
Symmetric Searchable Encryption
for Exact Pattern Matching

using Directed Acyclic Word Graphs∗

Rolf Haynberg1, Jochen Rill2, Dirk Achenbach2 and Jörn Müller-Quade2
11&1 Internet AG, Karlsruhe, Germany

2Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Keywords: Searchable Encryption, SSE, Exact Pattern Matching, Directed Acyclic Word Graphs.

Abstract: Searchable Encryption schemes allow searching within encrypted data without prior decryption. Various
index-based schemes have been proposed in the past, which are only adequate for certain use cases. There is a
lack of schemes with exact pattern matching capabilities. We introduce Symmetric Searchable Encryption for
Exact Pattern Matching, a new class of searchable encryption schemes. To this end, we define the XPM-SSE
primitive and two privacy notions for the new primitive. Our own construction, SEDAWG, is a XPM-SSE
scheme which uses Directed Acyclic Word Graphs. We discuss and prove its properties.

1 INTRODUCTION

Cloud computing is one of the most promising trends
in the IT industry. In terms of data security however,
cloud computing brings a new threat: Users lose con-
trol over their data. Cloud providers can access their
customer’s data at will.

To challenge this drawback technologically, one
needs to seek methods that enhance the privacy of the
user’s data without negating the advantages of cloud
computing. Notably, computational and storage over-
head should be handled in the cloud, not on the client.

Consider for example the scenario of an out-
sourced e-mail archive: Users wish to employ a cloud
provider to store their e-mails in order to be able to ac-
cess them with a mobile device and without letting the
provider gain knowledge of the archive’s content. To
conserve bandwidth, they want to perform searches
on their archived e-mail online instead of download-
ing each and every message individually and search-
ing locally.

In this paper, we address the problem of secure
exact pattern matching: A user encrypts a long string
he later wishes to query for the occurrence of certain
patterns. This encrypted string is then uploaded to a

∗This work has been partially funded by the Federal
Ministry of Education and Research, Germany (BMBF,
Contract No. 16BY1172). The responsibility for the con-
tent of this article lies solely with the authors.

server and to perform a search, the user can interact
with the server. The server should never learn neither
the string itself, nor the patterns searched for.

1.1 Our Contribution

We introduce a primitive for a symmetric searchable
encryption for exact pattern matching and two secu-
rity notions for the primitive. To our knowledge, this
is the first such primitive. Further, we offer a con-
struction that realizes this primitive. Our construction
involves precomputation in order to ensure a particu-
larly efficient search performance.

1.2 Related Work

In the literature, there are two general approaches
to searchable encrypted data: Symmetric Searchable
Encryption (SSE) (Goh, 2003; Curtmola et al., 2006;
Golle et al., 2004) and Public Key Encryption with
Keyword Search (PEKS) (Chang and Mitzenmacher,
2005; Abdalla et al., 2008). In almost all cases
these approaches are keyword-based. Keyword-based
schemes generally allow arbitrary keywords to be
stored in an index and not only keywords contained
in the actual document. Furthermore, they allow in-
dices to be created for arbitrary documents, not just
strings. On the other hand, keyword-based schemes
don’t support substring search, exact pattern match-

403Haynberg R., Rill J., Achenbach D. and Müller-Quade J..
Symmetric Searchable Encryption for Exact Pattern Matching using Directed Acyclic Word Graphs.
DOI: 10.5220/0004530004030410
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 403-410
ISBN: 978-989-8565-73-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ing or return the number of occurrences of a substring.
Also, keywords must be defined when constructing
the index, whereas our approach only requires the pat-
tern at search time. The work of D. Xiaodong Song
et al. (Song et al., 2000) presents a keywordless ap-
proach based on stream ciphers and supports pattern
matching. However, the time required for performing
a search scales linearly with the size of the document.

There is a rich body of literature on exact pattern
matching algorithms, going back to the late seven-
ties. The general method for improving performance
is precomputation. Approaches can be separated by
where the precomputation occurs: There are algo-
rithms that perform precomputation on the search pat-
tern (Boyer and Moore, 1977; Knuth et al., 1977;
Karp and Rabin, 1987; Baeza-Yates and Gonnet,
1992) as well as algorithms that perform precompu-
tation on the string (Manber and Myers, 1990; Ukko-
nen, 1995; Blumer et al., 1985; Blumer et al., 1987;
Crochemore and Vérin, 1997). Our scheme can be
assigned to the latter. The aforementioned algorithms
have been engineered for performance and efficiency
alone and were not conceived in an adversarial sce-
nario, however. Our scenario involves an honest-but-
curious adversary and we therefore seek to hide as
much information as possible from him. Our goal of
hiding access patterns is very similar to that of Private
Information Retrieval (Chor et al., 1998; Kushilevitz
and Ostrovsky, 1997; Di Crescenzo et al., 2000) and
that of the work on Oblivious RAMs (Goldreich and
Ostrovsky, 1996). In fact, we can use a PIR construc-
tion in our scheme to improve its privacy. Moreover,
an ideal solution to our problem statement can be used
to construct a PIR scheme.

This paper is organized as follows: In the remain-
der of this section, we define a new primitive XPM-
SSE. We then define the optional property ofpat-
tern privacyand show that Private Information Re-
trieval can be reduced to a XPM-SSE scheme with
pattern privacy. In Section 3, we present our con-
struction SEDAWG (Searchable Encryption using Di-
rected Acyclic Word Graphs) and discuss its proper-
ties. Section 4 concludes.

2 DEFINITION OF XPM-SSE

In this section we define a searchable encryption
scheme which allows to perform a full text search
within encrypted data.

Definition 1 (Exact Pattern MatchingXPM). An al-
gorithm A is a technique for exact pattern matching
(XPM) over the alphabetΣ if it returns upon input
S∈ Σ∗ andm∈ Σ∗ the exact number of occurrences

of m in S.

Based on the exact pattern matching algorithm,
we are definingSymmetric Searchable Encryption for
Exact Pattern Matching(XPM-SSE). Note that pre-
existing notions for encryption schemes don’t suffice
in this scenario: Assume a protocol in which, to per-
form a query, the client uploads the decryption key
to the server and lets the server decrypt the ciphertext
and return the result. Such a protocol does not exhibit
data privacy and therefore should not be considered a
XPM-SSE scheme. Also, it is easy to provide a secu-
rity notion that can only be met with inefficient solu-
tions, simply by storing an encrypted file on the server
which is downloaded and decrypted prior to search-
ing. Hence, any meaningful notion must also account
for the protocol messages that are exchanged in the
evaluation of a query.

Definition 2 (XPM-SSE Scheme). Let S∈ Σn be an
arbitrary but finite string over the encodingΣ. A tuple
((Gen,Enc,Dec),I = (S ,C)) is a Symmetric Search-
able Encryption scheme for Exact Pattern Matching
(XPM-SSE scheme), if

• Gen : 1k → {0,1}k is a PPT algorithm which,
given a key K, the plaintext S and a security pa-
rameter k, generates a key K← Gen(1k).
• Enc : {0,1}k×Σ∗ → {0,1}∗ is a PPT algorithm

which generates a ciphertext D← EncK(S).
• Dec : {0,1}∗ × {0,1}k → Σ∗ is a polynomially

bounded algorithm which outputs the plaintext
S←DecK(EncK(S)) given a key K and the cipher
textEncK(S).
• I = (S ,C) is a protocol for a pair of machines

(server and client) which perform an algorithm
for Exact Pattern Matching. The serverS is pro-
vided with an encryption of the stringEncK(S),
the clientC is supplied with the search pattern w,
the encryption key K and outputs the exact num-
ber of occurrences of w in S. WithviewK(S,w) we
denote all state transitions of the serverS and all
its received received and sent messages.
• It has data privacy, that is, the advantage of the

adversary inPrivKcppa
A ,Enc

(k) (Security Game 1) is
negligible, that is

∀PPTA ,c∈ N∃k∈N :

Pr[PrivKcppa
A ,Enc

(k) = 1]≤
1
2
+ k−c

The notion of data privacy captures the goal of hiding
the string itself from the adversary.

Note that by this definition, any XPM-SSE
scheme also hasresult privacy: If an adversary could
learn the result of a query she supplies, she can use

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

404

that information to distinguish two encryptions of
plain texts which does not fulfill the above definition.

Next, we describe Security Game 1 which is used
in Definition 2.

Security Game 1(PrivKcppa
A ,Enc

(k)).

1. The experiment chooses a key K←Gen(1k) and a
random bit b← {0,1}.

2. The adversaryA is given input1n, oracle access
to EncK(·) and to a view oracleTK(·, ·). TK(S,x)
returns the server’s view to any query x, given a
plaintext S:viewK(S,x).

3. A outputs two plaintexts m0 and m1 of the same
length to the experiment.

4. A is givenEncK(mb).
5. A outputs a number of queries x0, . . . ,xq and an

integer i∈ {0, . . . ,q} to the experiment.
6. The queries x0, · · · ,xq are evaluated in that order.
7. A is given the view on the challenge ciphertext to

query i: viewK(mb,xi).
8. A continues to have access toEncK(·) and

TK(·, ·).
9. A submits a guess b′ for b.

The result of the experiment is defined to be1 if b′ = b
and0 else.

The complementary property to data privacy is
that of pattern privacy: A scheme that has pattern
privacy hides the contents of queries from the server.
We define pattern privacy as (computational) indistin-
guishability of transcripts.

Definition 3 (Pattern Privacy). A scheme
((Gen,Enc,Dec),(S ,C)) has pattern privacy if
for all c ∈ N, PPT algorithmsA , search patterns
x,x′ ∈ Σ∗ with |x| = |x′| and S∈ Σ∗ there is a k∈ N,
so that

|Pr[A(1k
,viewK(S,x)→ 1]−

Pr[A(1k
,viewK(S,x

′)→ 1]| ≤ k−c

If a XPM-SSE scheme haspattern privacy(Defi-
nition 3), we call the schemeXPM-SSE with pattern
privacy. In the remainder of this section, we show
that Private Information Retrieval can be reduced to a
XPM-SSE scheme with pattern privacy.

First we give a definition of a Private Information
Retrieval scheme here. The definition follows that of
Kenan (Kenan, 2005) closely, but uses our notation.
Informally, a PIR scheme is a scheme that allows a
client to retrieve bits from a remote database in such a
way that the database doesn’t learn which bit has been
retrieved.

Definition 4 (PIR). Let D∈ {0,1}n be a database of
n bits. The(i +1)th bit shall be denoted as D[i]. A
scheme for Computational Single-Server Private In-
formation Retrieval (PIR) is a pair of machines(S ,C)
for which the following properties hold:

1. Correctness:∀x∈ {0, . . . ,n−1},D∈ {0,1}n, c∈
N∃k∈ N :

Pr[C (1k
,view(D,x)) = D[x]]≥ 1− kc

2. User Privacy:∀x,x′ ∈N0,D∈ {0,1}n, PPTA ,c∈
N∃k∈ N :

|Pr[A(1k
,view(D,x)) = 1]−

Pr[A(1k
,view(D,x′)) = 1]| ≤ k−c

We can now state our claim.

Proposition 1. Computational Single-Server Private
Information Retrieval can be reduced to XPM-SSE
with pattern privacy.

Proof. To prove the proposition, we give a construc-
tion using a XPM-SSE scheme and show that it
achieves PIR. We show how to construct a string from
a binary database withn entries. We then explain how
to perform a database query and how to interpret the
result.

Table 1: Example database with the corresponding string to
be used for a database retrieval with a XPM-SSE scheme.

i 0 1 2 3 4 5
D[i] 1 0 1 0 1 0

⇓
!000$!010$!100$

The alphabet for the XPM-SSE construction is
Σ = {0,1, !,$}. ConstructS as follows: Start with
an empty stringS. Iteratei through{0, . . . ,n− 1},
and, ifD[i] = 1, append the binary encoding ofi (with
leading zeroes to hide the size ofi), enclosed in the
delimiters ! and $, to S. Output S. (See Table 1 for an
example.)

To retrieve biti from S (stored on the server), run
the search protocol for the binary encoding ofi, en-
closed in the delimiters ! and $. If the search is a
success, the retrieved bit is 1 and 0 otherwise.

By construction, the binary encoding ofi is ∈ S
iff D[i] = 1. It follows that the above construction
delivers correct results.

In the above construction, the bit IDi that is to be
retrieved is transmitted in the form of a search query.
This information is, kept secret from the adversary be-
cause of the required pattern privacy. If the above con-
struction didn’t provide Private Information Retrieval,

Symmetric�Searchable�Encryption�for�Exact�Pattern�Matching�using�Directed�Acyclic�Word�Graphs

405

it would leak information abouti to the adversary and
the XPM-SSE scheme wouldn’t have pattern privacy
which contradicts the proposition.

3 SEDAWG: A XPM-SSE
CONSTRUCTION

Our Searchable Encryption Scheme is based on the
idea to store the encrypted data on the server and
to perform the searching on the client. The encryp-
tion algorithm uses Directed Acyclic Word Graphs
(DAWGs) to prepare the encrypted data for searching.
They are described in Section 3.1. We then present
our XPM-SSE scheme in Section 3.2. In Section 3.3,
we discuss its performance and proof its security.

3.0.1 Notation and Conventions

If not mentioned otherwise,S will be an arbitrary
string of lengthn over the encodingΣ, that isS∈ Σ∗.
The length of a stringSwill be denoted as|S|. ε is the
empty string and has a length of 0.S[i] denotes the
(i +1)th character ofS for i ∈ N0 with i < |S|. S[i.. j]
denotes the stringS[i] · . . . ·S[j] for 0≤ i ≤ j < n. If
i = j let S[i.. j] = S[i]. S[i.. j] is called asubstring. The
set of all substrings of a stringS is written as

substringsS= {S[i.. j] | 0≤ i ≤ j < n}∪{ε}

3.1 The Underlying Data Structure
DAWG

TheDirected Acyclic Word Graph(DAWG) is a data
structure derived from a string. It is similar to the
Suffix Tree data structure and reduces the time com-
plexity for several string analysis algorithms, such as
pattern matching, by making use of pre-computation.
DAWGs were first introduced by Blumer et al. in
(Blumer et al., 1985). Our definition follows theirs.

Definition 5 (Endpoint Set). Let x be a substring of a
string S. Then

ES(x) := { j | ∃ i : x= S[i.. j]}

is called theEndpoint Setfor x with respect to S, i. e.
the endpoints of all occurrences of x in S.

The substrings that specify the same Endpoint Set
are important for the data structure. An equivalence
class encompasses them.

Definition 6 (≡E
S, [x]ES). Two substrings x and y of

a string S are equivalent with respect to≡E
S, if they

specify the same Endpoint Set:

x≡E
S y⇔ ES(x) = ES(y)

The equivalence class of x with respect to≡E
S is de-

noted as[x]ES. The representative of an equivalence
class is defined as the longest substring of that class
and is denoted as←−x .

Definition 7 (DAWG(S)). The Directed Acyclic
Word Graphof a prefix-free string S, in symbols
DAWG(S) is the directed graph(V,E) with

V ={[x]ES | x∈ substringsS}

E ={([x]ES, [xa]ES) | a∈ Σ,
x,xa∈ substringsS,

←−x 6=←−xa}

The equivalence class of the empty string[ε]ES
plays a special role. The corresponding node will be
called theroot nodein the following chapters as it
does not have any incoming edges.

Moreover, a label is associated with every edge of
the graph.

Definition 8 (Edge Label edgeLabel(e)). Let
([x]ES, [xa]ES) = e be an edge of the DAWG(S) data
structure. ThenedgeLabel(e) = a is called theedge
labelof e.

The edge labels are defined in such a way that
every path in the graphDAWG(S) corresponds to a
substring ofS. The path that corresponds toS it-
self is important for the decryption algorithm of our
scheme. We will refer to the edges of this path asnat-
ural edges.

Definition 9 (Natural Edge). Let ([x]ES, [xa]ES) = e be
an edge of the DAWG(S) data structure. If there exists
a string w in [xa]ES such that w is a prefix of S, e is
called anatural edgefor this graph.

3.2 Pattern Matching using DAWGs

We now sketch how we utilizeDAWG(S) to decide
whetherw ∈ substringsS with O(|w|) character com-
parisons. The algorithm is based on a central property
of the DAWG: w ∈ substringsS if and only if there
is a path[ε]ES,v1, . . . ,v|w| with edgeLabel(v0,v1) · . . . ·
edgeLabel(v|w|−1,v|w|) = w. Since, for any patternw,
this path starts at the root node, we can tell if it exists
by matching the edge labels of the path along the pat-
tern: We traverse the DAWG by comparing the labels
on the outgoing edges of a node to the corresponding
character inw. The edge that has a matching label
leads to the next node on the path. If all characters of
the pattern have been matched,w ∈ substringsS and
the search ends. Otherwise,w does not occur inS.

In our XPM-SSE construction, we store the graph
using adjacency lists. Also, with every nodev we

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

406

NS#0 NS#2 NS#0 NS#3 NS#2 NS#1

v1

“ε”

v2

“a”

v3

“an”

v4

“ana”

v5

“anan”

v6

“anana”

v7

“ananas”

a n a n a s

n

s
s

s

Figure 1: The DAWG for the input stringS=ananas. It consists of seven nodes (v1 to v7) which are mapped to four node sets
(NS#0 to NS#3). The node representative is written underneath each node. The transition edges are drawn as directed arrows
which are labeled with their respective edge labels. Every outgoing path fromv1 is a subword ofS.

Figure 2: General communication pattern for searching a string w in S. We assume thatEnc(DAWG(S)) is available on the
server. The case ofw 6∈ substringsS is not covered here. Also note that for privacy reasons, we explicitly do not employ
caching mechanisms.

store a propertyv.numOccurs. It represents the num-
ber of occurences of the representative ofv in S and
allows to determine the number of occurences of the
search pattern when readingv.

To store the DAWG, we randomly distribute all
of its nodes into a fixed number of disjoint node sets
which depends on the size of the text. Then, we aug-
ment every edge in the DAWG with a reference to
the node set that contains the target node. To ensure
the indistinguishability of the encryptions of different
strings of the same size, we pad the node sets indi-
vidually to their maximum size. Finally, we create
files from the node sets and encrypt them individu-
ally using the symmetric encryption scheme(E,D,G).
See Figure 1 for a visualization of how the DAWG is
stored.

For a schematic description of the search proce-
dure with pseudocode, see Figure 2. The detailed
descriptions of the algorithms for encryption and de-
cryption can be found in Algorithms 1 and 2, respec-
tively.

3.3 Properties of SEDAWG

In this subsection, we discuss the security and perfor-
mance properties of our scheme.

3.3.1 Performance and Space Complexity

The space complexity of the output ofEncK(S),
i. e. the ciphertext size, is inO(|S|) because the size
of DAWG(S) lies in O(|S|) and the encryption algo-

Symmetric�Searchable�Encryption�for�Exact�Pattern�Matching�using�Directed�Acyclic�Word�Graphs

407

Algorithm 1: EncK(S).

Input : StringSwith encodingΣ, Key K
Output : A setB of files encrypted underK
Data: Set of NodesV , Set of EdgesE, Set of Node Sets

N, s⋆

(V, E) = DAWG(S) // Step 1
position(◦)← 0
nodeset(◦)← 0
getNodeSetById(0)←{◦} // Add root node to
node set 0

foreach v∈V do // Step 2
ns←r {ns∈ N | s⋆ ≥ size(ns∪v)}
position(v)← size(ns)
nodeset(v)← id(ns)
ns← ns∪v

end

foreach ns∈N do // Step 3
foreach v∈ nsdo

foreach (v,w) ∈ edges(v) do
v[w].targetNodePosition← position(w)
v[w].targetNodeSetId← nodeset(w)

end
end

end

foreach ns∈N do // Step 4
b← ””
foreach v∈ nsdo

foreach (v,w) ∈ edges(v) do
b← concatenate(b,
v[w].isNaturalEdge,
v[w].edgeLabel,
v[w].targetNodePosition,
v[w].targetNodeSetId)

end
b.append(#)

end
b← pad(b,s⋆)
b← EK(b)
B← B∪{b}

end

return B

rithm Enc only adds information which size is linear
in S (see Algorithm 1). Also the time complexity,
i. e. the execution time ofEncK(S), is in O(|S|) for
similar reasons. The communication complexity of
the search protocolIK(EncK(S),w) is asymptotically
optimal and depends only linearly on|w|.

We performed preliminary benchmarks with an
unoptimized implementation of our scheme on Ama-
zon’s S3 cloud storage. Results show an advantage
of our scheme regarding search times in comparison
to a trivial approach (which is: downloading the full
encrypted text, decrypting it and searching with the
Boyer-Moore algorithm (Boyer and Moore, 1977)) if
the bandwidth is limited. In our tests we used a 3G
mobile network connection and the search was up to
10-15 times faster for short words (4 to 8 characters)

Algorithm 2: DecK(B).

Input : Set of encrypted filesB, Key K
Output : PlaintextS
Data: Set of NodesV, Set of EdgesE, Set of Node Sets

N
foreach b∈ B do // Decrypt all files

N← N∪DK(b)
end
nsid← 0
npos← 0

while v← DK(getFileFromServer(nsid))[npos] do
// For node ...

foreach AdjacencyListEntry e∈ v do // ...find
the natural edge

if e.isNaturalEdge then
nsid← e.targetNodeSetId
npos← e.targetNodePosition
S.append(e.edgeLabel)
break

end
end

end

return S

and 2-4 times for long words (32 to 64 characters) us-
ing an email archive with an unencrypted size of 60
MiB. The precomputational overhead is unpractical
for many use cases however, since the encrypted text
was about 100 times larger than the original text and
the memory demand for the precomputation grew lin-
erally with the size of the input text with a factor of
approximately 1300. This must be improved upon in
future work.

3.3.2 Security

We can now present our result that SEDAWG is a
XPM-SSE scheme. Given the ability to hide access
patterns from the adversary, it also exhibits pattern
privacy. With Proposition 1 from Section 2, this im-
plies that pattern privacy and PIR are equivalent.

Proposition 2. SEDAWG is a XPM-SSE scheme if
(E,D,G) is a IND-CPA secure scheme.

Proof. We must prove that the data privacy prop-
erty holds for our construction. Suppose(E,D,G)
is a IND-CPA secure encryption scheme andA is a
PPT adversary who can win game PrivKcppa

A ,Enc
(k) (Se-

curity Game 1) with nonnegligible probability. In
PrivKcppa

A ,Enc
(k), A receives one encryptionEncK(mb)

and one server’s view to a protocol run viewK(mb,xi).
She then outputs a guessb′ for b.

The server’s view of a protocol run consists of the
IDs of the requested files and the files themselves.
Consider a modification of the game, PrivK′cppa

A ,Enc
(k):

Instead ofEncK(mb) and viewK(mb,xi), the adversary

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

408

is sent the encryption of a zero string with the same
length asm0

2: EncK(0|m0|). Also, viewK(mb,xi) is al-
tered in such a way that the transmitted files are taken
from EncK(0|m0|) instead ofEncK(mb) (“so the story
fits”). Call A ’s output from the modified gameb′′.
Because(E,D,G) is IND-CPA secure,A cannot dis-
tinguishEncK(mb) from EncK(0|m0|). Hence,b′′ is
statistically close tob′.

In a second modification PrivK′′cppa
A ,Enc

(k), we re-
place the IDs from the server’s view with random IDs
(chosen uniformly at random from the set of avail-
able file IDs, without replacement), except for the first
request—the file ID that is first requested is always
0. Call A ’s output from this modified gameb′′′. Be-
cause the original file IDs have been chosen in the
same manner as the IDs in our modified game, and
the adversary is only supplied with one view, her out-
putb′′′ is again statistically close tob′′.

Following our argument, if the adversary’s out-
put in PrivKcppa

A ,Enc
(k) is correlated tob, its output

in PrivK′′cppa
A ,Enc

(k) is also correlated tob. But in

PrivK′′cppa
A ,Enc

(k), A receives no input that correlates
with b. This is a contradiction.

In Proposition 1 we showed that PIR is at least as
hard as XPM-SSE. We now show that they are in fact
equivalent. Considering that no practical scheme for
Single Server PIR is known, this implies that achiev-
ing XPM-SSE with pattern privacy is a difficult task.

Proposition 3. SEDAWG with PIR is a XPM-SSE
scheme with pattern privacy ifE is a IND-CPA secure
encryption.

Proof. Assume an adversaryA who can distin-
guish two search patterns from their transcripts of
SEDAWG with nonnegligible probability. Requested
file IDs depend on the search pattern in a determin-
istic manner. Because, by definition,A cannot learn
any information fromEncK(S), she solely uses the re-
quested IDs for the distinction. Hence, she can dis-
tinguish two series of server requests and violate the
PIR assumption.

4 SUMMARY AND
CONCLUSIONS

In this paper, we introduced Symmetric Searchable
Encryption for Exact Pattern Matching, a new class
of searchable encryption schemes, with which a client
can privately search an encrypted string stored on a
server. We defined the new primitive XPM-SSE and

2|m0|= |m1|.

two security notions for this primitive, data privacy
and pattern privacy. Data privacy captures the idea
that the data stored on the server should be kept hid-
den from the server. Pattern privacy ensures the server
can learn nothing from search logs except the pattern
length. We showed that pattern privacy is equivalent
to Computational Single-Server Private Information
Retrieval.

We provided our construction SEDAWG for
XPM-SSE. It uses directed acyclic word graphs
(DAWGs) to ensure good performance for the cost of
precomputational overhead. During precomputation,
the DAWG for the string is computed and split into
files. These files are then encrypted with a symmetric
IND-CPA secure cipher. The search protocol navi-
gates the DAWG, successively downloading required
files.

There is a preliminary implementation that shows
the practicality of our approach. However, while the
search operation performs very efficiently, the pre-
computation is memory intense. Algorithm engineer-
ing might improve the overall performance of our im-
plementation.

Further research can be directed at extending the
scheme to allow modifications or extensions of the
encrypted text without the need for a complete re-
encryption.

REFERENCES

Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T.,
Lange, T., Malone-Lee, J., Neven, G., Paillier, P., and
Shi, H. (2008). Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and ex-
tensions.Journal of Cryptology, 21:350–391.

Baeza-Yates, R. and Gonnet, G. H. (1992). A new approach
to text searching.Commun. ACM, 35(10):74–82.

Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A.,
Chen, M. T., and Seiferas, J. (1985). The smallest
automaton recognizing the subwords of a text.The-
oretical Computer Science, 40:31 – 55. Eleventh In-
ternational Colloquium on Automata, Languages and
Programming.

Blumer, A., Blumer, J., Haussler, D., McConnell, R., and
Ehrenfeucht, A. (1987). Complete inverted files for ef-
ficient text retrieval and analysis.J. ACM, 34(3):578–
595.

Boyer, R. S. and Moore, J. S. (1977). A fast string searching
algorithm.Commun. ACM, 20(10):762–772.

Chang, Y.-C. and Mitzenmacher, M. (2005). Privacy pre-
serving keyword searches on remote encrypted data.
In Ioannidis, J., Keromytis, A., and Yung, M., editors,
Applied Cryptography and Network Security, volume
3531 of Lecture Notes in Computer Science, pages
442–455. Springer Berlin / Heidelberg.

Symmetric�Searchable�Encryption�for�Exact�Pattern�Matching�using�Directed�Acyclic�Word�Graphs

409

Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M.
(1998). Private information retrieval. J. ACM,
45(6):965–981.

Crochemore, M. and Vérin, R. (1997). On compact di-
rected acyclic word graphs. InStructures in Logic and
Computer Science, A Selection of Essays in Honor of
Andrzej Ehrenfeucht, pages 192–211, London, UK.
Springer-Verlag.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R.
(2006). Searchable symmetric encryption: Improved
definitions and efficient constructions. InCCS ’06:
Proceedings of the 13th ACM conference on Com-
puter and communications security, pages 79–88,
New York, NY, USA. ACM.

Di Crescenzo, G., Malkin, T., and Ostrovsky, R. (2000).
Single database private information retrieval implies
oblivious transfer. In Preneel, B., editor,Advances
in Cryptology EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 122–138.
Springer Berlin / Heidelberg.

Goh, E.-J. (2003). Secure indexes.
http://eprint.iacr.org/2003/216/.

Goldreich, O. and Ostrovsky, R. (1996). Software pro-
tection and simulation on oblivious rams.J. ACM,
43(3):431–473.

Golle, P., Staddon, J., and Waters, B. (2004). Secure con-
junctive keyword search over encrypted data.

Karp, R. M. and Rabin, M. O. (1987). Efficient random-
ized pattern-matching algorithms.IBM Journal of Re-
search and Development, 31(2):249 –260.

Kenan, K. (2005). Cryptography in the Database : The
Last Line of Defense. Addison-Wesley, Upper Saddle
River, NJ.

Knuth, D. E., James H. Morris, J., and Pratt, V. R. (1977).
Fast pattern matching in strings.SIAM Journal on
Computing, 6(2):323–350.

Kushilevitz, E. and Ostrovsky, R. (1997). Replication is
not needed: Single database, computationally-private
information retrieval. InFOCS ’97: Proceedings of
the 38th Annual Symposium on Foundations of Com-
puter Science, page 364, Washington, DC, USA. IEEE
Computer Society.

Manber, U. and Myers, G. (1990). Suffix arrays: A new
method for on-line string searches. InSODA ’90: Pro-
ceedings of the first annual ACM-SIAM symposium on
discrete algorithms, pages 319–327, Philadelphia, PA,
USA. Society for Industrial and Applied Mathematics.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practi-
cal techniques for searches on encrypted data.IEEE
Symposium on Security and Privacy, pages 44–55.
http://citeseer.nj.nec.com/song00practical.html.

Ukkonen, E. (1995). On-line construction of suffix trees.
Algorithmica, 14(3):249–260.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

410

