationP was timed at 2.65
cycles/bytes when coded on the latter machine using
AVX instructions, and at 3.36 cycles/byte when coded
on the former without.

AVX instructions, which operate on 256 bit reg-
isters, are not currently very useful, since for the
cryptographic operations and many others, the left-
most 128 bits are zero-filled, meaning that the instruc-
tions remain oriented on 128 bits. However, AVX
instructions frequently take one additional operand

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

486

Table 2: Throughput of the AVON hash function (cy-
cles/byte).

Hash Function Westmere Sandy Bridge
AVON Permutation 3.27 2.58

AVON Full 3.36 2.65
MD5 5.04 5.38

SHA-1 7.66 7.80
Keccak 12.14 10.86

SHA-2-512 12.50 11.67

compared to SSE instructions, specifying a target,
whereas the comparable SSE instructions overwrite
one of the source operands. This means that some
speedup can be obtained by using AVX, since for
where the source needs to be preserved, one move op-
eration can be saved. We note that if AVX and SSE in-
structions are mixed, there is a penalty applied to the
throughput. The real benefit of the Sandy Bridge ar-
chitecture lies in the ability to execute AESENC oper-
ations concurrently on two execution ports (on West-
mere, only one port can handle this instruction).

7 CONCLUSIONS

In this document, we specify a new hash function
- AVON - that specifically uses the SIMD instruc-
tion set on the Intel platform to increase through-
put. We achieved a speed of 2.65 cycles/byte on the
Sandy Bridge micro-architecture, which is roughly
four times faster than the standardized SHA-3 on the
same platform, and roughly double the speed of the
insecure MD5 hash function on Sandy Bridge (see Ta-
ble 2). On other platforms, it is not so effective, but
this is unimportant for two reasons. Firstly, wherever
AES is efficient, AVON will also be efficient. There
is a strong trend to SIMD, and AES will be avail-
able as atomic SIMD instructions on more platforms
in the future. Secondly, the hash function is useful in
a server-client scenario, where the server has to hash
many documents, and the client to verify only a few.

Future work includes optimization of the code,
and further cryptanalysis to more precisely determine
the security of the hash function.

REFERENCES

Agner (2012). The microarchitecture of Intel, AMD
and VIA CPUs. http://www.agner.org/optimize/
microarchitecture.pdf.

Aumasson, J.-P., Dinur, I., Meier, W., and Shamir, A.
(2009). Cube Testers and Key Recovery Attacks on

Reduced-Round MD6 and Trivium. In (Dunkelman,
2009), pages 1–22.

Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V.
(2007). Sponge functions. InProceedings of ECRYPT
Hash Workshop 2007, May 24 - 25, 2007, Barcelona,
Spain.

Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V.
(2008). On the Indifferentiability of the Sponge Con-
struction. In Smart, N. P., editor,EUROCRYPT, vol-
ume 4965 ofLNCS, pages 181–197. Springer.

Bertoni, G., Daemen, J., Peeters, M., and Assche,
G. V. (2011). The KECCAK SHA-3 Submis-
sion. Submission to NIST (Round 3). Available at
http://keccak.noekeon.org/Keccak-submission-3.pdf.

Daemen, J. and Rijmen, V. (2002).The Design of Rijndael:
AES - The Advanced Encryption Standard. Springer.

Dunkelman, O., editor (2009).Fast Software Encryption,
16th International Workshop, FSE 2009, Leuven, Bel-
gium, February 22-25, 2009, Revised Selected Papers,
volume 5665 ofLNCS. Springer.

ECRYPT (2012). ebacs: Ecrypt benchmarking of
cryptographic systems. http://bench.cr.yp.to/
results-sha3.html.

Gligoroski, D. (2010). Cryptographic hash functions. http://
www.nisnet.no/filer/Finse10/Cryptographicash
Gligoroski.pdf.

Guo, J., Peyrin, T., and Poschmann, A. (2011). The PHO-
TON family of lightweight hash functions. In Rog-
away, P., editor,CRYPTO, volume 6841 ofLecture
Notes in Computer Science, pages 222–239. Springer.

Khovratovich, D. and Nikolic, I. (2010). Rotational crypt-
analysis of ARX. In Hong, S. and Iwata, T., editors,
FSE, volume 6147 ofLecture Notes in Computer Sci-
ence, pages 333–346. Springer.

Mendel, F., Rechberger, C., Schläffer, M., and Thomsen,
S. S. (2009). The Rebound Attack: Cryptanalysis
of Reduced Whirlpool and Grøstl. In (Dunkelman,
2009), pages 260–276.

National Institute of Standards and Technology (2007). An-
nouncing Request for Candidate Algorithm Nomina-
tions for a New Cryptographic Hash Algorithm (SHA-
3) Family. Federal Register, 27(212):62212–62220.
Available at http://csrc.nist.gov/groups/ST/hash/
documents/FRNotice Nov07.pdf.

Wang, X., Yin, Y. L., and Yu, H. (2005). Finding collisions
in the full SHA-1. In Shoup, V., editor,CRYPTO,
volume 3621 ofLecture Notes in Computer Science,
pages 17–36. Springer.

Wang, X. and Yu, H. (2005). How to break MD5 and other
hash functions. In Cramer, R., editor,EUROCRYPT,
volume 3494 ofLecture Notes in Computer Science,
pages 19–35. Springer.

AVON�-�A�Fast�Hash�Function�for�Intel�SIMD�Architectures

487

