
A Novel Technique for TCP based Congestion Control

Martin Hruby, Michal Olsovsky and Margareta Kotocova
Institute of Computer Systems and Networks, Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Ilkovicova 3, 842 16 Bratislava 4, Slovakia

Keywords: ACNS, Congestion Control, Flow Age, Network, Notification System, Performance, Prioritization, Priority,
RTT, Queue, TCP, Throughput.

Abstract: Network performance increase does not have to be associated only with the upgrade of existing
infrastructure and devices. More effective and less expensive increase of network performance can be
achieved via sophisticated improvement of existing protocols, mainly at network and transport layer.
The aim of this paper is to introduce our new approach for solving network performance issues which occur
mostly due to congestion. New approach called Advanced Notification Congestion System (ACNS) allows
TCP flows prioritization based on the TCP flow age and carried priority in the header of the network layer
protocol. The main aim is to provide more bandwidth for young and high prioritized TCP flows by means of
penalizing old greedy flows with a low priority. Using ACNS, substantial network performance increase can
be achieved.

1 INTRODUCTION

The very first version of the most common transport
protocol TCP was introduced in RFC793
(Information Sciences Institute, 1981). To match the
increasing traffic requests (bandwidth, delay, etc.), it
was necessary to improve not only the hardware part
of the communication networks, but the software
part as well. Improvements of the TCP, mostly
called TCP variants or extensions, are mainly
focused on the best and most effective usage of
available communication lines (Ha, 2008),
(Bateman, 2008).

First TCP improvements focused on higher
performance were published in (Mirza, 2010). Since
1992 (Karnik, 2005), there have been many new
TCP variants which can be divided into 2 main
groups. Based on the end network type we can
recognize wired group and wireless group. These
groups can be further divided into smaller groups
whose key element is the congestion detection.
Based on this hierarchy, we can recognize variants
like CUBIC, Compound TCP, Sync-TCP for wired
networks (Xiuchao, 2009), (Chao, 2005), (Tsao,
2007) and JTCP, TCP CERL and Compound TCP+
for wireless networks (Todorovic, 2006), (Welzl,
2005), (Botta, 2007). All these variants have one
thing in common – they don’t make any steps for

congestion avoidance unless the congestion is
detected by TCP end nodes (Martin, 2003). Slightly
different approach can be identified while using
Explicit Congestion Notification (ECN) system
when TCP end nodes allow nodes in the network to
inform them about the situation in the network and
give them some kind of feedback (Kwon, 2002).

However this feedback is sent within all existing
TCP flows which support ECN apart from any flow
characteristic (Kuzmanovic, 2003). The only sent
feedback stands for the order to decrease the
congestion window. While keeping in mind existing
ECN system we have identified two limitations:
1. All TCP flows in the network from the TCP end

nodes point of view are treated equally. It means
that TCP end nodes do not observe any kind of
prioritization or any kind of penalization with
other TCP flows.

2. There is only one command (decrease of the
congestion window) which is sent to all TCP end
nodes at the same time.

Mechanisms and further concepts introduced in the
following chapters are aimed to solve highlighted
issues.

36
Hruby M., Olsovsky M. and Kotocova M..
A Novel Technique for TCP based Congestion Control.
DOI: 10.5220/0004504100360043
In Proceedings of the 4th International Conference on Data Communication Networking, 10th International Conference on e-Business and 4th
International Conference on Optical Communication Systems (DCNET-2013), pages 36-43
ISBN: 978-989-8565-72-3
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 CONCEPT

The idea of our approach ACNS (Advanced
Congestion Notification System) is to allow the TCP
to inform only specific TCP end nodes about the
congestion in the network and instruct them to
change the congestion window. Such functionality
will provide more bandwidth to younger and
prioritized TCP flows by freezing and possibly
decreasing the congestion window of older TCP
flows.

We propose a set of weights assigned to each
TCP flow for further calculations which in turn will
result in a specific command which will be sent
within particular flows. These weights are based on
the following three parameters:
1. TCP flow age - TCP flows can exist in network

for various time; old TCP flows are probably
greedy data flows while young flows can be with
certain probability classified as flows which need
to exchange just small amount of data (e.g. short
HTTP communication).

2. TCP flow priority - while bearing in mind the
age of TCP flows sometimes it’s necessary not to
penalize old TCP flows. Therefore the priority
carried in the network layer protocol header is
considered as second parameter which influences
the final weight of appropriate TCP flow.

3. Queue length – as the penalization is worthy only
when there is a congestion in the network, the
last flow weight calculation input parameter is
the actual queue length.

ACNS may result into two situations. First situation
is typical situation when the command is calculated
by and received from the nodes in the network. TCP
end nodes receive the packet, check the header and
modify the congestion window according to
received command. The mechanism of TCP flow
weight calculation and command determination is
described in section 2.1. Second situation represents
typical loss in the network. At this point the end
node has to determine which command will be used
based on the commands received in the past (Section
2.2).

2.1 Flow Weight Calculation

While the TCP communication passes nodes in the
network, it’s necessary to calculate the weight of the
TCP flow in order to send commands to the end
nodes. As we mentioned earlier the calculation has 3
input parameters - TCP flow age, TCP flow priority
and queue length.

TCP flow age is unique per flow and is changing
in the time. As the age is theoretically unlimited, this
parameter would bring some indeterminism to the
final weight calculation. To solve this issue we have
introduced age normalization (1) – age of the flow ݂
is represented as a part of the oldest flow age ݂௫
(2). Using normalization age values can vary from 0
to 1 (including). Comparison of standard and
normalized age is depicted on the Figure 1
(normalized age values are shown 100 times larger).

 ∀ ݅ ∈ ሺ1; :ሻ|ܨ| ࣮ሺ ݂ሻ ൌ 	
݂

݂௫
 (1)

୫݂ୟ୶ ൌ maxሺܨሻ (2)

Similar normalization is used for the second
parameter – priority . Priority normalization is
done within the function ࣠ሺሻ using maximal
priority ௫. The last input parameter, actual queue
length ࣛሺݍሻ, is changing in time and is shared
across all flows. It represents the actual usage of the
queue and can vary from 0 up to 1.

Final weight ߲ for flow ݂ used for command
determination can be calculated using (3) where
࣠ሺሻ stands for priority part and ࣮ሺ݂ሻ	represents
age part. Both subparts can be calculated using (4).
It is possible to put more weight on a specific part or
eliminate the other part by the weight factors (ݒ, (ݒ
but the sum of these factors must be equal to 1.

Figure 1: Age and normalized age.

Calculated weight ߲ needs to be transformed into
command ߱ which will be sent to the TCP end
nodes. The command can be 1, 2 or 3. As the
calculated weight ߲ is a real number, we have to
convert it to one of available commands using
comparison with 2 thresholds ݄ݐଵ and ݄ݐଶ (5).

A�Novel�Technique�for�TCP�based�Congestion�Control

37

߲ ൌ 	
ࣛሺݍሻ

࣠ሺሻ ࣮ሺ݂ሻ	
 (3)

࣠ሺሻ ൌ
ݒ ∗ 	
௫

; 	࣮ሺ݂ሻ ൌ
ݒ

ܽ݃݁ሺ 	݂ሻ	
 (4)

߱ ൌ ൝
	1
	2
	3
	

߲ ൏ ଵ݄ݐ
ଵ݄ݐ 	 	߲ ൏ 	 ଶ݄ݐ

ଶ݄ݐ 	 	߲
 (5)

2.2 Determining Command upon Loss

Commands received within acknowledgements can
be useful when loss occurs as they represent the
situation in the network right before the loss. Using
these commands we are able to determine trend
command ߱௧ௗ directly in the TCP end nodes.

At first end nodes calculate trend weight ߲௧ௗ
using ߱௨௧ of the latest received commands. Even
if we use only few commands we have to distinguish
between their ages. This is achieved by assigning
metric to every used command using the exponential
decrease (Cheng, 2004) (6) with additional step
parameter σ (Malagò, 2011). Calculated metric for
every received command is normalized using sum of
metrics of all used commands ߯ (7). Setting P the
array of all received commands the trend weight
߲௧ௗ for specific TCP flow can be calculated using
(8).

Later on calculated trend weight ߲௧ௗ needs to
be transformed into trend command ߱௧ௗ which
will be used by end node itself. Calculation is
similar to the calculation for standard command as
in (5), the only difference is in used thresholds ݄ݐଵ
and	݄ݐଶ. These thresholds can be set according to
standard mathematical rounding or can use custom
values.

Figure 2: ACNS overview.

ݔ ൌ 	 ݁ି
ఒ
ఙ	 (6)

߯ ൌ ݁ି
ఒ

ఠೠ

ఒୀଵ

	 (7)

߲௧ௗ ൌ
݁ି

ఒ
	. ܲሾߣሿ
߯

ఠೠ

ఒୀଵ

	 (8)

2.3 Commands

TCP end node can modify congestion window
according to one of six commands. Half of these
commands can be received within TCP
acknowledgements and half needs to be calculated.
Commands usage overview is shown in Figure 2.

Received commands:
1. ߱ ൌ 1 – “normal” - There is no congestion in the

network. Congestion window can be modified
according to the used TCP variant.

2. ߱ ൌ 2 – “freeze” - There are signs of incoming
congestion. As this command receive only
specific TCP end nodes, not all TCP flows are
penalized. After receiving, TCP end nodes freeze
their congestion window ܿ(10) ݀݊ݓ.

3. ߱ ൌ 3 – “fallback” - There is a congestion in the
network. After receiving, congestion window
won’t be decreased by multiplicative factor
however it will be decreased to the latest known
smaller value (11).

Calculated commands:
1. ߱௧ௗ = 1 – „freeze“ – Loss occurred without

any signs of congestion (probably
communication channel interference). Command
of 2 is put in the list of received commands P
(different treatment during another loss).

2. ߱௧ௗ = 2 – „fallback“ – Loss occurred within
indicated incoming congestion. Congestion
window will be decreased to the latest known
smaller value. Command of 3 is put in the list of
received commands P.

3. ߱௧ௗ = 3 – „decrease“ - Loss occurred within
ongoing congestion. Congestion window will be
reduced according to the used TCP variant.
Command of 3 is put in the list of received
commands P.

3 COOPERATION WITH
EXISTING TCP VARIANTS

Introduced approach can be used in combination
with any existing and future TCP variant. Detailed

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

38

cooperation with used TCP variant is explained in
the following sections.

3.1 Change upon Recipient of
Acknowledgement and upon Loss

End nodes can receive three different commands
within the acknowledgement. Together with these
three commands available congestion window
(cwnd) changes are defined in (9) where ܿ݀݊ݓ௦௧ is
defined in (10) and ܿ݀݊ݓ௦௧_௫ in (11). Function W
stands for congestion window size changing
function in time. After receiving command of 1, end
node will be allowed to use its own TCP
implementation to calculate new congestion
window.

	݀݊ݓܿ ൌ 	

ە
ۖ
۔

ۖ
ۓ

	 	 	
_௩௧்݀݊ݓܿ

	
	 ߱	 ൌ 	1

	
௦௧݀݊ݓܿ

	
݀݊ݓܿ	 െ ௦௧_௫݀݊ݓܿ

	
	
߱	 ൌ 	2

	
߱	 ൌ 	3

 (9)

௦௧݀݊ݓܿ ൌ W(t-1).	 (10)

௦௧_௫݀݊ݓܿ ൌ 	ܹሺݐ െ 	ሻݔ (11)

	݀݊ݓܿ ൌ 	

ە
ۖ
۔

ۖ
ۓ

	 	 	
௦௧݀݊ݓܿ

	
	 ݀݊݁ݎݐ߱ 	ൌ 	1

	
௦௧_௫݀݊ݓܿ

	
.ೡೌೝ்݀݊ݓܿ	

	
	

݀݊݁ݎݐ߱ 	ൌ 	2
	

݀݊݁ݎݐ߱ 	ൌ 	3

 (12)

Using self-calculated trend commands end nodes are
able to modify congestion window as defined in
(12). After receiving command of 3 end node will
decrease the congestion window according to used
TCP variant.

3.2 Integration into IPv4 and TCP

Our approach keeps full compatibility with existing
IPv4 and TCP, even with ECN system. Backward
compatibility means that the end nodes will agree on
using system which both of them support. New
ACNS commands will appear as ECN commands
for non-compatible nodes.

Figure 3: Network layer – ACNS usage.

Integration in IPv4 header lays in reusing ECN
bits with one additional unused bit from field Flags

called CMI. Routers are willing to encode more
important commands into IPv4 header (Table 1) and
overwrite existing ones. TCP sender uses messages
2/3 within one data window. When sending last
packet from specific data window, sender uses
messages 4/5 in order to ask routers to encode
command in the IPv4 header (saves routers system
resources). Messages 6 and 7 are created only by
routers. From the network layer point of view the
whole communication is considered as one phase
because it is not divided into 3 phases as TCP does.
While keeping in mind network layer, ACNS can be
used during the whole communication (Figure 3).

Similar reuse appears in the TCP header.
Combination of existing ECN bits and new bit from
the reserved field called CMT allows us to encode
and decode all necessary ACNS messages (Table 2).
From the transport layer point of view the whole
communication is divided into 3 phases – connection
establishment, data exchange and connection
termination (Figure 4). Usage of ACNS system will
be agreed during the connection establishment
(three-way handshake). TCP sender will offer ACNS
system within ACNS-setup SYN packet (flags
SYN=1, ACK=0, ECE=1, CWR=1, CMT=1). If
TCP receiver supports ACNS, it will reply with
ACNS-setup SYN-ACK packet (flags SYN=1,
ACK=0, ECE=1, CWR=0, CMT=1) (Figure 5). TCP
end nodes agree on using ACNS during data
exchange however they won’t use ACNS during the
initial phase because ACNS does not apply to
control packets. While using ACNS during data
exchange, TCP end nodes set appropriate bits in
IPv4 and TCP header according to the used message.
ACNS is used during the whole data exchange until
the connection termination phase (Figure 6).

Figure 4: Transport layer – ACNS usage.

TCP receiver decodes command from IPv4
header and encodes the command in the TCP
acknowledgement header sent to the TCP sender.
TCP receiver can use messages 1/2 in order to
signalize normal congestion window processing. In
case of upcoming congestion, TCP receiver can
inform TCP sender with message 5 in order to freeze

A�Novel�Technique�for�TCP�based�Congestion�Control

39

congestion window or with message 6 to apply
command fallback. All messages from Table 2 are
used only by TCP end nodes.

Figure 5: Connection establishment - Conforming ACNS.

Figure 6: Data exchange - ACNS usage.

From the nodes in the network point of view
ACNS resides in the TCP end nodes and in the
routers as well. To sum it up, TCP end nodes use
ACNS for:

 Messages encoding.
 Messages decoding.
 Modifying TCP congestion window
 Command self-calculation upon packet loss

Nodes in the network (routers) use ACNS for:

 TCP flows classification

 Messages encoding.

 Messages decoding.

 Commands calculation

ACNS messages used within IPv4 and TCP headers
are summarized in the following tables (Table 1 and
Table 2).

Table 1: ACNS messages encoded in IPv4 header.

ECN CMI Message

1 0 0 0 ACNS not supported

2 1 0 0

ACNS in ECN mode
(set by end node),

ACNS message: command normal (left
by routers), NS = 0

3 0 1 0

ACNS in ECN mode
(set by end node),

ACNS message: command normal (left
by routers), NS = 1

4 1 0 1
ACNS supported (set by end node),

ACNS message: routers to set
command, NS = 0

5 0 1 1
ACNS supported (set by end node),

ACNS message: routers to set
command, NS = 1

6 1 1 1
ACNS message: command freeze (set

by routers)

7 1 1 0
ACNS message: command fallback (set

by routers)

Table 2: ACNS messages encoded in TCP header.

CWR ECE CMT Message

1 0 0 0
ACNS message: command
normal (receiver), NS = 0

2 0 0 0
ACNS message: command
normal (receiver), NS = 1

3 1 0 0
ACNS message: congestion
window reduced (sender),

NS = 0

4 1 0 0
ACNS message: congestion
window reduced (sender),

NS = 1

5 0 1 1
ACNS message: command

freeze (receiver)

6 0 1 0
ACNS message: command

fallback (receiver)

4 SIMULATION RESULTS

System ACNS was implemented in the network
simulator ns-2.35 where the simulations were
performed as well. One of the most important
implementation parts was the implementation of
flow classification as this part required its own data
structure for storing all necessary flow details as
following (structure in Table 3):
• Hash (hash)
• Source IP address (sIP)
• Destination IP address (dIP)
• Source port (sPo)
• Destination port (dPo)
• Time of flow add (addTime)
• Time of last flow update (lastTime)
• Age (comAge)

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

40

• Priority (priority)
• ACNS compatibility (system)

Simulation topology used for simulations represents
connections between 2 remote sites which are
connected via Internet Service Provider (ISP). We
assume that the bottlenecks do not exist in the ISP
network (over provisioned links) however the “last-
mile” links (used for connection to the ISP network)
are willing to become bottlenecks during the
communications.

High level overview of the simulation topology
is shown in Figure 7. Detailed simulation topology is
shown in Figure 8. The simulation consisted of 3
concurrent TCP flows and 3 concurrent UDP flows
(detailed characteristic in Table 5 and Table 6). All
TCP and UDP flows ended at simulation time of 118
seconds when the whole simulation ended. All UDP
flows had priority of 0 (best-effort).

ACNS system parameters introduced in section 2
were set according to Table 4. Network parameters
which were monitored during the simulations are
throughput (maximal, average), RTT (maximal,
average), amount of sent data and packet loss.

Table 3: TCP flows parameters.

hash sIP dIP sPo dPo

addTime lastTime comAge priority system

Table 4: ACNS system parameters.

 ࢎ࢚ ࢎ࢚ ࢇ࢜ ࢜ ો ࢚࢛ࢉ࣓ ࡸࢎ࢚ ࡸࢎ࢚

1,84 2,15 10 3 0,8 0,2 0,95 1,0

Figure 7: High level simulation topology overview.

Figure 8: Detailed simulation topology.

Table 5: TCP flows parameters.

Flow Variant Priority Time [s] From To

#1 CUBIC 0 0.1 - 118 N0 N5

#2 CUBIC 26 15.1 N0 N4

#3 CUBIC 46 30.1 N1 N3

Table 6: UDP flows parameters.

Flow Bit rate [Mb/s] Start [s] From To

#1 0.5 0.1 N0 N3

#2 0.6 20.1 N1 N4

#3 0.5 40.1 N2 N5

Comparison of achieved simulation results is
shown in the following tables:

 Table 7 – average and maximal throughput

 Table 8 – average and maximal RTT

 Table 9 – amount of sent data

 Table 10 – packet loss.

Table 7: Simulation results - throughput.

System

Throughput [Mb/s]

Average Maximal

#1 #2 #3 #1 #2 #3

1 - 0.8 0.4 0.2 2.7 2.1 1.8

2 ACNS 0.3 0.7 1 3 3 3

Table 8: Simulation results - RTT.

System

RTT [s]

Average Maximal

#1 #2 #3 #1 #2 #3

1 - 377 377 316 973 1230 335

2 ACNS 327 329 332 468 484 406

Table 9: Simulation results – sent data.

System
Amount of sent data [MB]

 #1 #2 #3 Total
1 - 11.78 6.15 2.89 20.82
2 ACNS 4.4 11.26 14.33 29.99

Table 10: Simulation results – packet loss.

System
Loss [packets]

 #1 #2 #3 Total
1 - 110 86 40 236
2 ACNS 0 2 0 2

For better illustration comparison of actual

A�Novel�Technique�for�TCP�based�Congestion�Control

41

throughput and RTT changing in time is shown in
the following figures. Figure 9 shows the changing
actual throughput of all 3 TCP flows without ACNS
system. Significant throughput changes at around
15th and 30th second are related to the start of new
TCP flows. The same reason is responsible for
significant throughput changes at around the 20th and
40th second where the next UDP flows started.
Figure 10 shows the actual throughput of all 3 TCP
flows with ACNS system active. Throughput
changes around 15th, 20th, 30th and 40th second are
related to the start of the new TCP and UDP flows.

Figure 9: TCP flows throughput (without ACNS).

Figure 10: TCP flows throughput (with ACNS).

Figure 11 shows how the actual RTT of all 3
TCP flows was changing during the simulation
without ACNS system. Using this picture we can
conclude that RTT was changing due to the actual
queue length. On the other hand Figure 12 shows the
change of RTT while the ACNS system was in use.
Once the ACNS was stabilized, the RTT decreased
significantly and for the rest of the simulation RTT

achieved lower values in comparison with
simulation where ACNS system wasn’t used.

Figure 11: TCP flows RTT (without ACNS).

Figure 12: TCP flows RTT (with ACNS).

Table 11: Network performance improvements.

Network parameter Improvement

Total average throughput + 44,5 %

Total average RTT - 7,1 %

Total data sent + 44,0 %

According to the simulations results, using
ACNS it’s possible to increase TCP flows
throughput (Figure 9 - without ACNS, Figure 10 –
with ACNS) by 44% which lead to increased
amount of sent data (44% increase). Using our new
approach TCP flows RTT can be decreased (Figure
11 - without ACNS, Figure 12 – with ACNS) by
7%. Network performance improvements are
summarized in Table 11. All these improvements
were achieved with nearly none losses.

DCNET�2013�-�International�Conference�on�Data�Communication�Networking

42

5 CONCLUSIONS

In this paper we have introduced an advanced
notification system for TCP congestion control
called ACNS. Our approach ACNS can be used in
combination with any existing of future TCP variant.
One can compare this approach with existing ECN
system however ECN system does not distinguish
between TCP flows and between certain phases of
congestion. Our approach enables prioritization of
TCP flows using their age and carried priority. As a
result, only specific TCP flows are penalized and not
in the same way.

The goal of ACNS is to avoid congestion by
means of providing more bandwidth to new flows
while penalizing old flows. Later on if congestion
occurs it uses TCP variant mechanism to eliminate
the congestion. Using ACNS significant
improvement of network throughput can be
achieved. Depending on the TCP flows prioritization
it is possible to achieve up to 44 % increase of
throughput and the amount of transferred data and
around 7 % RTT decrease with nearly none losses.
To sum it up, ACNS allows TCP performance
increase without the need to increase capacity of the
communication links.

ACKNOWLEDGEMENTS

The support by Slovak Science Grant Agency
(VEGA 1/0676/12 “Network architectures for
multimedia services delivery with QoS guarantee“)
is gratefully acknowledged.

REFERENCES

Information Sciences Institute, “Transmission Control
Protocol”, RFC 793, 1981.

Ha, Sangtae, et al. “CUBIC: A new TCP-Friendly High-
Speed TCP Variant”, ACM SIGOPS Operating System
Review, V. 42, 5, 2008.

Bateman, M., et al., “A comparison of TCP behaviour at
high speeds using ns-2 and Linux”. In Proceedings of
11th ACM CNS '08, 2008.

Mirza, M.; Sommers, J.; Barford, P.; "A Machine
Learning Approach to TCP Throughput Prediction,"
Networking, IEEE/ACM Transactions on, vol.18,
pp.1026-1039, Aug. 2010.

Karnik, A.; Kumar, A.; "Performance of TCP congestion
control with explicit rate feedback," Networking,
IEEE/ACM Transactions on, vol.13, pp. 108- 120,
2005.

Xiuchao, W., Mun, C.C., Ananda, A.L. and Ganjihal, C.,
“Sync-TCP: A new approach to high speed congestion
control”, In 17th IEEE International Conference on
Network Protocols, 2009. ICNP 2009.

Todorovic, M. and Lopez-Benitez, N., “Efficiency Study
of TCP Protocols in Infrastructured Wireless
Networks”, In proceedings of International conference
on Networking and Services, ICNS '06, 2006.

Welzl, M. “Network Congestion Control - Managing
Internet Traffic“, John Wiley & Sons, Ltd. 2005.
ISBN 978-0-470-02528-4.

Chao, H.J. and Guo, X. “Quality of Service Control in
High-Speed Networks“, John Wiley & Sons, Ltd.
2005. ISBN 0-471-00397-2.

Botta, A., Dainotti, A. and Pescape, A., “Multi-protocol
and multi-platform traffic generation and
measurement”, INFOCOM 2007 DEMO Session, May
2007.

Tsao, S., Lai, Y. and Lin, Y., “Taxonomy and Evaluation
of TCP-Friendly Congestion-Control Schemes on
Fairness, Aggressiveness, and Responsiveness”, In
journal IEEE Network, 2007.

Martin, J., Nilsson, A. and Rhee, I., “Delay-based
Congestion Avoidance for TCP”, IEEE/ACM
Transactions on Networking, June 2003.

Malagò, L.; Matteucci, M.; “Towards the geometry of
estimation of distribution algorithms based on the
exponential family”. In Proceedings of the 11th
workshop proceedings on Foundations of genetic
algorithms. New York, pp. 230-242, 2011.

Kwon, M.; Fahmy, S.; "TCP increase/decrease behaviour
with explicit congestion notification (ECN)," IEEE
International Conference on Communications, ICC
2002, vol.4, pp. 2335- 2340, 2002.

Cheng Jin, David X. Wei, and Steven H. Low, "FAST
TCP: Motivation, Architecture, Algorithm,
Performance", INFOCOM - Twenty-third Annual Joint
Conference of the IEEE Computer and
Communications Societies, pp.2490-2501, 2004.

Kuzmanovic, A. and Knightly, E. W., “TCP-LP: Low-
Priority Service via End-Point Congestion Control”,
IEEE/ACM Transactions on Networking, 2003.

A�Novel�Technique�for�TCP�based�Congestion�Control

43

