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Abstract: A disulfide bond, formed by two oxidized cysteines, plays an important role in the protein folding and structure
stability, and it may regulate protein functions. The disulfide connectivity prediction problem is to reveal the
correct information of disulfide connectivity in the target protein. It is difficult because the number of possible
patterns grows rapidly with respect to the number of cysteines. In this paper, we discover some rules to
discriminate the patterns with high accuracy in various methods. Then, we propose the pattern-wise and pair-
wise BKS (behavior knowledge space) methods to fuse multiple classifiers constructed by the SVM (support
vector machine) methods. Furthermore, we combine the CSP (cysteine separation profile) method to form our
hybrid method. The prediction accuracy of our hybrid method in SP39 dataset with 4-fold cross-validation is
increased to 69.1%, which is better than the best previous result 65.9%.

1 INTRODUCTION

A disulfide bond, also calledSS-bondor SS-bridge,
is a single covalent bond, and it is usually formed
from the oxidation of two thiol groups. In proteins,
only the thiol groups of cysteine residues can form the
disulfide bonds by oxidation. The goal of thedisulfide
connectivity prediction(DCP) problem is to figure out
which cysteine pair would be cross-link from all pos-
sible candidates. It may be conducive to the solution
of the protein structure prediction problem if precise
disulfide connectivity information is available.

There are two main ways for solving the DCP
problem in previous works, pair-wise and pattern-
wise. The pair-wise method focuses on the bonding
potential of each cysteine pair, and encodes the target
according to cysteine pairs. The pattern-wise method
makes a comprehensive survey of the whole connec-
tivity pattern and it usually ranks the connectivity pat-
terns, so the prediction ability may be limited to the
diversity of patterns in a training set.

The pattern-wise DCP task is difficult because
the number of possible connectivity patterns grows
rapidly with respect to the number of cysteines. The
number of possible patterns is given as follows:

N =
C2B

2 ×C2B−2
2 × . . .×C2

2

B!
= (2B−1)!! (1)

whereB is the number of disulfide bonds in the pro-
tein. For instance, if the oxidized state of each cys-
teine is known in advance, thenN = 945 whenB= 5,
andN is up to 10395 whenB= 6. Thus, most studies
restrict the number of disulfide bonds to be from two
to five.

Some statistical analysis (Paul M. Harrison and
Michael J. E. Sternberg, 1994; Chih-Hao Lu et al.,
2007; Leonid A. Mirny and Eugene I. Shakhnovich,
1996; Rotem Rubinstein and Andras Fiser, 2008)
have been applied to the DCP problem. Many re-
searchers tried to solve the problem with machine
learning methods such asneural network(NN) (Pierre
Baldi et al., 2005; Jianlin Cheng et al., 2006; Piero
Fariselli et al., 1999; F. Ferre and P. Clote, 2005;
Pier Luigi Martelli et al., 2002; Alessandro Vullo
and Paolo Frasconi, 2004; Castrense Savojardo et al.,
2013) andsupport vector machine(SVM) (Yu-Ching
Chen et al., 2004; Yu-Ching Chen and Jenn-Kang
Hwang, 2005; P. Frasconi et al., 2002; Jayavardhana
Rama G. L. et al., 2005; Hsuan-Liang Liu and Shih-
Chieh Chen, 2007; Chih-Hao Lu et al., 2007; Chi-
Hung Tsai et al., 2005; Marc Vincent et al., 2008).

Before 2005, many studies (Pierre Baldi et al.,
2005; F. Ferre and P. Clote, 2005) were devoted to
the DCP problem, but most of their accuracies are
less than 50%. In 2005, Zhaoet al. (East Zhao
et al., 2005) utilized the global information in a pro-
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tein, calledcysteine separation profile(CSP), which
is the separations among all oxidized cysteines on a
protein sequence.

In the past, the bonding states of each cysteine
pair are usually used to describe the disulfide pattern
and used as the samples of SVM. Luet al. (Chih-
Hao Lu et al., 2007) call this type of representation
of the disulfide pattern as the CP1 representation. In
2007, Luet al. further proposed a novel concept of
the CP2 representation which use every two cysteine
pairs (four cysteines) as the samples, and applied the
genetic algorithm (GA) to the optimization of feature
selection.

In 2012, Wanget al. (Chong-Jie Wang et al.,
2012) proposed a hybrid model based on SVM and
the weighted graph matching (Piero Fariselli and Rita
Casadio, 2001), with accuracy 65.9%. They extracted
different feature sets depending on whether the num-
ber of disulfide bonds in a protein is odd or even. The
main difference of feature sets for the two submod-
els is the secondary structure information around the
oxidized cysteines.

The rest of this paper is organized as follows. We
introduce some preliminary knowledge, including re-
lated tools and previous works of the DCP problem
in Section 2. In Section 3, we describe our hybrid
method for solving the DCP problem. Our experi-
mental results are shown in Section 4, and we also
compare the prediction accuracy of our method with
the previous works. Finally, our conclusion are given
in Section 5.

2 PRELIMINARY

In this section, we introduce some background knowl-
edge for this paper, including thePosition-Specific
Scoring Matrix (PSSM), support vector machine
(SVM) andbehavior knowledge space(BKS).

2.1 Position-specific Scoring Matrix

Position-Specific Scoring Matrix(PSSM) (Stephen F.
Altschul et al., 1997), also calledprofile, is a scor-
ing matrix derived from a group of aligned protein se-
quences. It represents the similarity of residues in ev-
ery specific position of a query sequence (a target pro-
tein) according to the alignment result of the query se-
quence and the others (probes) in database. Basically,
PSSM is a matrix of sizeN× 20, whereN denotes
the length of a query sequence and every residue in
the query sequence contains a 20-element vector. The
20-element vector respectively represents the scores

of 20 standard amino acids which are substituted for
the position-specific residue of the query sequence.

2.2 Support Vector Machine

Support vector machine(SVM) is a machine learning
method for classification and regression. It was first
introduced by Vapnik (Vladimir N. Vapnik, 1999) in
1999. SVM seeks to create a hyperplane to discrimi-
nate different labels of the data elements (vectors) in
the training set and utilizes the model to predict the la-
bels of target data elements. Each vector is considered
as a point in the feature space, and each dimension of
the coordinates represents one kind of features. To
discover the discriminative features is the key point
of SVM.

For SVM implementation in this paper, we use the
LIBSVM package (Chih-Chung Chang and Chih-Jen
Lin, 2001), which is an easy-to-use tool forsupport
vector classification(SVC) andsupport vector regres-
sion(SVR). The SVC function classifies the data with
their probabilities, and the SVR function generates
the regression value of each target data element.

2.3 Behavior Knowledge Space

Behavior knowledge space(BKS) (Sarunas Raudys
and Fabio Roli, 2003) is a method for fusing multi-
ple classifiers. It builds a look-up table for estimat-
ing the posterior probabilities and every combination
of votes. Assume there arem classifiers composing
an ensemble for a classification task ofn labels. The
BKS table containsnm entries, the number of all pos-
sible combinations ofmclassifiers’ outputs. And each
entry records the distribution ofn true labels in the
training set.

Table 1 illustrates an example of the BKS table for
a 3-label classification problem with two classifiers.
The ’C1’ and ’C2’ represent the outputs from the two
classifiers, and the entries below them show all nine
possible prediction combinations. Cells below ’Real
label’, ’L1’, ’L2’, and ’L3’, are the distribution of the
true labels associated with the predicted label vec-
tors. For example, when ’C1’=’L1’ and ’C2’=’L3’,
the predicted answer of the ensemble is ’L2’ since it
is the most possible label. As another example, if we
have ’C1’=’L3’ and ’C2’=’L2’, the answer goes to
’L3’.

3 ALGORITHMS FOR
CONNECTIVITY PREDICTION

The prediction accuracies of Chung et al. (Wei-Chun
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Table 1: An example of the BKS table.

Predicted label Real label
C1 C2 L1 L2 L3
L1 L1 23 8 2
L1 L2 5 0 4
L1 L3 2 7 1
...

...
...

...
...

L3 L2 1 1 5
L3 L3 1 3 12

Table 2: The feature vector of the permutation order.

Permutations Feature vector
C1-C2-C3-C4 (0.25, 0.5, 0.75, 1)
C1-C3-C2-C4 (0.25, 0.75, 0.5, 1)
C1-C4-C2-C3 (0.25, 1, 0.5, 0.75)

Chung et al., 2009) and Wang et al. (Chong-Jie Wang
et al., 2012) are 63.5% and 65.9%, respectively. It
may be hard to find more features with good discrim-
ination capability for a single SVM method in the
connectivity prediction. However, we may get better
accuracies if we fuse the advantages of the multiple
models.

Our method is based on SVM models, and we use
BKS to fuse these models. The features and cysteine-
pair representation we adopt are inspired by Wanget
al. (Chong-Jie Wang et al., 2012) and Luet al. (Chih-
Hao Lu et al., 2007). In addition, we also combine
the CSP method (East Zhao et al., 2005) to our hybrid
method.

3.1 Feature Extraction

We follow the features used by Wanget al. (Chong-
Jie Wang et al., 2012) and add the new featurepermu-
tation orderfor the model of CP2 representation. The
definition of permutation order is given as follows.

Permutation order: This feature implies the order
of feature extraction in each cysteine window. For ev-
ery cysteine-pair combination in the CP2 representa-
tion, we encode the samples in three permutations il-
lustrated in Table 2. For example,C1-C3-C2-C4 means
that the first and third cysteines form a disulfide bond
in these four cysteines, and the second and fourth
form the other bond. This bond pattern is represented
by (0.25,0.75,0.5,1).

3.2 SVM Method

We implement three SVM models with different fea-
tures, CP1F521, CP1F623 and CP2Label2. Table 3
shows the feature set used in each model. These fea-

tures are encoded by the segments of every cysteine
pair. The cysteine segment is a window centering at
a target cysteine. Many previous works (Yu-Ching
Chen and Jenn-Kang Hwang, 2005; Guantao Chen
et al., 2006; Chao-Chun Chuang et al., 2003; F. Ferre
and P. Clote, 2005; David T Jones, 1999; Jayavard-
hana Rama G. L. et al., 2005; Chih-Hao Lu et al.,
2007; Pier Luigi Martelli et al., 2002; Rotem Rubin-
stein and Andras Fiser, 2008; Chi-Hung Tsai et al.,
2005; Marc Vincent et al., 2008) also adopted the sim-
ilar idea of the window approach. Here we set the
window size to 13.

Table 3: The feature sets used in our three SVM models.
Here, 2k+1 denotes the window size centering at a target
cysteine, whose value is set to 13 in this paper.

Feature size Mx My Mz

Distance of
cysteines

1 Y Y Y

Cysteine order 2 Y
Protein weight 1 Y
Protein length 1 Y
Amino acid
composition

20 Y

PSSM around
cysteine

(2k+1)
×20×2 Y Y Y

Secondary
structure
around cysteine

(2k+1)
×3×2 Y

Permutation
order

4 Y

Total size 521 623 525
x CP1F521 model.
y CP1F623 model.
z CP2Label2 model.

3.3 BKS Methods

We adopt the BKS concept to fuse the classifiers men-
tioned above. We design two BKS models, pattern-
wise BKS and pair-wise BKS, combined with the
probability intervals. The probability intervals for
predicting different proteins are illustrated in Table 4.

The pattern-wise BKS is constructed from the
combinations of the predicted pattern probabilities of
two classifiers, CP1F521 and CP1F623. The pattern-
wise BKS method is used for the prediction of pro-
teins with 2 or 3 bonds. Table 5 illustrates an exam-
ple of the partial pattern-wise BKS table for 2-bond
proteins. For example, in the second row, the proba-
bilities of the predicted pattern 1-1-2-2 for both clas-
sifiers locate in(0.15,0.2). In this case, 5, 3 and 1
proteins have the true patterns 1-1-2-2, 1-2-1-2 and 1-
2-2-1, respectively. Thus, the predicted answer would
be 1-1-2-2. We set the threshold of the pattern sup-
port in the pattern-wise BKS table to 2, and reject to
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Table 4: The probability intervals for BKS methods with
various numbers of bonds, denoted byB.

B Type of BKS Probability intervals

2 Pattern-wise
(0, 0.15, 0.2, 0.25,
0.3, 0.35, 0.5, 1)

3 Pattern-wise (0, 0.25, 0.5, 1)

4 Pair-wise
(0, 0.1, 0.2, 0.3,
0.4, 0.5, 1)

5 Pair-wise
(0, 0.1, 0.2, 0.3,
0.4, 0.5, 1)

give an answer in the case below the threshold. Ta-
ble 6 shows some real examples for 3-bond proteins
whose prediction can be corrected by the pattern-wise
BKS method, while the original predictions made by
the classifiers are wrong.

However, the pattern-wise BKS method is not
suitable for the prediction of every protein. The num-
ber of all possible combinations of patterns grows
rapidly with respect to the number of bonds, so
the number of the training samples is relatively not
enough. We then adopt the pair-wise BKS method
for the prediction of proteins with 4 or 5 bonds. The
pair-wise BKS table records the numbers of the truly
bonded pairs and non-bonded pairs in various prob-
ability intervals from two classifiers, CP1F521 and
CP2Label2. Table 7 shows an example of the partial
pair-wise BKS table for 5-bond proteins. For every
cysteine pair, we advisably adjust the original prob-
ability from CP1F521 method according to the ratio
of the truly bonded pairs in the pair-wise BKS table.
As the experimental results show in the next section,
we get better prediction accuracies if we adopt differ-
ent methods to solve the DCP problem with different
numbers of bonds.

3.4 The Hybrid Method

Instead of large amount of features used by the SVM
method, Zhaoet al. (East Zhao et al., 2005) adopted
only one feature, CSP (cysteine separations profile),
to achieve nearly 50% accuracy in the insufficient
dataset. The CSP of proteinx with 2n oxidized cys-
teines (n disulfide bonds) is defined as

CSPx = (δ1,δ2, . . . ,δ2n−1)

= (ρ2−ρ1,ρ3−ρ2, . . . ,ρ2n−ρ2n−1) (2)

whereρi denotes the sequence position of theith oxi-
dized cysteine in the protein andδi denotes the sepa-
ration distance between oxidized cysteinesi andi+1.

The divergence (D) of two CSPs for two proteins
x andy is defined (East Zhao et al., 2005) as follows:

D =
i=2n−1

∑
i=1

|δx,i − δy,i|. (3)

It shows that the CSP is an important global fea-
ture for the DCP problem. Thus, we also combine
the CSP method to our hybrid method. Our hybrid
method for predicting the disulfide connectivity pat-
tern is described as follows.

Algorithm: Hybrid method for DCP.

Input: A protein sequence and the bonding states of
all cysteines in it.

Output: The predicted disulfide connectivity pat-
tern.

Case 1: For a 2-bond or 3-bond protein.

• Step 1.1: If the query meets the threshold in the
pattern-wise BKS method for fusing the results
of CP1F521 and CP1F623, report this pattern as
the predicted pattern.

• Step 1.2: If the minimum divergence obtained
by the CSP search is less than or equal to the
threshold, report this pattern as the predicted
pattern.

• Step 1.3: For the remaining, take the original
maximum weighted pattern from the CP1F521
method as the predicted result.

Case 2: For a 4-bond or 5-bond protein.

• Step 2.1: If the minimum divergence obtained
by the CSP search is less than or equal to the
threshold, report this pattern as the predicted
pattern.

• Step 2.2: Apply the pair-wise BKS method to
fusing the results of CP1F521 and CP2Label2.
And then report the answer.

4 EXPERIMENTAL RESULTS

In this section, we present the dataset used in our ex-
periments and performance evaluation criteria of the
DCP problem. We aslo show the experimental results.

4.1 Dataset and Performance
Evaluation

For the fair comparison of the prediction accuracy
with previous works, we use SP39 dataset, which is
the same dataset adopted in some previous works. Ta-
ble 8 illustrates the summary of SP39 dataset. This
dataset was first used by Vullo and Frasconi (Alessan-
dro Vullo and Paolo Frasconi, 2004), and it contains
446 proteins with 2 to 5 disulfide bonds, derived from
the SWISS-PROT release no. 39. We also use the
same way as Wanget al.’s (Chong-Jie Wang et al.,
2012) to divide SP39 dataset into 4 disjoint subsets
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Table 5: An example of the partial pattern-wise BKS table for2-bond proteins.

CP1F521 Interval CP1F623 Interval 1-1-2-2 1-2-1-2 1-2-2-1
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0, 0.15) 0 1 0
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.15, 0.2) 5 3 1
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.2, 0.25) 4 0 0
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.25, 0.3) 0 0 0
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.3, 0.35) 0 0 0
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.35, 0.5) 1 0 0
1-1-2-2 (0.15, 0.2) 1-1-2-2 (0.5, 1) 0 0 0

Table 6: Examples for 3-bond proteins corrected by the pattern-wise BKS method.

Proteins Real patterns CP1F521 CP1F623 Predicted by BKS
CXOA_CONMA 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3

HST1_ECOLI 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3
HCYA_PANIN 1-1-2-2-3-3 1-1-2-2-3-3 1-1-2-3-3-2 1-1-2-2-3-3
CXOB_CONST 1-2-3-1-2-3 1-2-1-3-2-3 1-2-1-3-2-3 1-2-3-1-2-3

Table 7: An example of the partial pair-wise BKS table for 5-bond proteins.

Pairs from
CP1F521

Pairs from
CP2Label2

Truly
bonded

Not
bonded

(0.3, 0.4) (0, 0.1) 0 0
(0.3, 0.4) (0.1, 0.2) 0 1
(0.3, 0.4) (0.2, 0.3) 6 5
(0.3, 0.4) (0.3, 0.4) 4 6
(0.3, 0.4) (0.4, 0.5) 6 6
(0.3, 0.4) (0.5, 1) 1 12

Table 8: The summary of SP39 dataset, whereB denotes the number of disulfide bonds.

Number of proteins Number of cysteines
B= 2 B= 3 B= 4 B= 5 B= 2· · ·5 Oxidized Total

SP39* 156 146 99 45 446 2742 4401
* Defined by Vullo and Frasconi (Alessandro Vullo and Paolo Frasconi, 2004).

for the 4-fold cross-validation. The sequence identity
of proteins between any two subsets is less than 30%.

For the measurement of the performance in con-
nectivity pattern prediction, the accuracy is calculated
as follows:

Qp =
Cp

Tp
, (4)

whereCp denotes the number of proteins whose con-
nectivity patterns are correctly predicted, andTp is the
total number of proteins for testing.

4.2 Results

In the CP1F521 method, combined by SVM and the
maximum weighted graph matching (Piero Fariselli
and Rita Casadio, 2001), we find that the prediction
accuracy is very high when the probability of the pre-
dicted pattern is greater than or equal to 0.5 (half).
Thus, before performing our method, the answer is
settled down for these predictions.

Table 9 shows theQp of our methods compared

with previous works in SP39 dataset. The accuracies
of the three SVM models are derived from the patterns
with the maximum weighted graph matching (Piero
Fariselli and Rita Casadio, 2001). However, we find
that it is hard to improve the accuracy by only one sin-
gle SVM model. BKS can play a supporting role in
our method. Although the performance of CP2Label2
is not better than CP1F521or CP1F623, CP2Label2 pro-
vides the effect for pair-wise BKS since CP2Label2
represents another concept of pair extraction. As one
can see in the table, with the help of BKS fusing meth-
ods, the accuracy is improved to 65.9%.

Furthermore, when the divergence of CSP is low,
the prediction confidence is also high. Thus, we set
the applicable thresholds of CSP to pick out the pat-
terns as predicted results. Here, we set the threshold
of CSP to 0, 5, 10, and 15 for proteins with 2 to 5
bonds, respectively. Eventually, the prediction accu-
racy of our hybrid method with SVM, BKS and CSP
reaches 69.1%, a great improvement compared with
the previous results.
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Table 9: TheQp (in %) of our methods and previous works in SP39 dataset.

Method B= 2 B= 3 B= 4 B= 5 B= 2· · ·5
CSPa 72.4 54.1 33.3 17.8 52.2
Wang’s methodb 84.0 60.3 55.6 44.4 65.9
CP1F521 84.0 53.4 55.6 46.7 63.9
CP1F623 78.2 60.3 53.5 44.4 63.5
CP2Label2 75.0 49.3 52.5 40.0 58.1
CP1F521+ BKS 84.0 56.8 55.6 55.6 65.9
CP1F521+ BKS+ CSP 84.0 64.4 57.6 57.8 69.1
a Proposed by Zhaoet al. (East Zhao et al., 2005).
b Proposed by Wanget al. (Chong-Jie Wang et al., 2012).

5 CONCLUSIONS

According to the study of Wanget al. (Chong-Jie
Wang et al., 2012), which focuses SVM models on
varied features, and the concept of different cysteine-
pair representations proposed by Luet al. (Chih-Hao
Lu et al., 2007), we do many integrated experiments,
whose results are not all shown in this paper. How-
ever, the improvement of the pure SVM method is not
so significant although the SVM method is still rela-
tively good among the various methods. Some studies
(Bo-Juen Chen et al., 2006; Yu-Ching Chen, 2007)
combine the SVM method with CSP or sequence
alignment to raise the accuracy. The key step of the
CSP method and the sequence alignment method is
to search for a good template set. However, the ac-
curacy of these two methods deeply depends on the
pattern varieties in the template set.

In this paper, we first gather some statistics about
the disulfide bonds, and have successfully found some
rules to discriminate the patterns with high accuracy
in various methods. Then, we adopt the pattern-wise
and pair-wise BKS methods to fuse multiple SVM
models. In addition, the CSP search method is also
invoked in our method. As the experimental results
show, we think that the hybrid method is one of the
good ways to increase the prediction accuracy in the
DCP problem.

In the future, we may apply our hybrid method
to other datasets, and explore more methods for fus-
ing multiple classifiers such as the weighted majority
vote. We may try the CSP method on the inter-bond
template dataset to explore more possibilities of sub-
pattern development.
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