An Efficient Approach to Assessing the Risk of Zero-Day Vulneabilities*

Massimiliano Albanese Sushil Jajodi&?, Anoop Singhal and Lingyu Wang
1Center for Secure Information Systems, George Mason University, 4400 University Dr, Fairfax, VA 22030, U.S.A.
2The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, U.S.A.
3Computer Security Division, NIST, 100 Bureau Dr, Gaithersburg, MD 20899, U.S.A.

4Concordia Institute for Information Systems Engineering, Concordia University,
1515 Sainte-Catherine St W, Montreal, QC H3G 2W1, Canada

Keywords: Zero-Day Vulnerabilities, Vulnerability Analysis, Attack Graphs.

Abstract: Computer systems are vulnerable to both known and zero-day attacks. Although known attack patterns can
be easily modeled, thus enabling the development of suitable hardening strategies, handling zero-day vulner-
abilities is inherently difficult due to their unpredictable nature. Previous research has attempted to assess the
risk associated with unknown attack patterns, and a suitable metric to quantify such riskgetieday safety
metric, has been defined. However, existing algorithms for computing this metric are not scalable, and as-

sume that complete zero-day attack graphs have been generated, which may be unfeasible in practice for large

networks. In this paper, we propose a set of polynomial algorithms for estimatingzéem-day safety of
possibly large networks efficiently, without pre-computing the entire attack graph. We validate our approach
through experiments, and show that the proposed algorithms are computationally efficient and accurate.

1 INTRODUCTION To address these limitations, traditional efforts
on network security metrics typically assign numeric

In today’s networked systems, attackers can lever- SCOres to _vulnerabilities as their relative exploitabil-
age complex interdependencies among network con-ity o likelihood, based on known facts about each
figurations and vulnerabilities to penetrate seemingly Vulnerability. However, this approach is clearly not
well-guarded networks. Besides well-known weak- appllf:able to zero-day vulne_rabllltles due to the Ia_\ck
nesses, attackers may leverage unknown (zero-dayf’f Prior knowledge or experience. In fact, a major
vulnerabilities, which even developers are not aware Ccrticism of existing _efforts on security metrics is that
of. In-depth analysis of network vulnerabilities must zero—day_vulnerab|llt|es are unmeasurable dge to the
consider attacker exploits not merely in isolation, but €SS predictable nature of both the process of introduc-
in combination. Attack graphs reveal such threats by ing software flaws and that of discovering and exploit-
enumerating potential paths that attackers can take tolNd vulnerabilities (McHugh, 2006). Recent work ad-
penetrate networks (Sheyner et al., 2002; Ammann dres_ses the above Ilmltatlons_t_)y proposing a security
et al., 2002). This helps determine whether a given Metric for zero-day vulnerabilities, namel;zero-
set of network hardening measures provides safetyday safety (Wang et al., 2010). Intuitively, the metric
of given critical assets. However, attack graphs can IS based on the number of distinct zero-day vulner-
only provide qualitative results (i.e., secure or inse- abilities that are needed to compromise a given net-
cure), and this renders resulting hardening recommen-Work asset. _A larger such nu_mber |nd|c§tes relatively
dations ineffective or far from optimal, as illustrated MOre security, because it will be less likely to have
by the example discussed in Section 3.1. a Iarggr number of dn‘ferept unknovyn vulnerabilities
all available at the same time, applicable to the same
*The work presented in this paper is supported in part Ne€twork, and exploitable by the same attacker. How-
by the National Institutes of Standard and Technology un- ever, as shown in (Wang et al., 2010), the problem of
der grant number 70NANB12H236, by the Army Research computing the exact value &fis intractable. More-
Office under MURI award number W911NF-09-1-0525, over, (Wang et al., 2010) assumes the existence of a

and by the Office of Naval Research under award number ;
N000141210461. complete attack graph, but, unfortunately, generating

Albanese M., Jajodia S., Singhal A. and Wang L.. 207
An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities.

DOI: 10.5220/0004530602070218

In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 207-218

ISBN: 978-989-8565-73-0

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

SECRYPT 2013 - International Conference on Security and Cryptography

attack graphs for large networks is usually infeasible clude a Markov model-based metric for estimating
in practice (Noel and Jajodia, 2004). These facts com- the time and efforts required by adversaries (Dacier,
prise a major limitation in applying this metric orany 1994), and a metric based on lengths of shortest at-
other similar metric based on attack graphs. tack paths (Phillips and Swiler, 1998). The main lim-
In this paper, we propose a set of efficient solu- itation of these approaches is that they do not consider
tions to address this limitation and thus enable zero- the relative severity or likelihood of different vulner-
day analysis of practical importance to be applied to abilities. Anther line of work adapts the PageRank al-
networks of realistic sizes. Therefore, the major con- gorithm to rank states in an attack graph based on the
tribution of this work is to provide a practical solution relative likelihood of attackers’ reaching these states
to a problem which was previously considered impos- when they progress along different paths in a random
sible. We start from the problem of deciding whether fashion (Mehta et al., 2006). Other recent work uses
a given network asset is at ledszero-day safe fora specially marked attack trees (Balzarotti et al., 2005)
given value ofk (Wang et al., 2010), but then we go ormore expressive attack graphs (Pamula et al., 2006)
beyond this basic problem and provide a more com- in order to find the easiest attack paths. A Mean
plete analysis. First, we drop the assumption that the Time-to-Compromise metric based on the predator
zero-day vulnerability graph has been precomputed, state-space model (SSM) captures the average time
and combine on-demand attack graph generation withrequired to compromise network assets (Leversage
the evaluation ok-zero-day safety. Second, we iden- and Byres, 2008). A probabilistic approach defines
tify an upper bound on the value kfising a heuristic ~ a network security metric as attack probabilities and
algorithm that integrates attack graph generation andderives such probabilities from CVSS scores (Wang
zero-day analysis. Third, when the upper bound on et al., 2008). Several important issues in calculating
k is below an admissible threshold, we compute the probabilistic security metrics, such as dependencies
exact value ok by reusing the computed partial at- between attack sequences and cyclic structures, are
tack graph. Section 4 formally states the three related addressed in (Homer et al., 2009).
problems we are addressing in this paper, and shows Most existing work on network security met-
their role in the overall process of assessing the risk rics has focused on previously known vulnerabilities
of zero-day vulnerabilities. To the best of our knowl- (McHugh, 2006). A few exceptions include an em-
edge, this is the first attempt to define a comprehen- pirical study on the total number of zero-day vulner-
sive and efficient approach to zero-day analysis. abilities available on a single day (McQueen et al.,
The paper is organized as follows. Section 2 dis- 2009), a study on the popularity of zero-day vulnera-
cusses related work. Section 3 recalls some prelim- bilities (Greenberg, 2012), and an empirical study on
inary definitions and provides a motivating example. software vulnerabilities’ life cycles (Shahzad et al.,
Then Section 4 discusses the limitations of previous 2012). Another recent effort ranks different applica-
approaches and provides a formal statement of thetions by the relative severity of having one zero-day
problems addressed in our work. Section 5 describesvulnerability in each application (Ingols et al., 2009),
in detail our approach to efficient evaluatiorkafero- which has a different focus than our work. Closest
day safety. Finally, Section 6 reports experimental re- to our work, recent work ok-zero-day safety defines
sults, and Section 7 gives some concluding remarksa metric based on the number of potential unknown
and indicates further research directions. vulnerabilities in a network (Wang et al., 2010).
In this paper, we address the complexity issues
associated with the metric proposed in (Wang et al.,
2010), and propose a set of polynomial algorithms for
2 RELATED WORK estimating th&-zero-day safety of possibly large net-

o o works efficiently. The proposed zero-day attack graph
Existing standardization efforts, such as the Common yodel borrows the compact model given in (Ammann

Vulnerability Scoring System (CVSS) (Mell et al., gt a1, 2002) - based on timeonotonicity assumption
2006) and the Common Weakness Scoring System_ \yhjle incorporating zero-day vulnerabilities.

(CWSS) (The MITRE Corporation, 2011), provide

standard ways for security analysts and vendors to

rank known vulnerabilities or software weaknesses

using numerical scores. These efforts provide a 3 PRELIMINARIES

practical foundation for research on security met-

rics, but are designed for individual vulnerabilities Attack graphs represent prior knowledge about vul-
and do not address the combined effect of multiple nerabilities, their dependencies, and network connec-
vulnerabilities. Early work on security metrics in- tivity. With a monotonicityassumption, an attack

208

An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities

graph can record the dependencies among vulnerabil- e for each remote service s, we define a zero-day
ities and keep attack paths implicitly without losing vulnerability % such that the zero-day exploit
any information. The resulting attack graph has no (vs,h,h") has three pre-conditions(s ') (exis-
duplicate vertices and hence has a polynomial size in tence of serviceh,h') (connectivity), andp, h)

the number of vulnerabilities multiplied by the num- (attacker’s existing privilege); this zero-day ex-
ber of connected pairs of hosts. ploit has one post-conditiofp’,h) where p is
Definition 1 (Attack Graph) Given a set of exploits the privilege of service s orth

E, a set of security conditions C, raquirerelation o for each privilege p, we define a zero-day vulner-
R CCx E, and animply relation R C E x C, an at- ability v, such that the zero-day expldip, h, h)
tack graph G is the directed graph € (EUC,R U has its pre-conditions to include all privileges of
R), where BUC is the vertex set and,R R, the edge remote services on h, and its post-condition to be
set. For an exploit e, we call the conditions related ponh.

to e by R and R as its pre- and post-conditions, de- We use Eand G to denote the set of all zero-day ex-

; : C
noted Li_smlg functions preE — 2° and post E— 2%, ploits and the set of all their pre- and post-conditions
respectively. . . o respectively, and we extend the functions(p@nd
We denote an exploit as a triplte, hs, hg), indi- post() accordingly.

cating an exploitation of vulnerability on the desti-
nation hosthy, initiated from the source host. A
security condition is a paifc,hy) — that indicates a
satisfied security-related conditicron hosthy, such
as the existence of a vulnerability — or a péig, hy) Definition 4 (Zero-Day Attack Graph)Given an at-
— that indicates connectivity between hdsiendhg. tack graph'G= (EUC,R UR)), a set kg of zero-day
Initial conditions are a special subset of security con- exploits, a set g€ of pre and post-conditions of ex-
ditions that are initially satisfied, whereas intermedi- ploits in B, a zero-day attack graph'Gs the directed
ate conditions are those that can only be satisfied asgraph G = (E* UC*,R" UR"), where E = E U Ey,

We are now ready to assemble all known and
zero-day exploits via their common pre- and post-
conditions into a zero-day attack graph.

post-conditions of some exploits. C*=CUGCy, R =R U{(c,e) |ec EgAce pre(e)},
Definition 2 (Initial Conditions) Given an attack andR =RU{(ec)|ec EgAcE poste)}.
graph G= (EUC,R UR)), initial conditions refer Figure 1 shows a simple network configuration in-
to the subset of conditions & {c € C|#e € E s.t. cluding three hosts. Host 0 is the user’s machine used
(e,c) € R}, whereasntermediate condition®ferto to launch attacks, whereas host 1 and host 2 are ma-
the subset GG chines within the perimeter of the enterprise network
we are seeking to protect. Host 1 provides an HTTP
3.1 Zero-Day Attack Model service (http) and a secure shell service (ssh), whereas

host 2 provides only ssh. The firewall allows traffic to
The very notion ofunknownzero-day vulnerability and from host 1, but only connections originated from
means we cannot assume any vulnerability-specific host 2. In this example, we assume the main security
property, such as the likelihood or severity. There- concern is over the root privilege on host 2. Clearly,
fore, our zero-day vulnerability model is based onfol- if gl the services are free of known vulnerabilities,
lowing generic properties that are common to most a yulnerability scanner or attack graph will both lead
vulnerabilities. Specifically, a zero-day vulnerability to the same conclusion, that is, the network is secure
is a vulnerability whose details are unknown except (an attacker on host 0 can never obtain the root privi-
that its exploitation requires a network connection be- |ege on host 2), and no additional network hardening
tween the source and destination hOStS, a remotely aCeffort is necessary. However' we may reach a differ-
cessible service on the destination host, and that theent conclusion by hypothesizing the presence of zero-
attacker already has a privilege on the source host.day vulnerabilities and considering how many distinct
In addition, we assume that the exploitation can po- zero-day exploits the network can resist.
tentially yield any privilege on the destination host. Specifically, the zero-day attack graph of this ex-
These assumptions intend to depict a worst-case sceample is depicted in Figure 2, where each triple in-
nario about the pre- and post-conditions of a zero-day sijde an oval denotes a zero-day exploit and a pair de-
exploit, and are formalized as the first type of zero- notes a condition. In this attack graph, we can ob-
day exploit in Definition 3, whereas the second type serve three sequences of zero-day exploits leading to

represents subsequent privilege escalation. root(2). First, an attacker on host 0 can exploit a zero-
Definition 3 (Zero-Day Exploit) We define two types day vulnerability in the firewall (e.g., a weak pass-
of zero-day exploits, word in its Web-base remote administration interface)

209

SECRYPT 2013 - International Conference on Security and Cryptography

| host1 plying the metridk0d() — which counts the number of
i ke distinct zero-day vulnerabilities — to each such con-
f junctive clause. Although the logic proposition can
=y | host2 be derived efficiently, converting it to its DNF may
/‘ = incur an exponential explosion. In fact, the authors of
_ o _ (Wang et al., 2010) show that the problem of comput-
Figure 1. Example of network configuration. ing thek-zero day safety metrics is NP-hard in gen-

eral, and then focus on the solution of a more prac-
tical problem. They claim that, for many practical

v »
purposes, it may suffice to know that every asset in a

<rootF> 02> <h2> <12 suserl> network isk-zero-day safe for a given value lofeven

<firewalLF> <0,F> <user,0> <http,I> <0,1> <ssh,1>

though the network may in reality k& zero-day safe

T for some unknowrk’ > k (note that determining’

Suser2> <root,1> is intractable). Then, they describe a solution whose
complexity is polynomial in the size of a zero-day at-
Tz > tack graph ifk is a constant compared to this size.
<root.2> However, there are cases in which it is not satisfac-
Figure 2: Example of zero-day attack graph. tory to just knowk’ > k, but more accurate estima-

tions or exact calculation of the value lofs desired.

to re-establish the blocked connection to host 2 and Moreover, those analyses are all based on complete
then exploit ssh on host 2, or the attacker can exploit Zero-day attack graphs, but for really large networks,
a zero-day vulnerability in either http or ssh on host 1--it may even be infeasible to generate the zero-day at-
to obtain the user privilege and then, using host 1 as atack graph inthe first place. The metric then becomes
stepping stone, the attacker can further exploit a zero-impractical in such cases since there is little we can
day vulnerability in ssh on host 2 to reaotot(2), ~ S& aboutthe value & 3

Since this last sequence (ssh on host 1 and then ssh on _The aforementioned intractability result means no
host 2) involves one zero-day vulnerability in the ssh Polynomial algorithm will likely exist for computing
service on both hosts, this network can resist at mostthe exact value ok. However, in this section we
one zero-day attack. Contrary to the previous belief Show that a decision process may still allow secu-
that further hardening this network is not necessary, "ty administrators to obtain good estimations about
this zero-day attack graph shows that further harden-* and to calculate the exact value lofwhen it is

ing may indeed improve the security. For example, Practically feasible. Our main objectives are three-
suppose we limit accesses to the ssh service on host fold. First, .aII the aI.g.orlthms involved in the d_eC|S|on
using a personal firewall or iptables rules, such that an Process Wwill be efficient and have polynomial com-
arbitrary host 0 cannot reach this service from the In- Plexity. Second, all the algorithms will adopt an on-
ternet. We can then imagine that the new attack graphdémand approach to attack graph generation, which
will only include sequences of at least two different Will only generate partial attack graphs necessary for
zero-day vulnerabilities (e.g., the attacker must first the analysis. Third, subsequent algorithms will reuse
exploit the personal firewall or iptables rules before the partial attack graph already generated earlier in
exploiting ssh on host 1). This seemingly unneces- the decision process, thus further improving the over-

sary hardening effort thus can help the network resist &/l efficiency. With those optimizations, we can pro-
one more zero-day attack. vide a better understanding of zero-day vulnerabili-

ties even for relatively large networks. Specifically, in
most practical scenarios, security administrators may
simply want to assesshether the network or specific
4 PROBLEM STATEMENT assets are secure enough such cases, knowing that

kis larger than or equal to a given lower bounday
The exact algorithm for computing thezero-day pe sufficient. However, once it has been confirmed
safety metric presented in (Wang et al., 2010) first thatk > |, a security administrator may want to know
derives a logic proposition of each asset in terms of whether it is possible to compute the exact value of k
exploits by traversing the attack graph backwards. since the problem of computing the exact valueof
Each conjunctive clause in the disjunctive normal js intractable, this may only be possible for relatively
form (DNF) of the derived proposition corresponds small values ofk. Therefore, we need to estimate
to a minimal set of exploits that jointly compromise whetherk is less than a practical upper bound that
the asset. The value &fcan then be decided by ap-

210

An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities

such an attack graph may be infeasible for large net-

sl <@l [moument Seculy works. The idea behind our solution is to combine an
l - exhaustive forward search of limited depth with par-
tial attack graph generation, so that only attack paths
kzusy with up tol zero-day vulnerabilities are generated and
l ves evaluated using the metric. We use connectivity infor-
End —— Findexactk mation to hypothesize zero-day exploits (see Defini-
tion 3) and guide the generation of the graph.
Figure 3: Flowchart of the decision process. Algorithm kodLowerBound(Algorithm 1) takes

)]] _as input a se; of initial conditions on hosts, the set
represents available computational power. Finally, if £+ of known and zero-day exploits, an integer N
this is true, then we can proceeddalculate the ac- yepresenting the desired lower bound on the value of
tual value of k in an efficient wayin the following, k-and a goal conditiomy € C*. It returns a partial

we formalize the three related problems that form the zero-day attack grapB = (EUC, R UR)), and a truth
basis of the above decision process. We describe a5, indicating whetheit > I

solution to each of these problem in the next section. For ease of presentation, we consider problems

Problem 1 (Lower Bound) Given a network N, a with a single goal condition. The generalization to
goal condition g, and a small integer |, determine the case where multiple target conditions need to be
whether k> [is true for N with respect to£ considered at the same time is straightforward and is

Our goal is to identify a lower bound on the value discussed below. Given a sg§ of goal conditions,
of k. This problem is analogous to the practical prob- We can add a dummy explagj, such thagg has each
lem addressed in (Wang et al., 2010), but we do not & < Cg @s a precondition. Then, we can add a dummy
assume the entire attack graph is available. We simply 90@! conditiorncg as the only postcondition &. Itis
assume that the network is defined in terms of initial cléar that the minimum number of zero-day exploits

conditionsC; and known and unknown explois. needed to reach all the conditionsGg corresponds

. to the minimum number of zero-day exploits needed
Problem 2 (Upper Bound) Given a network N, @ {5 yeach the dummy goal conditiag. In fact, asc
goal condition g, and an integer u, find an upper s reachable only from the dummy explejj, all the
bound u on the value of k with respect {p ¢ preconditions o&, must be satisfied, therefore all the

Our goal is to identify an upper bound on the value actual goal conditions i@g must be reached.

of k. We show that, using a heuristic approach, itis |ines 1-6 of algorithmkOdLowerBoundsimply
feasible to compute a good upper bound in polyno- jnitialize the sets of conditions and exploits in the

mial time. If the value ol is below a threshold*, it partial attack graph, the s€hey Of newly satisfied
may then be feasible to compute the exact value of .,n4itions. and the mapping: E UC — 225 \which

Problem 3 (Exact Value) Given a network N, anda associates each exploit or condition with a set of at-
goal condition g such that I< k < u < u* is true for tack paths leading to it, where an attack path is a set
N with respect to g find the exact value of k. of exploits. By defaultji(c) = 0 for all c € Ci. The
setChewWill initially contain all the initial conditions,

In other words, when the value &fis known to) .) !
be bounded and the upper bound is small enough, Weyvhereas in each subsequent iteration of the algorithm

will compute the exact value d¢ leveraging the up- it wil! contain the_conditions implied by exploit vis-
per boundu for pruning, and reusing the partial attack ited in that iteration. The main loop at Lines 7-30

graph generated during previous steps of the decision/térates until the goal condition is reached (Lines 22-
process. Figure 3 shows the role of these three prob-24) Or the set of newly satisfied conditions becomes
lems in the overall decision process. empty — which means that no path with fewer than

| distinct zero-day vulnerabilities can reach the goal
condition. In the first case the algorithm retuffredse
(i.e.,k <), otherwise it returnsrue (i.e.,.k > 1).

Line 8 defines the sk, ey Of unvisited exploits
reachable fronC. An exploit isunvisitedif at least
5.1 Solution for Problem 1 one of its preconditions is iBney. FOr eache € Epey,

Lines 10-12 add edges from all preconditionsdd
The existing solution for this problem assumes that eitself, and Lines 13-14 compute partial attack paths
the entire zero-day attack graph is available (Wang leading to and including. Finally, Line 15 prunes all
et al., 2010), which is impractical since generating attack paths witthor more distinct zero-day vulnerab-

5 PROPOSED SOLUTION

211

SECRYPT 2013 - International Conference on Security and Cryptography

Algorithm 1: kOdLowerBoundCi,E*,|,cg).

Input: SetC; of initial conditions, seE* of known and zero-day exploits, integee N representing the desired lower boundikg@and goal conditiorg € C*.
Output: Partial zero-day attack gragh= (EUC,R; UR;), and a truth value indicating whethiep> |.

. C<—Ci

E«0

L Chew G

. forall ce Cjdo
m(c) « 0

3
4
5
6: end for
7
8
9

N =

. while Cpew # 0 do
Enew < {e€ E| pre(e) C CA pre(e) NCrew# 0}
for all e € Epeydo

/I Unvisited exploits reachable fro@®

for all c € pre(e) do
11: R+ R U{(c,e)} //Addanedgefronttoe
12: end for
13: {c1,...,Cm} < {CcEC| (c,6) ER}
14: m(e) + {PLU...UPnU{e} | P e (c)}
15: m(e) « {Pem(e) | kod(P) < 1) // Prune paths with or more zero-day vulnerabilities
16: endfor
17 Chene0
18: forall e€ Eqews.t.T(€) # 0 do
19: forall c € poste) do
20: R« RU{(ec)} //Addan edge fronetoc
21: Chew < ChenU {C}
22: if c= cg then
23: return G, false
24: end if
25: T(C) ¢ Ueck|(ec)er, T(E)
26: end for
27. endfor
28: C+CUChew
29. E+« EUEqew
30: end while

31: return G,true

ilities. As an exploit needs all the preconditions to be distinct zero-day vulnerabilities, failing the condition

satisfied, an attack path feris constructed by com-
bining an attack path to each precondition.

Once all the newly visited exploits have been pro-

kod(P) < 1), except the pathVssy0,1), (Vssh1,2)
(which includes only one vulnerabilitygy). There-
fore, the next loop on Lines 18-27 will be skipped for

cessed and added to the attack graph, the algorithmexploit (Vssh 0,2) and (Vioot, 1,1) (meaning the par-
considers the new conditions that are implied by such tial attack graph generation stops at those exploits),

exploits. For eacle € Eney such that at least one par-
tial path reaching hask0d(P) < |, and each condi-
tion cin post(e), Lines 20-21 add an edge froeto

c to the graph and updat@ey (Which was reset on
Line 17), and Line 25 computes the s&t) of attack
paths leading ta@ as the union of the sets of attack
paths leading to each of the exploit implyiogunless

c is the goal condition, in which case the algorithm
terminates.

Example 1. When applied to the example shown in
Figure 2, Algorithm KdLowerBound (Algorithm 1)
will basically proceed by each horizontal level of
conditions and exploits, from top to bottom, until it
reaches the second level of exploits (i{@ssh 0,2),
(Vssh 1,2), and (vioot,1,1)). Suppose | is given to
be 2, then obviously all the paths up to now will be

but it continues from explo{¥ssh, 1, 2) (the final result
will depend on whether we assurwgsh, 1, 2) directly
yields(root, 2)).

The complexity of AlgorithmkOdLowerBound
(Algorithm 1) is clearly dominated by the steps for
extending the paths on Lines 13-15. Specifically, the
loop at Line 7 will run at mostC | times; the nested
loop at Line 9 will run| E | times; steps 13-15 will in-
volve at most E |' paths each of which has maximum
possible length of E |. Therefore, the overall com-
plexityisO(|C|-[E|-|E| - |E[)=0(/C|-|E["),
which is polynomial when is given as a constant
(compared to attack graph size).

5.2 Solution for Problem 2

pruned by Line 15 (since each of them includes two In this section, we propose a solution to Problem 2.

212

An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities

As we did for the previous algorithm, instead of build- Line 16-21 try to find an attack path reaching
ing the entire attack graph, we only build the portions the goal condition with the lowest possible number
of the attack graph that are most promising for find- of distinct zero-day vulnerabilities. Since we use an
ing an upper bound on the value kf In order to heuristic approach to prune the search space, the num-
avoid the exponential explosion of the search space —ber of distinct zero-day vulnerabilities in such path
which includes all the sets of exploits leading to the is naturally an upper bound on the minimum num-
goal condition — we design an heuristic algorithm that berk of zero-day vulnerabilities needed to reach the

maintains only the best partial paths with respect to goal. Line 16 uses AlgorithmankedPartitionAlgo-

thek0d metric.

Algorithm kOdU pperBoundAlgorithm 2) builds
the attack graph forward, starting from initial con-
ditions. A key advantage of building the attack

rithm 3) to rank exploits irE by increasing value of

zdu'e) and partition the set into ranked subsets. Then,
Lines 18-21 iteratively explore the partial attack graph
in a depth-first manner, by using the recursive algo-

graph forward is that intermediate solutions are in- rithm DF S (Algorithm 4), starting from the set of ex-

deed estimates of the upper boundkofor interme-

diate conditions. In fact, in a single pass, algorithm

kOdU pperBoundcan estimate an upper bound kn
with respect to any condition i€. To limit the ex-

ploits E; with the smallest values adu).
AlgorithmrankedPartition(Algorithm 3) takes as

input a set of exploitE’ and returns a partitioRg

of E. Line 1 sorts exploits itk by increasing value

ponential explosion of the search space, intermedi- of zdue). Then, Line 2 partition& into an ordered
ate solutions can be pruned — based on some pruningset of setss,. . ., En, such that for each< j <nall
strategy — whereas this would not be possible for an exploits inE; have smaller values afdu() than any

algorithm building the attack graph backwards.
The algorithm takes as input the &tof initial
conditions on hosts, the s&t* of known and zero-
day exploits, and a goal conditiarg € C*. The al-
gorithm returns an upper boundon the value of

exploitinE;.

Algorithm DF S (Algorithm 4) takes as input a set
Estart Of exploits and a goal conditiary € C*, and re-
turns an upper boungon the value ok. We assume
that the partial attack graph and the two mappmQs

k, and also computes a partial zero-day attack graphandzdu)) are global variables.

G=(EUC,R UR)), amappingt: CUE — 22" which

For eache € Egan and eachc € poste), (i)

associates each node in the partial attack graph withLines 4-5 add an edge fro@to c, and update the

attack paths leading to it, and a mappaty: C — N

setCnhew Of Newly reached conditions, (ii) Line 6 com-

which associates each node in the partial attack graphputes the seit(c) of attack paths leading toas the

with an estimate of the upper bound knin this sec-
tion, we assume that Algorithm 2 starts from initial

union of the sets of attack paths leading to each ex-
ploit implying it, and (iii) Line 7 computes an esti-

conditions, but modifying the algorithm to reuse par- matezdu(c) of the upper bound okwith respect ta@
tial attack graphs generated by previous execution of as the smallestduP) over all path$ in 1i(c). If cis
Algorithm 1 is straightforward, and can be done as the goal condition, then the algorithm retuagi(c).

shown for algorithnmkOdValue(Algorithm 5).
Lines 1-8 simply initialize all the components of

If none of the conditions i€ewis the goal condi-
tion, then Line 14 defines a new 98\, Of unvisited

the partial attack graph. Line 1 adds the initial condi- exploits reachable fror@, which has been updated to

tions to the se€ of security conditions in the partial

include all conditions reached froByat. An exploit

attack graph. As the algorithm builds the attack graph, is unvisitedif at least one of its preconditions is in

new conditions will be added 8. Lines 2-3 initial-
ize therequire andimply relationships as empty sets.
For eachc € G;, Lines 5-6 setrt(c) to 0 — meaning

that no exploit is needed to reach initial conditions,

as they are satisfied by default — andiuc) to 0 —

Chew If N0 new exploit is enabled, then the algorithm
return+oo (Line 16), meaning that the goal condition
cannot be reached from the branch of the attack graph
explored in the currentiteration of the algorithm. Oth-
erwise, for eacle € Epey, (i) Lines 19-22 adcek and

meaning that no zero-day exploit is needed to reach edges tefrom each of its preconditions to the partial

initial conditions. Finally, Line 8 setg to the set of
exploits reachable from conditions@ For each ex-
ploit e € E, Lines 10-12 add edges &from each of
its preconditions, Line 13 associatesvith the only
set of exploits leading to it, that ise}, and Line 14
computeszdue) as the number of distinct zero-day
vulnerabilities in{e}, that iskod({e})?.

2For exploits directly reachable from initial conditions,

attack graph, (ii) Lines 23-24 compute the sé&t) of
partial attack paths ending within the same way we
have described for algorithrkOdLowerBound (iii)
Line 25 prunest(e) by maintaining only the top
partial attack paths with respect to tk@d() metric,
and (iv) Line 26 computes an estimaeue) of the
upper bound ork with respect toe as the smallest

zdu(e) is either 1, ifeis a zero-day exploit, or 0, otherwise.

213

SECRYPT 2013 - International Conference on Security and Cryptography

Algorithm 2: k0dU pperBoundCi,E*, cg).

Input: SetG; of initial conditions, seE* of known and zero-day exploits, and goal conditigre C*.

Output: Partial zero-day attack grafgh= (E UC,R, UR;), mappingrn: CUE — ZZE, mappingzdu: C — N, and upper bound on the value ok.
C«+G

PR «0

3. R«0

4: forall ceCido
5 me«o0

6: zduc)«0
7
8
9

Nk

. end for
. E«~{ecE"|pre(e) CC}
. forall ec Edo
10: forall ce pre(e) do
11: R + R U{(c,e)}
12: endfor
13 ne) « {{e}}
14: zdue) « kod({e})
15: end for
16: (Ej,...,En) « rankedPartitio{E)

18: while ¢y ¢CAi <ndo
19: ieit1

20: u«DFSE)

21: end while

22: return- G, (), zdW),u

Algorithm 3: rankedPartitior{E’).

Input: SetE’ of exploits.
Output: PartitionP: of E
11 E ¢ (en....eg) St.(Vi.] € [LIE))(i < | = zdue) < zdue)))

20 P (En....En) St.(Vi,j € [LN)(i < | = (V€ € e’ € Ej)(zdu€) < zdue")))
3: retun Pe

zduP) over all path< in 1i(e). goal condition and returning & 2. As seen in the

Finally, Line 28 uses algorithmankedPartition ~ Previous example, the actual value of k in this sce-
(Algorithm 3) to rank exploits inE by increasing ~ Nario is 1, so u= 2 is a reasonable upper bound,
value ofzdu(e) and partition the set. Then, Lines 30- Which we were able to compute efficiently by build-
33 iteratively explore the partial attack graph in a ing only a partial attack graph.

depth-first manner, by recursively calling algorithm The complexity of Algorithmk0dU pperBound
DFS, starting from the set of exploitg; with the (Aigorithm 2) is clearly dominated by the recursive
smallest values afdu(). execution of algorithnDF S (Algorithm 4), which in

the worst case — due to the adopted pruning strategy

Example 2. When applied to the example shown in _ 54 g processpartial attack paths for each node in
Figure 2, algorithm kdU pperBound (Algorithm 2) - e hartial attack graph. Therefore, the complexity is
will first consider exploits E reachable from the ini- O(t-(|C| + | E |)), which is linear in the size of the

tial conditions (i.e., the first level of exploitg, namely graph whert is constant.
(Vtirewall; 0, F), (Vhttp, 0, 1), (Vssh 0, 1)), and will rank
them by increasing value of zQu Then, assume
that algorithm rankedPartition (Algorithm 3) parti-
tions the set of exploits into subsets of size 1. As
each exploit e on the first level has Zéu= 1, al- When the upper bound on the valuelofs below a
gorithm KdU pperBound will continue building the practical thresholdr*, we would like to compute the
graph starting from any such exploit. If we assume it exact value ok, which is intractable in general. Our
will start from (Virewall, 0, F), then its post-condition solution consists in performing a forward search, sim-
(0,2) will be added to the graph. Subsequent re- ilarly to algorithmk0dLowerBoundstarting from the
cursive calls of algorithm DFS will addvssy, O, 1), partial attack graphs computed in previous steps of
(user2), (vioot,2,2), and (root, 2), thus reaching the the decision process discussed in Section 4. To limit

5.3 Solution for Problem 3

214

An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities

Algorithm 4 DF S(Estart, Cg)-

Input: SetEgan of exploits and goal condition; € C*
Output: Upper boundu on the value ok.
1: Chew< 0
2: for all e Egan do

for all c e postle) do

R «RU{(&0)}

Chew < CrewU {C}

T[(C> — UeeE\(ec)eR T[(e>

2du(C) < MiNper(c) KO(P)

if c=cgthen

return zdu(c)

10: end if
11: endfor
12: end for
13: C+ CUChew
14: Epew« {€€ E|pre(e) CCA pre(e) NCrew# 0}
15: if Enew= 0then
16: return 4o
17: endif
18: forall ec Eyeydo
19: E«EU{e}
20: forall ce pre(e) do
21: R < R U{(ce)}
22: endfor
23. {ci,...,Cm} +{ceC|(ce) eR}
24: - m(e)+ {PLU...uPnU{e} | P € (c))}
25: m(e) « top(m(e),t)
26: zdue) + MiNper(e kOd(P)
27: end for
28: (Ei,...,En) « rankedPartitior{Enew)
29:i+0
30: while ¢g ¢ CAi <ndo
31: i+i+1
32: u+DFSE)
33: end while
34: return u

the search space, compared to a traditional forward6 EXPERIMENTAL RESULTS

search, and avoid the generation of the entire attack

graph, we leverage the upper bound computed by al-|n this section, we present the results of experiments
gorithm k0dU pperBoundto prune paths not lead- e conducted to validate our approach. Specifically,
ing to the solution. In fact, although the valuelof oyr objective is three-fold. First, we evaluated the
is known to be no larger tham, there still may be performance of the proposed algorithms in terms of
many paths with more thedistinct zero-day vulner- processing time in order to confirm that they are effi-
abilities, and we want to avoid adding such paths to cjent enough to be practical. Second, we evaluated the
the attack graph. AlgorithrkOdValue(Algorithm 5) percentage of nodes included in the generated partial
is indeed very similar to algorithkOdLowerBound attack graph compared to the full attack graph, which
Therefore, for reasons of space, we only highlight the shows the degree of savings, in terms of both time and
main differences in our discussion. First, the algo- storage, that may be achieved through our on-demand
rithm takes as input partial attack graphs, instead of generation of attack graphs. Third, we also evaluated
starting from initial conditions. Thus, Line 1 com- the accuracy of estimations made using algorithm
putesCnewas the set of pre-conditions of unvisited ex- kogu pperBoundcompared to the real results ob-
ploits (i.e., exploits not added yet to the attack graph). tained using a brute force approach.

Second, Line 10 prunes all attack paths with more st we show that, as expected, algorithm
thanu distinct zero-day vulnerabilities. Finally, when 041 owerBound is polynomial for given small

the goal condition is reached, the algorithm computes 5 1yes ofl. Specifically, Figure 4 (a) shows that the
the exact value ok as the smallesk0d(P) over all ynning time of algorithmkodLowerBoundgrows

pathsP in Ti(cg). almost quadratically in the size of attack graphs. It

215

SECRYPT 2013 - International Conference on Security and Cryptography

Algorithm 5: kOdValugG, E*, u,cg).

Input: Partial zero-day attack grafh= (EUC,R; UR;), setE* of known and zero-day exploits, integeE N representing the upper bound on the valu& of
computed by algorithrkOdU pperBoundand goal conditiorg € C*.
Output: Updated Partial zero-day attack graph= (EUC,R; UR;), and the exact value &
1. Chew¢ {ceC|PecE,(ce) eR}
2: while Chew# 0 do

3 Enew < {e <€ E|pre(e) C CA pre(e) NCrew# 0} // Unvisited exploits reachable fro®
4 for all e € Epewdo
5: for all ¢ pre(e) do
6: R + R U{(c,e)} // Add an edge fronctoe
7. end for
8 {er,..em} —{ceC|(ce) eR}
9 m(e) « {PLU...UPnhU{e} | P eT(c)}
10: m(e) « {Pem(e) | kod(P) <u) // Prune paths with more thanzero-day vulnerabilities
11. endfor
12: Chenc 0
13: forall e€ Epews.t.T(€) # 0 do
14: for all ¢ € post(e) do
15: R« RuU{(ec)} //Addan edge fronetoc
16: . MEC...U]
17: ‘IT(C) « UeeE\(e,c)eR,- T[<e)
18: if c= cg then
19: return G, Minpeyo) k0d(P)
20: end if
21: end for
22: endfor

23 C+CUChew
24: E+EUEnew

25: end while

—l=1 —l=2 I=3 ----Quadratic regression —l=1—l=2 1=3

18 0.9
16 0.8
= g
T 14 o7
£ 2
gn 7 Zos
@ z
E10 4 Z05
w R? =0.9999 °
£ 8 204
g £
g 6 8o3
a &
4 0.2
2 0.1
0 u T T T T T T T 1 0 T T T T T T T T 1
- 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
Number of nodes Number of nodes
(a) Processing time (b) Percentage of nodes in the partial attack graph

Figure 4: Processing time and percentage of nodes for #igokdd LowerBound/s. number of nodes in the full attack graph
for different values of.

is also clear that the actual running time is quite the percentage of nodes that are generated by algo-
reasonable even for relatively large graphs (e.g., it rithm kOdLowerBoundin performing the analysis.
only takes about 20 seconds to deterntne 3 for a We can see that such a percentage will decrease while
graph with 80,000 nodes). We can also observe that,the size of attack graphs increases, which is desirable
although the value of affects the average running since this reflects higher amount of savings for larger
time of the algorithm, such effect is not dramatic for graphs. It is also clear that although a higher value
such small values of (which may be sufficient in of | will imply less savings (more nodes need to be
most practical cases). This experiment confirms that generated), in most cases the savings are significant
algorithm kOdLowerBoundis efficient enough for (e.g., less than half of the nodes are generated in most
realistic applications. Next, we show how generating cases). This experiment confirms the effectiveness of
partial attack graphs may lead to savings in both time our on-demand approach to generating attack graphs.
and storage cost. Specifically, Figure 4 (b) shows Similarlyy, we now show that algorithm

216

An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities

—t=1 —t=2 —t=5 —t=1 —t=2 —t=3

~
151
3
-

o
®
S
)
©

=
@
S
o
3

B
S
N

e 9 9o ¢
Y

B e
I~}
15}
@

o
S
14
IS

@
S
o
w

Processing time (seconds)
5
8

Percentage of visited nodes

IS
S
o
o

~
S
=)
s

o
o

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 - 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
Number of nodes Number of nodes
(a) Processing time (b) Percentage of nodes in the partial attack graph

Figure 5: Processing time and percentage of nodes for &igokOdU pperBoundvs. number of nodes in the full attack
graph for different values df

kOdU pperBound is polynomial for given small —7nodes —2IMBlgge 121 nodes —341nodes
parameters. Specifically, Figure 5 (a) shows that the 1'5

running time of algorithmkOdU p perBoundgrows 14—\

linearly in the size of attack graphs. B \

The value of represents the number of partial so-
lutions maintained at each step (i.e., the degree of
approximation). It is clear that the actual running
time is very reasonable even for large graphs (e.g.,
it only takes less than 20 seconds for a graph with
almost 90,000 nodes). However, we can also ob- oo £ Y : . o »
serve that the degree of approximation (the value of t
t) will significantly affect the growth of the average Frigyre 6: Approximation ratio d0dU pperBoundvs. t.
running time of the algorithm, which shows a natu-
ral trade-off between accuracy and cost. Next, We giso observe that larger graphs tend to have more ac-
also show how generating partial attack graphs may cyrate results, which is desirable since the analysis
lead to savings for this algorithm. Specifically, Fig- actually becomes relevant for larger graphs. Since
ure 5 (b) shows the percentage of nodes that are genygorithm kodValugG, E*,u,cg) is similar to algo-
erated by algorithnk0dU pperBoundn performing rithm kodLowerBoundexcept that it reuses, instead of
the analysis. We can see that such a percentage reyenerating, attack graphs, we expect its running time
mains relatively stable across different graph sizes. tg pe similar to (lower than) that of the latter and thus

That is, although the absolute number of generated experiments are omitted here for reasons of space.
nodes increases for larger graphs, the ratio remains al-

most constant, which partially justifies the linear run-

ning time of the algorithm. Itis also clear that in most

cases the savings are significant (less than half ofthe/ CONCLUSIONS

nodes are generated in most cases). This experiment

again confirms the effectiveness of our on-demand at- | thjs paper, we have studied the problem of ef-

tack graph generation. ficiently estimating and calculating thiezero-day
Finally, we show the accuracy of algorithm safety of networks. We presented a decision process
kOdU pperBound Specifically, Figure 6 shows the consisting of three polynomial algorithms for estab-
approximation ratio (i.e., the resultobtained using lishing lower and upper bounds kfand for calculat-
the algorithm divided by the real value kfobtained ing the actual value &, while generating only partial
using a brute force method) in the approximation pa- attack graphs in an on-demand manner. Experimental
rametert. We can see that, as expected, such a ratioresults confirm the efficiency and effectiveness of our
decreases when more partial results are kept at eachalgorithms. Although we have focused on theero-
step, resulting in higher accuracy (and higher cost asday safety metric in this paper, we believe our tech-
well). Overall, the approximation ratio is acceptably niques can be easily extended to other useful analyses
low even for a smalt (e.g., the result is only about related to attack graphs. Other future work include
1.4 times the real value df whent = 1). We can fine-tuning the approximation algorithm through var-

Approximation ratio

217

SECRYPT 2013 - International Conference on Security and Cryptography

ious ways for ranking the partial solutions and evalu-
ating the solution on diverse network scenarios.

REFERENCES

ACM Workshop on Quality of Protection (QoP 2006)
volume 23 ofAdvances in Information Securjtyages
31-68, Alexandria, VA, USA. Springer.

Phillips, C. and Swiler, L. P. (1998). A graph-based system

for network-vulnerability analysis. IRroceedings of
the New Security Paradigms Workshop (NSPW 1,998)
pages 71-79, Charlottesville, VA, USA.

Ammann, P., Wijesekera, D., and Kaushik, S. (2002). shahzad, M., Shafigq, M. Z., and Liu, A. X. (2012). A

Scalable, graph-based network vulnerability analy-
sis. InProceedings of the 9th ACM Conference on
Computer and Communications Security (CCS 2002)
pages 217-224, Washington, DC, USA.

large scale exploratory analysis of software vulnera-
bility life cycles. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE
2012) pages 771-781, Zurich, Switzerland.

the risk of using vulnerable components.Rroceed-
ings of the 1st ACM Workshop on Quality of Protec-
tion (QoP 2005) volume 23 ofAdvances in Informa-
tion Security pages 65—-77. Springer.

Dacier, M. (1994) Towards quantitative evaluation of com-
puter security PhD thesis, Institut National Polytech-
nigue de Toulouse.

Greenberg, A. (2012). Shopping for zero-days: A price list
for hackers’ secret software exploifsorbes

Homer, J., Ou, X., and Schmidt, D. (2009). A sound and
practical approach to quantifying security risk in en-
terprise networks. Technical report, Kansas State Uni-
versity.

Ingols, K., Chu, M., Lippmann, R., Webster, S., and Boyer,

J. M. (2002). Automated generation and analysis of
attack graphs. IProceedings of the 2002 IEEE Sym-
posium on Security and Privacy (S&P 200Pgpges
273-284, Berkeley, CA, USA.

The MITRE Corporation (2011). Common Weakness Scor-

ing System (CWS8"). http://cwe.mitre.org/cwss/.
Version 0.8.

Wang, L., Islam, T., Long, T., Singhal, A., and Jajodia, S.

(2008). An attack graph-based probabilistic security
metric. In Atluri, V., editor,Proceedings of the 22nd
Annual IFIP WG 11.3 Working Conference on Data
and Applications Securityvolume 5094 oflecture
Notes in Computer Sciencpages 283-296, London,
United Kingdom. Springer.

S. (2009). Modeling modern network attacks and \yang | . Jajodia, S., Singhal, A., and Noel, S. (2010). k-

countermeasures using attack graphsPioceedings
of the Annual Computer Security Applications Con-
ference (ACSAC 2009ages 117-126, Honolulu, HI,
USA.

Leversage, D. J. and Byres, E. J. (2008). Estimating a sys-
tem’s mean time-to-compromiselEEE Security &
Privacy, 6(1):52-60.

McHugh, J. (2006). Quality of protection: Measuring the
unmeasurable? IRroceedings of the 2nd ACM Work-
shop on Quality of Protection (QoP 20Q§ages 1-2,
Alexandria, VA, USA. ACM.

McQueen, M. A., McQueen, T. A,, Boyer, W. F., and Chaf-
fin, M. R. (2009). Empirical estimates and observa-
tions of Oday vulnerabilities. IProceedings of the
42nd Hawaii International Conference on System Sci-
ences (HICSS 2009Vaikoloa, Big Island, HI, USA.

Mehta, V., Bartzis, C., Zhu, H., Clarke, E., and Wing, J.
(2006). Ranking attack graphs. PRroceedings of
the 9th International Symposium On Recent Advances
In Intrusion Detection (RAID 2006)olume 4219 of
Lecture Notes in Computer Sciengages 127-144,
Hamburg, Germany.

Mell, P., Scarfone, K., and Romanosky, S. (2006). Com-
mon vulnerability scoring systemlEEE Security &
Privacy, 4(6):85-89.

Noel, S. and Jajodia, S. (2004). Managing attack graph
complexity through visual hierarchical aggregation.
In Proceedings of the ACM CCS Workshop on Vi-
sualization and Data Mining for Computer Security
(VizSEC/DMSEC 2004pages 109-118, Fairfax, VA,
USA. ACM.

Pamula, J., Jajodia, S., Ammann, P., and Swarup, V. (2006).
A weakest-adversary security metric for network con-
figuration security analysis. IRroceedings of the 2nd

218

zero day safety: Measuring the security risk of net-
works against unknown attacks. In Gritzalis, D.,
Preneel, B., and Theoharidou, M., editoPspceed-
ings of the 15th European Symposium on Research in
Computer Security (ESORICS 20119lume 6345 of
Lecture Notes in Computer Sciengmges 573-587,
Athens, Greece. Springer.

