
LMM
A Common Component for Software License Management on Cloud

Shinsaku Kiyomoto1, Andre Rein2, Yuto Nakano1, Carsten Rudolph2 and Yutaka Miyake1
1KDDI R & D Laboratories Inc., Fujimino, Saitama, Japan

2Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

Keywords: Cloud Computing, Security, Software License Management, Digital Rights Management, Illegal Copy.

Abstract: On a cloud environment, the platform that runs a program is not fixed, and there is a possibility that a program
runs on several servers in a cloud environment. Transferability of the license information by a valid user should
be allowed, even though general requirements for license management have to be satisfied. In this paper,
we consider software license management models for cloud environments, and discuss security functions
for building secure license management schemes. We show four license management models and analyze
the security requirements for the models. Then, we design a common component referred to as the license
management module (LMM), and explain the security functions required for the LMM. Furthermore, we
discuss how to realize the security functions and evaluate their performance using a prototype implementation.

1 INTRODUCTION

1.1 Background

Platform-as-a-Service (PaaS) is the service model
of cloud computing, and it provides a program-
executable environment for users. PaaS facilitates de-
ployment of programs without the cost and complex-
ity of buying and managing the underlying hardware
and platform layers such as operating systems. How-
ever, some security risks of cloud computing services
have been identified. It is impossible for users to ver-
ify the trustworthiness of all cloud computing envi-
ronments, and there are concerns that operations in
cloud computing may be carried out in an untrust-
worthy environment. Furthermore, a malicious user
may be able to access the resources of other users,
due to an architecture whereby users share resources
on a cloud. The dynamic and fluid nature of the en-
vironments makes it difficult to maintain consistent
security and ensure that records can be reliably au-
dited. Thus, moving critical programs and sensitive
data such as license information to a public and shared
cloud computing environment raises major security
concerns (Popovic and Hocenski, 2010; Shaikh and
Haider, 2011; Kantarcioglu et al., 2011). In PaaS ser-
vices, the platform provider supplies a platform for
execution of user programs and users install or acti-
vate licensed programs on the platform. Users can ac-

cess the platform and programs from a user terminal
via the Internet. In this paper, we examine threats to
cloud computing and in particular threats to installed
licensed programs.

1.2 License Management on a Cloud

License checking using an activation code is a com-
mon function to protect software from being copied.
Generally, the license is issued to a user who has the
right to use the software, and the license allows the
software to be used on a PC or other devices. If the
user plans to use the software on two different en-
vironments, the user has to obtain two licenses for
the software or register both environments to a li-
cense manager. Ownership of the licenses should be
strictly managed and the transfer of the license from
the user to other users has to be prevented by using a
license management scheme. When a user executes
a licensed program, license information should be se-
curely stored and checked. On a cloud environment,
the platform that runs a program is not fixed, and
the platform is selected from cloud servers. There
is a high possibility that a program runs on several
servers in a cloud. Thus, transferability of the license
information by a valid user must be allowed, even
though general requirements for license management
have to be satisfied. Furthermore, as the cloud servers
are managed by a third party, some specific security

284 Kiyomoto S., Rein A., Nakano Y., Rudolph C. and Miyake Y..
LMM - A Common Component for Software License Management on Cloud.
DOI: 10.5220/0004504502840295
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 284-295
ISBN: 978-989-8565-73-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

requirements for cloud environments should also be
considered.

Currently, four possible approaches are presented
in ISO/IEC JTC1 SC7 WG21 as for ISO/IEC 19770
- Information Standard about Software Asset Man-
agement (SAM) (Bicket, 2011). These comprise the
sourcing approach, contractual approach, structured
approach, and mash-up approach. The sourcing ap-
proach provides free and open-source software, and
the contractual approach allows license management
to be delegated to cloud operators. The structured ap-
proach is based on the development and exploitation
of a common technological architecture for software
license management. The mash-up approach is based
on a mix of different tools and approaches. The struc-
tured approach is the most efficient approach. A con-
ceptual architecture for the technical mechanisms as-
sociated with asset management has been presented;
however, the actual design of the architecture is still
under consideration.

1.3 Issues Addressed in This Paper

PaaS service has a separation mechanism for each
user environment to protect user resources. How-
ever, we should consider incorrect configuration of
the hypervisor and some bugs in the separation mech-
anism. Even if the hypervisors are configured cor-
rectly, the risk of data intermingling or loss is still
present (Courtney, 2012). Zhanget al. demonstrated
an attack (Zhang et al., 2012) whereby a program
on a virtual machine can steal a private key used by
another virtual machine on the same server. We as-
sume that a malicious user may access the resources
of other users, and we also have to consider the threats
posed by a malicious platform provider. In license
management, we have to consider illegal actions by a
licensed user who uses a client terminal and the cloud,
in addition to malicious users and malicious platform
providers on the cloud. The platform provider hon-
estly executes user requests and cannot avoid per-
forming any operations related to the programs. How-
ever, the platform provider may try to use the user’s
program maliciously or to obtain license information
from physical memory or data storage. This model
is a reasonable model where we consider the system
manager of the platform as an attacker. It is a ba-
sic requirement for a software license management
scheme to protect the software from illegal use and
illegal copying by malicious users.

Thus, we should consider the following threats to
secure cloud computing.

• Malicious users or malicious platform providers
may access a program and execute it on the cloud

platform without valid license information.

• Malicious users or malicious platform providers
may steal license information from data stored on
the cloud and/or the user terminal.

• External attackers try to steal license information
from communication data, or alter communica-
tion data to execute a program on the cloud.

• Malicious users or malicious platform providers
may copy a program and license information in
order to use the program in a way that violates the
scope permitted by the license.

Under the above threats model, a license manage-
ment architecture for cloud environments should be
considered.

1.4 Contribution of this Paper

To overcome the threats, we introduce a scheme us-
ing a License Management Module (LMM) which is
capable of reducing the theft or misuse of licenses in
general. Due to the application of memory protec-
tion schemes and other cryptographic methods, we
will show how to significantly reduce threats for li-
censed programs in PaaS-environments. We present
four license management models and analyze the se-
curity requirements for the models. Then, we design
a common component LMM, and explain the secu-
rity functions required for the LMM. Furthermore, we
discuss how the security functions can be realized.

The rest of the paper organized as follows; Section
2 presents license management models, and security
analyses. The design of the license management mod-
ule and security functions is described in section 3.
Evaluation results including security analysis and per-
formance evaluation are presented in section 4, and
existing research related to this paper is outlined in
section 5. Finally, we conclude this paper in section
6.

2 LICENSE MANAGEMENT
MODEL

In this section, we consider license management mod-
els for cloud environments. We assume a simple li-
cense management model in which a user license is
issued for each application program of the user and
only one program execution is allowed by each li-
cense information. A user cannot execute the pro-
gram on two or more environments simultaneously,
even though the user has valid license information.
Frequent license checking is required, because a ma-
licious user may move license information to another

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

285

License Management

Module

Application

Client Terminal

Tamper-Resistant Module

Cloud-Based Scheme A

User Management Module

License Management

Server

Cloud Server

License Management

Module

Application

Client Terminal

Tamper-Resistant Module

Cloud-Based Scheme B

User Management Module

License Management

Server

Cloud Server

License Management

Module

Tamper-Resistant Module

Delegation

Application

Client Terminal

Cloud-Based Scheme C

User Management Module

License Management

Server

Cloud Server
Cloud Server

Tamper-Resistant Module

License Management

Module

Client Terminal

Cloud-Based Scheme D

User Management Module

License Management

Server

Cloud Server

Tamper-Resistant Module

License Management

Module

Application

Cloud Server

License Management

Module

Tamper-Resistant Module
Delegation

Figure 1: License Management Models.

environment after the license checking. First, we in-
troduce three components for license management.
The license management models are then built using
these three components. Next, we present four license
management models and discuss the advantages and
disadvantages of the four models. Afterwards, we an-
alyze security threats to the four license management
models.

2.1 Components for License
Management

License management is an important function for pro-
tecting software and contents against their illegal use.
Generally, a user registers information to a software
provider and receives in return the license informa-
tion. We model license management schemes using
three basic components as follows:

• User Management Module.The user management
module manages the registration information of
users. Users access the user management mod-
ule to obtain license information before they start
using the software. The user management mod-
ule authenticates users, registers user information,
and provides license information to users. We do
not discuss the design of the user management
module in this paper.

• License Management Module.The license man-
agement module (LMM) holds the license of a

user. The LMM provides license information,
when an application program requests the infor-
mation from the LMM. The main issue of this pa-
per is to examine the design of the license man-
agement module.

• Application Program.The application program is
a program that a user uses with the license in-
formation. The application program is not exe-
cutable without license information. The program
accesses the LMM to obtain license information
as soon as the program is executed. The appli-
cation program may include digital contents such
as musics and videos. In such cases, the appli-
cation program is a viewer of the digital contents
and a license management scheme for the applica-
tion program is a part of a digital rights manage-
ment (DRM) system for the contents. We discuss
a general license management framework for ap-
plication programs, and do not consider specific
requirements for each program.

2.2 Cloud-based License Management
Models

Four models are considered for license management
on a cloud as shown in Figure 1. Models are separated
based on the conditions under which a license man-
agement module (LMM) is implemented. In model
A, the LMM is implemented on a user terminal, and

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

286

an application program communicates with the user
terminal to check license information. Model B im-
plements the LMM on both the cloud server and user
terminal, and the license information is delegated to
the LMM on the cloud. The LMMs in model C and
model D are implemented on another cloud server that
manages the license information.

We analyze the advantages and disadvantages of
the four models as follows:

• Model A. Model A is an online scheme by which
the license information is managed by the LMM
on the user terminal, and a program running on
the cloud accesses the LMM via a public network
when the program is executed.
Advantage.An advantage of model A is that no
license information is stored in the cloud.
Disadvantage. Frequent communication is re-
quired between the cloud server and the user ter-
minal, where the license information is verified.

• Model B. Two LMMs communicate before the
execution of a program in order to transfer license
information. The LMM has to manage the dele-
gated license information securely on the cloud.
Advantage.No communication with another en-
tity is required for license checking, even though
communication for delegation of license informa-
tion is needed.
Disadvantage.The LMM and license information
is on the cloud. We have to consider attacks on
the cloud.

• Model C. This model is an extension of model
A. The LMM is executed on another cloud server,
and the LMM and a program communicate via a
public network, when the program is executed.
Advantage.No communication with the user ter-
minal is required, although communication with
another cloud is needed. We do not consider
threats to the user terminal during license check-
ing.
Disadvantage. The cloud that holds the LMM
should be trusted, otherwise we have to consider
a protection mechanism for the LMM.

• Model D. This model is a combination of model
B and model C. The LMM is executed on a cloud
server, and another LMM on another cloud server
receives delegated license information from the
LMM that manages license information when the
program is executed.
Advantage.No communication with the user ter-
minal is required, even though communication for
delegation of license information is needed. We
do not consider threats to the user terminal.
Disadvantage. The cloud that holds the LMM

should be trusted, otherwise we have to consider
a protection mechanism for the LMM on both
servers.

Sufficiency of License Management Models.We con-
sidered several license management models based on
the LMM and selected the above four models. The
models are separated by the location of the initial stor-
age of the license information. Feasible options for
the location are on the cloud or on the user terminal.
As a consequence, there are models where the home
LMM is on the user terminal and models where the
home LMM is on the cloud server. The license infor-
mation has to be stored in a unique LMM; however, it
has to be possible to install and execute a program on
several cloud servers. Thus, we cannot directly store
license information in the cloud on which the program
is executed, before the execution of the program. We
also consider on-line or off-line license confirmation
schemes for each model. We therefore examine the
four license management models for a cloud environ-
ment. It should be noted that one can assume that the
cloud server, that manages user LMMs, is trustwor-
thy. In this case, it would be a simple license manage-
ment model under a trusted license server, but this is
beyond the scope of this paper.

2.3 Threats to License Management
Models

In this section, we analyze possible threats to four li-
cense management models based on the threats dis-
cussed in 1.3. We have to consider three malicious
entities: malicious user, malicious operator, and ex-
ternal attacker. The execution of a program without
license information must be considered in all mod-
els. Illegal use of license information is another threat
which may be executed by a malicious user and/or a
malicious operator. All models except model A are
vulnerable to this threats. These malicious entities
may access the LMM and use the license informa-
tion stored in the LMM. Model A does not consider
attacks on the LMM on the cloud, even though at-
tacks on communication between a user terminal and
cloud server have to be considered. Model C does not
have an LMM on the user terminal, and only consid-
ers attacks on the cloud and communication between
cloud servers. Only local access to the LMM is used
in model B, but communication for license delegation
should be protected in this model. Threats to model D
are similar to those for model C; so we assume threats
to cloud servers. A summary of the analysis is shown
in Table 1. The ”user” includes both attackers as a
traitor and other users and ”operator” is a curious op-
erator. Online schemes (such as model A) need not

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

287

Table 1: Threats to Each License Management Model.

Threats Adversary Target Model A Model B Model C Model D
Execution without User, Operator Program X X X X

License Info. on Cloud
Illegal Use of License Info. User, Operator LMM X X X

on Cloud
Theft of License Info. in Terminal User LMM X X

Cloud User, Operator LMM X X X

Attack on Communication User, Operator Communication X X X X

Ext. Attacker Data
Illegal copy of License Terminal User LMM X X

Info. in Cloud User, Operator LMM X X X

be concerned about attacks on the LMM in a cloud;
however, the drawback of the online schemes is that
frequent communication is required for license confir-
mation, as discussed in 2.2. Offline schemes such as
model B do not require communication while license
confirmation is requested by the application program;
however, we have to incorporate a protection mecha-
nism for locally stored license information.

3 LICENSE MANAGEMENT
MODULE

In this section, we design a common component for
the license management module (LMM). We also
present security functions for the license management
models. In this paper, a cloud service provider is un-
der a setting:honest but curiousas discussed in 1.3.
Thus, security and trust of the cloud environment are
out of the scope of this paper.

3.1 Design of License Management
Module

The License Management Module (LMM) is a key
component for license management. We determined
the requirements for the LMM according to the
threats analysis in 2.3. The requirements for the LMM
are summarized as follows:

• The LMM enables execution of the application
program to be controlled according to license in-
formation.

• The LMM securely stores and manages license in-
formation.

• The LMM can securely transfer license informa-
tion to other LMMs.

• Illegal copying of license information and the
LMM has to be prevented.

We design the LMM based on the above require-
ments. We assume that the LMM is implemented on

all cloud servers and client terminals. Figure 2 shows
the design of the LMM. The module consists of five
security functions: secure element, memory protec-
tion, application program binding, local binding, and
delegation mechanism. The secure element stores se-
cret information such as license information. The
memory protection function protects data on physi-
cal memory against attacks such as a memory dump.
The license information is loaded from the secure
storage and stored in a physical memory using the
memory protection function. The application bind-
ing function uses license information on the physi-
cal memory through the memory protection function
and supports license confirmation with an application
program. The application program does not com-
plete any operation without help from the application
binding function. That is, without a valid pair of the
application program and license information, an at-
tacker cannot execute the application program. The
local binding function is used to protect the LMM
against illegal copying. The function obtains local in-
formation that can identify an environment due to its
uniqueness, and stores it in the secure element. The
function also frequently obtains local information and
compares it with the stored local information. If the
information does not match, the LMM stops. The del-
egation mechanism is incorporated into model B and
model D. The mechanism operates a delegation pro-
tocol between LMMs in order to transfer license in-
formation. Details of the functions are explained in
the later sections. The software execution procedure
is as follows:

1. When the program starts to execute, the program
first accesses the LMM.

2. The LMM validates the identification information
of a local environment using the local binding
function.

3. If the identification information matches the in-
formation stored in the secure element, the LMM
obtains the license information from the secure el-
ement, and stores it in the physical memory using
the memory protection function.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

288

Secure Element

License

Information

Physical Memory

Memory Protection

Delegation Mechanism

(for Model B and D)

Cloud Environments

Application Program Binding

Application Program

Local

Binding

Local

Info.

LMM

Figure 2: License Management Module.

4. The program frequently accesses the LMM to
check license information, and the LMM provides
the result of license check according to the appli-
cation binding function.

3.2 Secure Element

The secure element is a form of secure storage that
holds the license information and related secret val-
ues. The secure element is a part of the LMM, and
can only be accessed by the LMM. The secure ele-
ment can be implemented on both software and hard-
ware. A tamper-resistant module is used for hardware
implementation, and an encryption scheme is used for
constructing a software-implemented secure element.
In software implementations, a secret key for the en-
cryption scheme needs to be securely embedded in
program code of the LMM using software obfusca-
tion. In the software implementation, encryption is
not sufficient to protect license information, and how
to restrict copying of the license information should
also be considered. A status is defined for each li-
cense information1 to avoiddouble useof the license
file, and it should be protected. In consequence, an
encrypted file including the status information has to
be hidden from an operating system or it should be
made difficult to find the files. Once the secret key
is revealed, the LMM has to be replaced by a new
one; the secret key should be embedded in the LMM
securely. The hardware implementation is more se-
cure than the software implementation, but the soft-
ware implementation is widely applicable to several
cloud environments.

Encryption Key Generation. Each license informa-
tion should be encrypted by an encryption key de-

1We define six types of status: normal, read, delegating,
delegated, delegated-read, and removed. Detailed explana-
tions for the status types are shown in later sections

rived from both a secret key and the user secret in
order to avoid illegal use of license information. The
user secret (for example a password) is provided by
the owner of the license information, and it is re-
quested when license information is used or dele-
gated. When license information is stored in the se-
cure element, the secure element request entry to the
user secret, and derives the encryption keyEKi =
h(secret key||user secret), wherex||y denotes a con-
catenation of datax and datay. Note that the function
h(x) is a hash value computed by a hash functionh.
For a decryption of the license information, the se-
cure element requests entry to theuser secretagain,
and computes the encryption key in the same manner.

3.3 Memory Protection

The license information can be read from the secure
element and extracted to physical memory, where its
status is ”normal” or ”delegated”. The status of the li-
cense information is changed to ”read” or ”delegated-
read” to avoiddouble useof the license information,
where the license information is read from the secure
element. We assume that an adversary including a
cloud operator cannot dump and analyze the whole
physical memory, but may dump and analyze a part
of the physical memory. If an adversary dumps a
part of the physical memory, the license information
might be revealed. However, a huge computational
cost is required when we dynamically encrypt/decrypt
all data on the physical memory, during the program
execution. Thus, a lightweight memory protection
mechanism is used for the LMM. We design the mem-
ory protection function based on a memory protection
scheme (Nakano et al., 2012). Figure 3 shows the
procedure of the mechanism. The license information
is divided into small peaces and mixed with random
data. By the random data addition, the lengthld of
data is extended tokmld, wherekm is a security param-
eter that is selected according to security and perfor-
mance requirements. The memory protection mech-
anism mediates memory accesses to memory areaL

and generates fake accesses. It hides information on
which memory area is accessed. The scheme consid-
ers the bufferM being implemented within the se-
cure element or secure memory area. The tableH is
also stored within this boundary. If we do not assume
such a secure memory area, the bufferM with the size
of m and history tableH with the size oflh are kept
in the unsecured memory area as withL, and they
should be encrypted. In this case, access toM (and
H) is made by reading and writing every data block
in the buffers (which requires decryption and encryp-
tion of data). Thus, to find out whether ‘a’ is in M ,

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

289

we read/write all values; when replacing data blocks
in M , we again read/write all values. The security
provided is the same; but the computation overhead is
obviously increased. It is expected that a huge com-
putational cost does not requires to compute it, due
to the size ofM . It is dependent on buffer sizeM
and H , but these sizes are sufficiently smaller than
the size of the whole memory.

Data including both protected data and randomly
generated redundant data are loaded into memory. Af-
ter loading data,mdata blocks are copied intoM ; the
table H starts empty. Before the program starts to
run, the scheme can operate by accessing a number of
dummy data blocks to populate the history buffer. On
the first access to a data block ‘a’ (either aread(a) or
write(a,x)), the scheme searches for ‘a’ in M and
accessesL twice: if ‘a’ is in M , the scheme replaces
two random elements (not ‘a’) from M with two ran-
dom dummyelements fromL and we access ‘a’; if
‘a’ is not in M , two random elements fromM are re-
placed by ‘a’ and one randomdummyelement fromL

(and ‘a’ is accessed). In both cases, the correspond-
ing addresses of blocks being kicked out fromM are
written in H . In subsequent calls, the scheme pro-
ceeds as follows:

1. If ‘ a’ is in M , we replace two random elements
(not ‘a’) from M with a random element fromL
and a random element fromL which had already
been accessed (as recorded in thehistorybuffer),
and we access ‘a’.

2. If ‘ a’ is not in M , and its address is in the history
table, the scheme replaces two random elements
from M with a random element fromL and ‘a’
(as recorded in thehistory buffer). Note thatH
holds only addresses and data are stored inL.

3. If ‘ a’ is not in M , and its address is not in the
history table either, the scheme replaces two ran-
dom elements fromM with ‘a’ and a random ele-
ment fromL which had already been accessed (as
recorded in thehistorybuffer).

Every time the data blocks are kicked out fromM

to L, data blocks are written inL taking their orig-
inal position (as described byE), and the addresses
of those blocks are registered in the history tableH .
As the program continues to access data blocks, the
table may eventually become full. When this oc-
curs, at each access we select at randomℓh elements
from among theℓh+2 elements2. The memory is re-
shuffled after a certain period of time. If stronger se-
curity is required, data should be encrypted, when the
data are uploaded into memory, although additional
computational cost is required.

2The current history elements and two new ones

3.4 Application Binding

The application binding function enables software
protection in a way such that the program cannot run
without license information. The program frequently
requires the license information to execute the whole
operation. For that requirement, we develop a appli-
cation binding scheme based on Fukushimaet al.’s
software protection scheme (Fukushima et al., 2012)
and apply it to our license checking. The scheme
transforms a target program into a protected appli-
cation program and an its license information that is
used by the application program binding function.

The application program is distributed to cloud en-
vironments and the user management module issues
the license information to users. The protected pro-
gram is executed on the platform and only handles
encoded data according to Fukushima’s scheme. The
encoded data are data sets transformed by a secret en-
coding rule in the license information. After receiving
the encoded output, the application binding function
checks the validity of the output. If it is valid, the
function returns the decoded result to the protected
program. The application program binding function
stores all the encoding rulesE1, E2, . . . ,Em decoding
rule D1, and non-trivial relationR1. The non-trivial
relation checks the validity of the response from the
protected program, and the decoding rule decodes the
execution result3.

The function checks the validity of the response
in order to eliminate modified responses from an at-
tacker. Letvi be a variable in the program. The func-
tion calculates the value ofR1(v1,v2, . . . ,vm) from the
response. IfR1(v1,v2, . . . ,vm) = 0 holds, the func-
tion decides that the response is valid. Otherwise,
it decides that the query is modified. The function
decodes the value ofx1 using decoding ruleD1, i.e.,
x1 = D1(v1,v2, . . . ,vm), if the response from the pro-
tected program is valid.

Non-trivial Relations. An m× n Boolean matrixA
with rankn and anm-dimensional vectorb is selected
as non-trivial relations for license information. Each
element of the matrix must be 0 or 1, and each ele-
ment of the vector must be anl -bit constant. A rela-
tional equation using matrixA, vectorb, and rotation
amountss1, s2, . . . ,sn, t1, t2, . . . , tm is as follows:

y1 ≪ t1
y2 ≪ t2

...
ym ≪ tm

= A

x1 ≪ s1
x2 ≪ s2

...
xn ≪ sn

⊕b.

3There is no special reason to selectR1 for checking. We
can use other non-trivial relationsR2, R3, . . . ,Rm−n instead
of R1.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

290

The encoding rules(E1,E2, . . . ,Em) are ob-
tained by solving this equation for encoded vari-
ables y1, y2, . . . , ym: y1 = E1(x1,x2, . . . ,xn),
y2 = E2(x1,x2, . . . ,xn), . . .ym = Em(x1,x2, . . . ,xn).
Then, we solve the above equation for target vari-
ables x1, x2, . . . , xn. We have decoding rules
(D1,D2, . . . ,Dn) such as: x1 = D1(y1,y2, . . . ,ym),
x2 = D2(y1,y2, . . . ,ym), . . . ,xn = Dn(y1,y2, . . . ,ym).
n out of m encoded rules are used to find the de-
coding rules. Non-trivial relations(R1,R2, . . . ,Rm−n)
such as:R1(y1,y2, . . . ,ym) = 0, R2(y1,y2, . . . ,ym) = 0,
. . . , Rm−n(y1,y2, . . . ,ym) = 0, are obtained by re-
placing target variablesxi with Di(y1,y2, . . . ,ym) in
the unusedm−n rules. The LMM stores all the de-
coding rules for managing application programs and
sends decoded results to a valid application program.

3.5 Local Binding

A local binding mechanism is a security function to
protect LMMs from illegal copying. The local bind-
ing mechanism is built into the LMM, and verifies the
identification information of the local environment
that the LMM is executed on. The procedure of lo-
cal binding is as follows;

1. As an initial setting, the LMM obtains identifica-
tion information from the local environment and
computes a hash value for the information using a
hash function. The LMM securely stores the hash
value in the secure element.

2. When license information is requested, the LMM
obtains identification information and computes
its hash value. Then, the LMM compares the com-
puted value with the hash value stored in the se-
cure element. If the hash values are not identical,
the LMM terminates the provision of license in-
formation.

If an adversary copies the LMM to his/her own
device, the LMM does not provide the license in-
formation due to inconsistencies in the identifi-
cation information generated from local environ-
ments. We use another method for local bind-
ing when we cannot use a secure element to store
the identification information. In that case, we
modify the encryption key generation procedure
in 3.2. The key generation function is modified
as EKi = h(secret key||user secret||identi f ication
in f ormation). If the identification information is not
valid, the correct key is not obtained.

3.6 Delegation Protocol

In model B and model D, license information delega-

tion between LMMs is required. The license delega-
tion needs a secure communication channel between
LMMs, and the channel can be constructed using
an authenticated-key exchange protocol. A public-
private key pair and a public key certificate are se-
curely stored in the LMM. An LMM can verify the
public key certificate and generate a session key from
its own private key, a public key of the other entity,
and random values that have been shared in the au-
thenticated key exchange protocol. The status of li-
cense information should be managed in four stages:
normal, read, delegating and removed. We also use
an additional status ”delegated” for delegated license
information. The procedure of license delegation is as
follows;

1. An LMM (LMM-1) obtains license information
from the secure element. The status of the license
information is changed from ”normal” to ”read”.

2. LMM-1 executes an authenticated key exchange
protocol with another LMM (LMM-2) that is the
target to delegate the license information and con-
struct a secure channel between the LMMs.

3. LMM-1 transfers the license information to
LMM-2 via the secure channel, and the status
is changed to ”delegating”. Then the status is
changed to ”removed” when the transmission is
finished. The session key that LMM-1 holds is
deleted.

4. LMM-2 stores it in its secure element. The label
of the license information is ”delegated”. The ses-
sion key that LMM-2 holds is deleted.

5. LMM-2 provides ”delegated” license information
for an application program during execution of the
program.

6. After execution of the application program,
LMM-2 computes a hash value of the ”delegated”
license information, and changes the status from
”delegated” to ”removed”.

7. LMM-2 executes the authenticated key exchange
protocol with LMM-1; then, LMM-2 sends a con-
firmation with the hash value of the license infor-
mation to LMM-1 via a secure channel. LMM-2
removes the hash value.

8. LMM-1 checks the hash value and then LMM-1
changes the status of the license information from
”removed” to ”normal”. LMM-2 removes the li-
cense information.

Note that the license information can be used
where the status is ”normal” or ”delegated”, and it
can be delegated only when the status is ”normal”.

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

291

Table 2: Evaluation Results.

Function PC Cloud
Read License 43 ms 42 ms
Check License 37 ms 37 ms
Check Local Binding 36 ms 36 ms
Delegate License 83 ms 156 ms
(except AKE)

The status is changed to ”delegated-read” when dele-
gated license information is read from the secure el-
ement. We use an authenticated key exchange pro-
tocol based on Diffie-Hellman key agreement (Diffie
and Hellman, 1976) for sharing a session key such as
the ephemeral DH with RSA certificates mode (DHE-
RSA) in TLS (Dierks and Rescorla, 2008). The trust-
worthiness of LMMs is confirmed based on their pub-
lic key certificates in the protocol.

4 EVALUATION

In this section, we present evaluation results for the
performance of the LMM and a security analysis of
our license management models.

4.1 Performance Evaluation

We implemented a prototype system of the LMM on
a PC4 and a cloud environment5, and evaluated the
transaction time of each function. The total code
size of the LMM was 314 KByte. Table 2 shows the
evaluation results. All functions includes transaction
time for using the memory protection. The transac-
tion time of license delegation except the AKE pro-
tocol was evaluated on the PC and the Cloud. The
total transaction time of license delegation depends
on the selection of the AKE protocol. Each transac-
tion time is sufficiently small. The transaction time of
the memory protection linearly increases according to
increase of the parameterkm. We evaluated the trans-
action time wherekm = 128 and the overhead of the
memory protection is negligibly small; thus, we can
apply the LMM to practical services.

4.2 Security Analysis

When we apply the LMM to the four license man-
agement models, we are able to protect license infor-
mation against the threats summarized in section 2.3,
and prevent illegal use of application programs. In
this subsection, we analyze the security of the license
management in relation to the threats.

4Corei7-3720QM 2.6GHz, 8Gbyte Mem., CentOS 6.3
5Amazon EC2, Xeon 2.66GHz

Execution without License Information. The ap-
plication binding function prevents program execu-
tion without license information because a key code
is stored and executed on the LMM. As described, the
license information is a vital part within the software
protection scheme, as it contains information that
needs to be present to successfully apply the encod-
ing / decoding procedure within the software protec-
tion scheme. This means that the computational com-
plexity of an attack on the software protection scheme
without valid license information isΩ(exp(m log l))
(Fukushima et al., 2012), wherem is the number of
variables involved in the software protection mecha-
nism andl is the length of the variables.
Illegal Use of License Information. The license in-
formation is encrypted by an encryption key that is
derived from a secret key of an LMM and user secret
of the license owner. For a malicious user or oper-
ator this means that both the secret key and the user
password need to be obtained before the license infor-
mation can be used. As described, the user secret is
never used directly in the encryption process. Instead
a secure hash function is used to calculate a hash value
from the user secret. By using a collision resistant se-
cure hash function like SHA-256 or SHA-512, attacks
on the user secret can nearly be eliminated. The only
possibility would be to intercept the secret when it is
entered by the user at the terminal. This has to be
prevented by additional security mechanisms which
are not considered in this paper. Consequently, a ma-
licious user or malicious operator cannot use the li-
cense information without obtaining the user secret.
Theft of License Information. For this threat we
have to distinguish between a running and a not run-
ning application. In particular, this means that either
the license information is only available encrypted
within the secure element (this is valid as long as the
application is not executed) or the license information
is already loaded into system memory (this is valid
for an already executed application). So, as long as
the application is not executed, we assume that the
theft of license information additionally involves the
theft of the user secret and access to the secret key.
On runtime, the license information is already loaded
into memory, and it is difficult for an attacker to de-
termine correct data on the memory, even if the at-
tacker can obtainδ access patterns to the physical
memory. Due to (Nakano et al., 2012), the proba-
bility ε that the attacker finds the correct memory ac-
cess isε ≤ pM

(m−2)2
+ (1−pM)pH

(m−2)2
+ (1−pM)(1−pH)

2(m−2) , where

pM ≥ (m−2
m)δ, pH ≥ (lh

lh+2)
δ.

Attack on Communication. The communication
channel between two LMMs must be protected us-
ing the secure delegation protocol. We assume that

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

292

a standardized protocol like TLS is used to generate
a secure session key during the handshake. As de-
scribed, the secure delegation protocol also includes
digital signatures, which are used to authenticate the
systems involved. This means that we assume that
an external attacker is not able to modify the trans-
ferred data undetected, and thus may misuse the li-
cense information. The only possibility for an exter-
nal attacker is to eavesdrop the encrypted communica-
tion. Assuming here that standardized encryption al-
gorithms like AES-128 are used, the security depends
only on the confidentiality of the secret session key.
Illegal Copy of License Information. The local
binding mechanism provides an LLM with protection
against illegal copying by an attacker. As described,
the security here relies on the application of a secure
hash function on local environment information. As
any access to the license information also involves
the verification of that particular information, it is not
possible to copy the LLM and use the license informa-
tion on a system different from the original system. In
the models, the license information is transferred se-
curely from one LMM to another LMM.

5 RELATED WORK

In this section, we briefly introduce existing work re-
lated to software license management on cloud envi-
ronments.
License Management. License checking using an
activation code is a common function of copy protec-
tion software. Software obfuscation schemes trans-
form the original program into an obfuscated pro-
gram that is difficult to analyze, while preserving its
function. Some of the obfuscation schemes focus on
obscuring the data structures in a program (Collberg
et al., 1997; Shokurov, 2004), and some focus on ob-
scuring the control flow (Hohl, 1998; Wang et al.,
2001; Chow et al., 2001). Software watermarking
schemes embed auxiliary information for identifica-
tion into a program (Monden et al., 2000; Collberg
and Thomborson, 2002). The drawback of water-
marking is that it cannot prevent or detect unautho-
rized copying in real time. Online schemes use an
external server to check the user license (Microsoft
Corporation, 2003; Dvir et al., 2005) or to execute es-
sential parts of a program (Zhao et al., 2009; Mumtaz
et al., 2005). The drawbacks of these schemes are that
the program manufacturer must deploy and manage a
server, and program execution requires network ac-
cess between the server and user terminal. Hardware-
based schemes execute a whole program on a special
hardware device, such as a secure processor (Gilmont

et al., 1998; Suh et al., 2003; Shi et al., 2006). These
schemes are expensive solutions since tamper-proof,
high-performance hardware is needed to execute an
entire program in a protected domain on the hardware.
Combined hardware and software schemes reduce the
deployment cost of hardware-based schemes. A pro-
gram is executed on an unprotected device and only
the important functions are executed on resource-
constrained hardware. Atallah and Li (Atallah and
Li, 2003) proposed a license management scheme for
smart cards. In this scheme, the program is unpro-
tected on the device. Mana and Pimentel (Mana and
Pimentel, 2001) and Zhang and Gupta (Zhang and
Gupta, 2003) presented schemes where only the es-
sential parts of the program are executed on secure
hardware. Their schemes require the development of
distinct functions on each piece of hardware. Ander-
son (Anderson, 2008) studied the theoretical aspects
of the combined schemes based on complexity the-
ory. A program can execute securely in conjunction
with a partnering oracle on a secure device. The or-
acle collaborates with any program by changing the
parameters, since the function of the oracle is com-
mon to all programs. Anderson proved that Turing
machines are secure under the assumption that a se-
cure device can be used. Fukushima et al. (Fukushima
et al., 2012) proposed a practical software protection
scheme that transforms a general program into a pro-
tected program. The protected program handles en-
coded data on an unprotected device; then, the TPM
decodes the execution result. Oblivious RAM is the
traditional solution for memory access pattern pro-
tection. It was first proposed by Goldreich (Goldre-
ich, 1987), and later extended by Goldreich and Os-
trovsky (Goldreich and Ostrovsky, 1996). Oblivious
RAM constructions remain too expensive to be imple-
mented on embedded processors. In (Zhuang et al.,
2004), Zhuanget al. proposed a practical, hardware-
assisted scheme for embedded processors, with low
computational overhead.
License Management on Cloud. Two general mod-
els have been developed in the European projects
BEinGRID and SmartLM for managing software li-
censes in distributed environments (Li et al., 2008).
The SmartLM project (The SmartLM Project, 2013)
has addressed the licensing problem by working on
a framework. The SmartLM project proposed a
model that makes licenses mobile objects. The main
approach of the SmartLM is to provide platform-
independent access and treat software licenses as ser-
vices. In the model, a license management service
is used as a central service for license administra-
tion, license storage and scheduling as well as li-
cense information distribution and usage record cre-

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

293

ation. The model is similar to the cloud-based scheme
(Model C) in our paper, and it can be used for li-
cense management on the cloud, even though the li-
cense management server needs to be a trusted lo-
cal server. ElasticLM (elasticLM, 2010) is a license
management scheme based on a contribution from the
SmartLM project, and it is a novel technology for
creating and managing software licenses designed for
distributed computing environments like grids, clouds
or service-oriented architectures (SOAs). The Bein-
GRID project provides a license tunneling model for
FlexLM-based products (Simmendinger et al., 2008;
The BEinGRID Project, 2009). Our LMM will be
applicable to their architectures. GenLM (Dalheimer
and Pfreundt, 2009) is a license management frame-
work that allows software venders to manage their li-
cense usage in a distributed environment. The key
idea of the framework is to build an on-demand li-
cense for a given job. Raekowet al. presented a li-
cense management architecture (Raekow et al., 2010)
that allows the authentication of a job via a trusted
proxy server. The architecture enables pay-per-use
license management that can be deployed together
with an on-demand computing scenario. Houet al.
designed and implemented a software license man-
agement scheme (Hou et al., 2007) for a campus
computational grid environment; the main approaches
are automatic license scheduling based on application
queries, dynamic and license monitoring. Goelet al.
presented a short paper (Goel and Dua, 2012) about a
framework for a license management system between
the cloud user, cloud vender, and cloud provider. All
architectures/frameworks are assumed to be forms of
online license management; thus, offline license man-
agement such as cloud-based scheme (B) and (D) in
this paper have not been considered.

6 CONCLUSIONS

In this paper, we considered license management
models for cloud environments and designed a license
management module (LMM) for the models. We also
considered security functions in the LMM. Evalua-
tion results showed that the performance of the LMM
is sufficiently feasible, and the LMM is applicable
to license management on clouds. We will consider
a license management mechanism for more complex
licenses such as group licenses and hierarchical li-
censes in our future research.

ACKNOWLEDGEMENTS

A part of this work was supported by the Japanese
Ministry of Internal Affairs and Communications
funded project, ”Study of Program Protection Mecha-
nism for Open Platform Architectures (PROPROM).”

REFERENCES

Anderson, W. E. (2008). On the secure obfuscation of
deterministic finite automata. InCryptology ePrint
Archive, 2008/148.

Atallah, M. J. and Li, J. (2003). Enhanced smart-card based
license management. InProc. of IEEE International
Conference on E-Commerce (CEC2003).

Bicket, D. (2011). Cloud computing and license manage-
ment. ISS-N004-v3.2.

Chow, S., Gu, Y., Johnson, H., and Zakharov, V. A. (2001).
An approach to the obfuscation of control-flow of se-
quential computer programs. InProc. of 4th Informa-
tion Security Conference (ISC2001), Lecture Notes in
Computer Science 2200, pages 144–155.

Collberg, C., Thomborson, C., and Low, D. (1997). A tax-
onomy of obfuscating transformations. Technical Re-
port 148, Computer Science, University of Auckland.

Collberg, C. S. and Thomborson, C. (2002). Watermarking,
tamper-proofing, and obfuscation — tools for soft-
ware protection.IEEE Trans. on Software Engineer-
ing, 28(8):735–746.

Courtney, C. (2012). Cloud computing security risks ? hy-
pervisor and multi-tenancy.Cloud Security.

Dalheimer, M. and Pfreundt, F.-J. (2009). GenLM: license
management for grid and cloud computing environ-
ments. InProc. of 9th ACM/IEEE International Sym-
posium on Cluster Computing and the Grid (CCGRID
’09), pages 132 –139.

Dierks, T. and Rescorla, E. (2008). The transport layer secu-
rity (TLS) protocol version 1.2.Internet Engineering
Task Force (IETF), RFC5246.

Diffie, W. and Hellman, M. (1976). New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644 – 654.

Dvir, O., Herlihy, M., and Shavit, N. N. (2005). Virtual
leashing: Internet-based software piracy protection. In
Proc. of 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS2005).

elasticLM (2010). elasticLM - License as a Service (LaaS).
The Fraunhofer Institute for Algorithms and Scientific
Computing SCAI.

Fukushima, K., Kiyomoto, S., and Miyake, Y. (2012). Soft-
ware protection combined with tamper-proof device.
IEICE Trans. on Fundamentals, E95-A, No.1:213–
222.

Gilmont, T., Legat, J.-D., and Quisquater, J.-J. (1998).
An architecture of security management unit for safe
hosting of multiple agents. InProc. of the Interna-
tional Workshop on Intelligent Communications and
Multimedia Terminals.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

294

Goel, U. and Dua, R. L. (2012). A review paper on cryp-
tographic approach for license management system in
cloud computing. InIndian Journal of Computer Sci-
ence and Engineering (IJCSE), volume 3, No.4, pages
626–631.

Goldreich, O. (1987). Towards a theory of software pro-
tection and simulation by oblivious rams. InProc. of
ACM STOC’87, pages 182–194.

Goldreich, O. and Ostrovsky, R. (1996). Software protec-
tion and simulation on oblivious rams. InJournal of
ACM, volume 43(3), pages 431–473.

Hohl, F. (1998). Time limited blackbox security: Protecting
mobile agents from malicious hosts. InLecture Notes
in Computer Science 1419, pages 92–113.

Hou, Z., Zhou, X., and Wang, Y. (2007). Software li-
cense management optimization in the campus com-
putational grid environment. InProc of the third In-
ternational Conference on Semantics, Knowledge and
Grid, pages 604 –605.

Kantarcioglu, M., Bensoussan, A., and Hoe, S. (2011). Im-
pact of security risks on cloud computing adoption. In
2011 49th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 670
–674.

Li, J., Weldrich, O., and Ziegler, W. (2008). Towards sla-
based software licenses and license management in
grid computing. InFrom Grids to Service and Per-
vasive Computing, pages 139–152.

Mana, A. and Pimentel, E. (2001). An efficient software
protection scheme. InProc. of 16th IFIP International
Conference on Information Security (ISC2001), pages
385–401.

Microsoft Corporation (2003). Technical overview of win-
dows rights management services for windows server
2003.

Monden, A., Iida, H., Matsumoto, K., Inoue, K., and
Torii, K. (2000). A practical method for watermark-
ing java programs. InProc. of 24th Computer Soft-
ware and Applications Conference (COMPSAC2000),
pages 191–197.

Mumtaz, S., Iqbal, S., and Hameed, E. I. (2005). Develop-
ment of a methodology for piracy protection of soft-
ware installations. InProc. of International Multi-
topic Conference (INMIC2005).

Nakano, Y., Cid, C., Kiyomoto, S., and Miyake, Y.
(2012). Memory access pattern protection for
resource-constrained devices. InProc. of The 8th
Smart Card Research and Advanced Application Con-
ference (CARDIS2012), LNCS, volume 7771, pages
188–202.

Popovic, K. and Hocenski, Z. (2010). Cloud computing
security issues and challenges. InMIPRO, 2010 Pro-
ceedings of the 33rd International Convention, pages
344 –349.

Raekow, Y., Simmendinger, C., Grabowski, P., and Jenz,
D. (2010). License management in grid and cloud
computing. InProc. of 2010 International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pages 9 –15.

Shaikh, F. and Haider, S. (2011). Security threats in cloud
computing. In2011 International Conference for

Internet Technology and Secured Transactions (IC-
ITST), pages 214 –219.

Shi, W., Hsien-Hsin, Falk, S. L. L., and Ghosh, M. (2006).
An integrated framework for dependable and reviv-
able architectures using multicore processors. InProc.
of the 33rd International Symposium on Computer Ar-
chitecture (ISCA2006).

Shokurov, A. (2004). An approach to quantitative analy-
sis of resistance of equivalent transformations of alge-
braic circuits. Technical report, Institute for System
Programming Russian Academy of Sciences.

Simmendinger, C., Kraemer-Fuhrmann, O., and Raekow, Y.
(2008). Support for client-server based license man-
agement schemes in the grid. InCollaboration and the
Knowledge Economy: Issue, Application, Case Stud-
ies, pages 1262–1272.

Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and
Devadas, S. (2003). Aegis: Architecture for tamper-
evident and tamper-resistant processing. InProc. the
17th annual international conference on Supercom-
puting, pages 160–171.

The BEinGRID Project (2009). BEinGRID, business exper-
iments in grid. the European Unionfs sixth research
Framework Programme (FP6).

The SmartLM Project (2013). SmartLM - grid-friendly
software licensing for location independent appli-
cation execution. the European Commission Pro-
gramme, Information and Communication Technolo-
gies.

Wang, C., Davidson, J., Hill, J., and Knight, J. (2001). Pro-
tection of software-based survivability mechanisms.
In Proc. of International Conference of Dependable
Systems and Networks (DSN2001), pages 193–202.

Zhang, X. and Gupta, R. (2003). Hiding program slices for
software security. InProc. of the international sympo-
sium on Code generation and optimization: feedback-
directed and runtime optimization, pages 325–336.

Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T.
(2012). Cross-vm side channels and their use to ex-
tract private keys. InProc. of the 2012 ACM confer-
ence on Computer and communications security, CCS
’12, pages 305–316.

Zhao, J., Yao, N., and Cai, S. (2009). A new method to
protect software from cracking. InProc. of World
Congress on Computer Science and Information En-
gineering (CSIE2009), pages 636–638.

Zhuang, X., Zhang, T., Lee, H.-H. S., and Pande, S. (2004).
Hardware assisted control flow obfuscation for em-
bedded processors. InProc. of ACM CASES2004,
pages 292–302.

LMM�-�A�Common�Component�for�Software�License�Management�on�Cloud

295

