
Trajectory Pattern Mining in Practice
Algorithms for Mining Flock Patterns from Trajectories

Xiaoliang Geng1, Takeaki Uno2 and Hiroki Arimura1
1Graduate School of IST, Hokkaido University, N14 W9, Kita-ku, Sapporo 060-0814, Japan

2National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Keywords: Trajectory Mining, Spatio-temporal Mining, Depth-first Mining Algorithm, Frequent Itemset Mining.

Abstract: A flock pattern is a spatio-temporal pattern that represents a group of moving objects which are close to each
other in a given time segment (Gudmundsson and van Kreveld, Proc. ACM GIS’06; Benkert, Gudmundsson,
Hubner, Wolle, Computational Geometry, 41:11, 2008). In this paper, we give empirical study of our recent
development of a flock pattern mining algorithmFPM and its modifcations, which are the first purely depth-
first algorithms for flock pattern mining. We implemented two extensions of the basicFPM algorithm, one is
RFPM for a class of closed patterns, calledrightward length-maximalflock patterns, and the other isG-RFPM
with a speed-up technique using geometric indexes. To evaluate their performance, we ran experiments on
synthetic datasets. The experiments demonstrate that the modified algorithms with the above extensions are
several order of magnitude faster than the original algorithm in most parameter settings.

1 INTRODUCTION

1.1 Background

By the rapid progress of mobile devices and positional
sensors, a massive amount of trajectory data, which
are collections of sequences of real-valued locations
with errors and missing values, have been accumu-
lated. Since mining of trajectory data have different
characteristics from traditional transaction data min-
ing (Pei et al., 2004), research of trajectory mining has
attracted a great deal of attention for recent years (Gi-
annotti et al., 2007; Vieira et al., 2009).

A trajectory databaseon a time domainT= [1,T]
is a collectionSof n trajectories forn moving objects,
such as wild animals, walking people, or floating cars,
where each trajectory is a sequence ofT points on the
2-dimensional spaceR2 to which an index called a
trajectory ID is associated. Aflock patternis a spatio-
temporal pattern, introduced by (Gudmundsson and
van Kreveld, 2006), defined as follows. Forr > 0
andk,m≥ 0, calledmin-lenandmin-sup, an(r,k,m)-
flock patternin S is a pairP = (X, [b,e]) of a setX
of trajectory ids and a time intervalI = [b,e] in T that
represents a set of at leastmmoving objects that move
together in a continuous interval of length at leastk

time points in mutual distance at mostr in L∞-norm1.
Most of previous studies on mining flock pat-

terns (Benkert et al., 2008; Gudmundsson and van
Kreveld, 2006; Laube et al., 2005) deal with only
searchingflock patterns in a given trajectory data,
but not mining them. For mining the complete set
of flock patterns with given constraints, (Vieira et al.,
2009) presented a micro-cluster based mining algo-
rithm with memorization, and (Romero, 2011) stud-
ied a mining algorithm built on the top of an existing
frequent itemset mining algorithmLCM (Uno et al.,
2004). Although their algorithms seem depth-first
search algorithms, they do not work in purely depth-
first manner since they require to store intermediate
results on main memory.

In this paper, we focus on pattern-growth ap-
proach for the problem of finding all(r,k)-flock pat-
terns. We develop the first purely depth-first algo-
rithm FPM that can make the complete mining of
flock patterns (Arimura et al., 2013). Particularly, this
paper presents two extensionsRFPM andG-RFPM of
of FPM. The first one,RFPM, finds a class of closed
patterns, calledrightward length-maximal flock pat-
terns, while the second one,G-RFPM, usesspeed-up

1Our (r,k,m)-flock patterns useL∞-distance onR2,
while the original (m,k, r)-flock patterns of Benkertet
al. (Benkert et al., 2008) usedL2-distance onR2

143
Geng X., Uno T. and Arimura H..
Trajectory Pattern Mining in Practice - Algorithms for Mining Flock Patterns from Trajectories.
DOI: 10.5220/0004543401430151
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge
Management and Information Sharing (KDIR-2013), pages 143-151
ISBN: 978-989-8565-75-4
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Examples of a trajectory databaseS1 on ID =
{1, . . . ,5} andT= [1,7] and a(1.0,2,2)-flock patternP1 =

(X1, I1) = ({2,3,4}, [3,5]) with diameter||P1 ||∞
S1 ≤ 1.0,

length len(P1) = 3, and supportsupp(P1) = 3. Here, each
line indicates a trajectory and the numbers attached to points
are time stamps.

technique using geometric indices.
We implemented the basic and the improved al-

gorithms above based on pattern-growth mining ap-
proach. To evaluate these extensions, we then ran ex-
periments on implanted synthetic datasets. The ex-
periments demonstrated that both of extensions sig-
nificantly improve on the efficiency of the original al-
gorithmFPM in a wide range of parameter settings.

For example, in the case of a trajectory database
with 200K points, whereC = 5 copies ofK = 6 hid-
den patterns are embedded into 200 trajectories of
length 1K points, the running times forFPM, RFPM,
and G-RFPM found all patterns in 61.61, 0.96, and
0.03 seconds, respectively. From these results, we ob-
tained around 60 and 30 times speed-ups by the first
and second extensions, respectively, and finally, the
total speed-up becomes around 2,000 times.

This paper is organized as follows. Sec.2 gives
definitions for flock pattern mining including our
rightward length-maximal flock patterns. Sec.3
presents the basic algorithm as well as two improve-
ments. Sec.4 is a main section of this paper that shows
experimental results. Finally, Sec.5 concludes.

2 PRELIMINARIES

2.1 Basic Definitions

LetR andN be the set of all real numbers and all non-
negative integers, respectively. For integersa,b (a≤
b), we denote by[a,b] = {a,a+1, . . . ,b} the discrete
interval betweena andb. If a,b∈R, a≤ b, then[a,b]
denotes a continuous interval inR as usual. For a set
A, |A| denotes the cardinality ofA, andA∗ denotes the
set of all possibly empty, finite sequences overA.

2.2 Trajectory Database

Let n andT ≥ 0 are pre-determined nonnegative in-
tegers, which indicate the number of moving objects
and the maximum value for discrete time stamps, re-
spectively. LetR2 be the 2-dimensional continuous
space, or theplane.

A trajectory databaseon the space domainR2

and the time domainT = {1, . . . ,T} is a finite
set S= { si | i = 1, . . . ,n } ⊆ (R2)T of the trajecto-
ries for n moving objectso1, . . . ,on, where for ev-
ery i = 1, . . . ,n, (i) the index i, called thetrajec-
tory ID, is drawn from a set ofn identifiers ID =
{1, . . . ,n}, and (ii) the i-th trajectory si is a se-
quencesi = si [1] · · ·si [T] ∈ (R2)T of T points on the
2-dimensional spaceR2 such that itst-th point is
si [t] = (xit ,yit) ∈ R

2.

2.2.1 Example 1

In Fig. 1, we show an example of a trajectory database
S, which consists of five trajectories of lengthT = 7.

For example, GPS-trajectories of wild animals,
walking people with Wifi device, Probe car data (or
floating car data) are instances of such trajectory
databases.

2.3 The Class of Flock Patterns

For such trajectory databases, we introduce the class
F P of spatio-temporal patterns, called flock patterns,
based onL∞-norm as follows2. Formally, the class of
flock patterns is defined as follows.

Definition 1 (FP). A flock patternonT is a pairP=
(X, [b,e]), where (i)X⊆ ID is a finite set of ids, called
the ID setof P, and (ii) I = [b,e] is a discrete interval
in [0,T] with b≤ e≤ T, whereb ande are called the
start andend timeof P.

We define the support, length, and width of a flock
pattern as follows. (i) Thesupportof P, denoted by
supp(P), is defined by the number of trajectory (ID)
contained inX, that is,supp(P) = |X|. (ii) The length
of P, denoted bylen(P), is the width of the interval
I , that is, len(P) = e− b+ 1. Clearly, we have 0≤
supp(P)≤ n and 0≤ len(P)≤ T.

2.3.1 Example 2

In Fig. 1, we show an example of a flock pattern
P1 = (X1, I1), where the ID set isX1 = {2,3,4} and
the interval isI1 = [3,5].

2The original version of flock patterns are defined based
on L2-norm in (Laube et al., 2005; Gudmundsson and van
Kreveld, 2006).

KDIR�2013�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

144

To define the width, we require some definitions
below. For a pointp= (x,y) on 2-dimensional plane
R2, the x- and y-coordinates ofp are denoted by by
p.x = x and p.y = y, respectively. For two pointsp
and p′ on R2, we denote theL∞-distance between p
and p′ by L∞(p, p′) = max{|p.x− p′.x|, |p.y− p′.y|}.
By definition,L∞(p, p′) is nonnegative, and coincides
zero if and only ifp= p′.

Thediameterof a setA= {p1, . . . , pn} of points,
denoted by||A||∞, is the maximumL∞-distance be-
tween any two points inA, defined by

||A||∞ = max
p,p′∈A

L∞(p, p
′), (1)

The width||A||∞ of a setA is always nonnegative,
and equals zero if and only ifA consists of a single
point. We can show that||A||∞ is linear time com-
putable inn= |A| on R2. For anyd ≥ 2, ||A||∞ can
be computedO(dn) time inRd, which is still linear in
n for fixedd.

In an input databaseS, thet-th time slice, denoted
by S[X][t], is the set of all points that appear in the
trajectories ofX with time stampt. Thewidth ||P||S∞
of a flock patternP= (X, I) = (X, [b,e]) is defined by
the maximum diameter of thet-th time slice of the
trajectories inX over allt ∈ [b,e]. Actually, we have
the next lemma.

Lemma 1. The width of P can be computed by Al-
gorithm 1 in O(mℓ) time, where m= supp(X) is the
support of P andℓ= len(P) is the length of P.

Algorithm 1 : Computing the width||P||∞
S of a flock pat-

ternP= (X, [b,e]) in a databaseS= {si | i = 1, . . . ,n}.

1: width← 0;
2: for t← b,b+1, . . . ,e do
3: St ← { si[t] | i ∈ X }; ⊲ thet-th slice
4: width←max{width, ||St ||∞};

5: return width;

Let r > 0 be a positive number, andk,m≥ 0 are
non-negative integers, respectively, called amaximum
width (max-width), aminimum length(min-len), and
a minimum support(min-sup) parameters.

Definition 2. An r-flock patternis any flock pattern
P such that||P||∞ ≤ r, An (r,k)-flock patternis any
r-flock patternP with len(P)≥ k.

2.3.2 Example 3

The patternP1 of Fig. 1 in the last example has diam-
eter||P1 ||∞

S1 ≤ 1.0, lengthlen(P1) = 3, and support
supp(P1) = 3. Thus, it is a(1.0,2,3)-flock pattern for
r = 1.0, k= 2, andm= 3.

In this paper, we consider all(r,k)-flock patterns
in a given trajectory database.

2.4 Rightward Length-maximal
Patterns

For a given max-width parameterr ≥ 0, it is often
useful to find only(r,k)-flock patternsP= (X, [b,e])
whose time interval[b,e] are extended rightward
along time line as long as possible preserving the
diameter r (See (Gudmundsson and van Kreveld,
2006)). This idea oflength-maximal miningis ex-
pected to reduce the number of solutions and running
time than just finding all(r,k)-patterns.

A flock patternP= (X, [b,e]) is said to be aright-
ward length-maximalflock pattern inS if its interval
cannot be extended rightward without changing the
width of P in S.

Formally, it is defined as follows.

Definition 3 (RFP). A flock patternP= (X, [b,e]) in
S is a rightward length-maximalflock pattern (RFP,
for short) if there is no other flock patternP′ =
(X, [b,e′]) in S such that (i)P′ has the same ID set
X as P, and (ii) the right end ofP′ is strictly more
larger than that ofP.

By definition, any RFP inS is an FP. However, the
converse does not hold in general. Thus, we have the
inclusionR F P (r,k) ⊆ F P (r,k).

2.4.1 Example 4

In the example of Fig. 1, the flock patternP1 =
(X1, [3,5]) of length three is an RFP inS1, while
P2 = (X1, [3,4]) andP3 = (X1, [3]) are non-rightward
length-maximal FPs, whereX1 = {2,3,4}. On the
other hand,P1 has RFPsP4 = (X1, [4,5]) and P5 =
(X1, [5]).

2.5 The Data Mining Problems

For any class nameC ∈ {F P ,R F P , . . .} and any pa-
rameter valuesr,k≥ 0, we denote byC (r,k) the class
of all (r,k)-flock patterns within the classC . Sim-
ilarly, we define the classesC (r), and C (r,k,m) as
well. From now on, we consider the classesF P (r,k)
andR F P (r,k).

We state our data mining problem as follows.

Definition 4. (FLOCK PATTERN MINING PROBLEM

FOR PATTERN CLASSC) Let C be a class of flock
patterns. An input is a tuple(S, r,k) of an input trajec-
tory databaseS, and parameter valuesr andk≥0. The
task is to find all flock patternsP in S within classC
without repetition that have width at mostr and length
at leastk.

Trajectory�Pattern�Mining�in�Practice�-�Algorithms�for�Mining�Flock�Patterns�from�Trajectories

145

Algorithm 2 : A basic DFS algorithmFPM for finding all
(r,k)-flock patterns in an input trajectory databaseS given
maximum widthr and minimum lengthk.

1: procedure FPM(ID,S, r,k)
2: for ℓ← k, . . . ,T do ⊲ Every length
3: for b0← 1, . . . ,T do ⊲ Each start time inT
4: ℓ0← b0+ ℓ−1;
5: ID1← ID;
6: while ID1 6= /0 do ⊲ Each id inID
7: i0 = deletemin(ID1);
8: P0← ({i0}, [b0, ℓ0]); ⊲ Initial pattern
9: RecFPM(P0, ID1,S, r,k);

10: procedure RECFPM(P= (X, [b,e]), ID,S, r,k)
11: if ||P||∞

S
> r then

12: return ; ⊲ P is too wide
13: output P;
14: ID1← ID;
15: while ID1 6= /0 do
16: i = deletemin(ID1);
17: RecFPM(Q= (X∪{i}, [b,e]), ID1,S, r,k);

18: end while

Similarly, we can consider the flock pattern min-
ing problem with parameters(r,k,m).

We evaluate the performance of a flock pattern
mining algorithmA in terms of enumeration algo-
rithms (Avis and Fukuda, 1993). LetN andM be the
input size and the number of patterns as solutions. A
pattern mining algorithmA is said to havepolynomial
delay(poly-delay) if thedelay, which is the maximum
computation time between two consecutive outputs, is
bounded by a polynomialp(N) in N. A is of polyno-
mial space(poly-space) if the maximum size of its
working space, in addition to that of output streamO,
is bounded by a polynomialp(N).

3 ALGORITHMS

In this section, we present our pattern mining algo-
rithms for FPs and RFPs. We also give a speed-up
technique using geometric indexes to prune redundant
candidates.

3.1 A Basic DFS Algorithm for FPs

We first present a basic mining algorithmFPM (ba-
sic flock pattern miner) for FPs. In Algorithm 2
we present the algorithmFPM with its subprocedure
RecFPM for mining (r,k)-FPs.

In the overall design of our algorithmFPM, we
employ DFS (depth-first search) procedure according

to pattern growth approach (e.g., (Pei et al., 2004)) ap-
proach, as in PrefixSpan (Pei et al., 2004), Eclat (Zaki,
2000) and LCM (Uno et al., 2004).

In DFS (or pattern growth) approach, a recursive
mining procedure searches for all descendant of the
current pattern from smaller to larger in depth-first
manner using backtracking. The advantage of DFS
approach is that DFS miners are proven fast in main
memory environment and can be easily implemented
as a simple recursive procedure.

At the top-level ofFPM, for each possible length
ℓ ∈ [k,T] no less thank, it invokes the recursive sub-
procedureRecFPM given as arguments an initial pat-
ternP0 = (X0, [b0,e0]) consisting of a singleton ID set
X0 = {i0} and an interval[b0,e0] for every possible
combination ofi0 ∈ ID andb0 ∈ [0,T]. The end time
e0 is calculated byb0 andℓ.

The recursive subprocedureRecFPM is a DFS al-
gorithm (or a backtracking algorithm) that searches
the hypothesis space of allr-flock patterns with length
exactlyℓ as follow.

Starting from the initial patternP0 = (X0, [b0,e0])
consisting of a singleton ID setX0 = {i0}, the
procedure enumerates all subsetsX of ID using a
backtracking algorithm similar to depth-first search
algorithms for frequent itemset mining, such as
Eclat (Zaki, 2000) and LCM (Uno et al., 2004).

For each generated subsetX, the procedure forms
a candidate(r,k)-flock patternP = (X, [b,e]) with a
specified interval[b,e]. Then, the algorithm computes
the width||P||∞ of the patternP by accessing the tra-
jectories inS, and checks ifP satisfies the width con-
straint||P||∞ ≤ r. If the condition is violated, then it
prunes the search forP and all of its descendants.

This width-based pruning ruleis justified by the
following lemma, which says the class of(r,k)-
patterns has the anti-monotonicity w.r.t. set inclusion
of their ID sets.

Lemma 2(anti-monotonicity). Let Pi =(Xi , Ii) be two
flock patterns, where i= 1,2. If P2 is an (r,k)-flock
pattern in S and if X1 ⊆ X2 and I1 ⊆ I2 hold, then P1
is also an(r,k)-flock pattern in S.

From this lemma, once a candidate patternP =
(X, I) does not satisfy the width and length con-
straints, any descendant ofP obtained by adding new
trajectory (ids) toX no longer satisfies the constraints.
Therefore, we can prune the whole search sub-space
for descendants ofP for (r,k)-flock patterns.

On the running time and space of the algorithm
FPM, The following proposition is easily derived
from our manuscript (Arimura et al., 2013).

Proposition 1. (Arimura et al., 2013) Let S be an in-
put trajectory database S of n trajectories with length
T . Then, the algorithmFPM in Algorithm 2 solves the

KDIR�2013�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

146

flock pattern mining problem for the classF P M (r,k)
of (r,k)-flock patterns in S. It uses O(knT2) time per
pattern and O(k2) words of space, respectively, where
k= supp(X) = |X| is the support of the pattern X be-
ing enumerated.

From the practical view,O(T2) term in the time
complexity ofFPM is too large to apply it to long tra-
jectories with largeT. We point that thisO(T2) term
come from the doubly nested for-loop in Lines 2 and 3
of Algorithm 2. In the next subsection, we will see
how we can remove thisO(T2) term by focusing on
mining of RFPMs.

3.2 A Modified Algorithm for RFPs

Next, we present a modified mining algorithmRFPM
(rightward flock pattern miner) for RFPs (rightward
length-maximal flock patterns), the class of rightward
length-maximal flock patterns. In Algorithm 4, we
present the algorithmRFPM with its subprocedure
RecRFPM for mining (r,k)-RFPs.

3.2.1 Rightward Horizontal Closure

From the view of frequent pattern mining, RFPs in a
trajectory database are a sort ofclosed patterns, which
have been extensively studied in frequent itemset
mining (FIM) field (Uno et al., 2004; Zaki and Hsiao,
2005) as well as formal concept analysis (FCA) field.
Many efficient closed pattern mining algorithms use
a class of operation, calledclosureoperation, which
enlarge a given, possibly non-closed pattern to obtain
its closedversion.

For RFPs, we actually have arightward horizontal
closureoperation that extends the interval of a given
non RFPs to obtain a proper RFP.

Definition 5 (rightward horizontal closure). Let P=
(X, I = [b,e]) be any flock pattern in a databaseS.
Then, therightward horizontal closureof P in S, de-
noted byRH Closure(P;S, r), is the unique flock pat-
ternPmax= (X, I = [b,emax]) such thatemax∈ [0,T] is
the maximum value of end positione′ satisfying the
equality

||P′ = (X, [b,e′]) ||∞ = ||P||∞. (2)

Note that the rightward horizontal closure opera-
tion only change the end positione, but not change
the ID setX or starting timeb of the originalP at all.

In Algorithm 3, we show the procedure
RH Closure that computes the rightward hori-
zontal closure of non-RFPP in O(kℓ) time, where
k= supp(P) = |X|= O(n) andℓ= len(Pmax) =O(T).

The following lemmas show the correctness of the
rightward horizontal closure. First, the key of the cor-

Algorithm 3 : An algorithm for computing the unique right-
ward length-maximal flock pattern. Note that||S[X][t] ||∞ is
defined to be∞ for t 6∈ [1,T].

1: procedure RH CLOSURE((X, [b0,e0]);S, r)
2: t← b0;
3: while ||S[X][t] ||∞ ≤ r do
4: t← t +1;
5: b← b0; e← t−1;
6: return (X, [b,e]);

rectness is the following characterization, which can
be easily shown from definition of RFPs.

Lemma 3(characterization). Let P= (X, [b,e]) be an
(r,k)-flock pattern in S. Then, P is rightward length-
maximal if and only if

• ||S[X][t] ||∞ ≤ r for all t ∈ [b,e], and
• ||S[X][e+1] ||∞ > r,

where we extend the t-th time slice||S[X][t] ||∞ to be∞
if either t< 1 or t > T holds for convenience.

From the above lemma, we have the correctness
below.

Lemma 4. (Arimura et al., 2013) The rightward
horizontal closure Pmax of a possibly non-rightward
length-maximal r-FP P is the unique longest r-RFP
such that the ID sets and the start time are identical
to those of P.

Since len(Pmax) ≥ len(P) always holds forPmax,
we see that ifP satisfies the(r,k)-constraint then
so does the obtained RFPPmax. Hence,Pmax is the
unique longest(r,k)-RFP version ofP that share the
ID set and start time.

3.2.2 Putting them Together

We describe the computation done by the algorithm
RFPM. The overall structure ofRFPM is almost iden-
tical to the basic algorithmFPM. Given a databaseS,
the main algorithmRFPM invokes the recursive sub-
procedureRecFPM with an initial patternP0 as be-
fore.

Only the difference in the top level is thatRFPM
iterates onlyO(T) iteration here for the start position
b0 rather thanO(T2) iteration inFPM using an ini-
tial patternP0 = ({i0},b0,∗) with missing end posi-
tion e0 = ∗, called apartial patternhere.

The computation of the recursive subprocedure
RecRFPM proceeds in the following steps.

• Receiving a partial RFPP∗ = (X,b,∗) as argu-
ments, the recursive procedureRecFPM computes
the rightward horizontal closureP = (X, [b,e])
from P∗ by the procedureRH Closure with max-
width r.

Trajectory�Pattern�Mining�in�Practice�-�Algorithms�for�Mining�Flock�Patterns�from�Trajectories

147

Algorithm 4 : An algorithm RFPM for finding all length-
maximal(r,k)-flock patterns appearing in a given trajectory
databaseS with ID for maximum widthr and minimum
lengthk.

1: procedure RFPM(ID,S, r,k)
2: for b0← 1, . . . ,T do ⊲ Each start time inT
3: for i0← 1, . . . ,n do ⊲ Each id inID
4: P0 = ({i0}, [b0,∗]);
5: RecRFPM(P0, ID,S, r,k);

6: procedure RECRFPM(P= (X, [b,∗]), ID,S, r,k)
7: P= (X, [b,e])← RH Closure((X, [b,∗]);S, r);
8: if len(P)< k then
9: return ; ⊲ P is not an(r,k)-flock pattern

10: output P;
11: ID1← ID;
12: while ID1 6= /0 do
13: i = deletemin(ID1);
14: P1 = (X∪{i}, [b,∗]);
15: RecRFPM(P1, ID1,S, r,k);

16: end while

• Next, if the obtained RFPP satisfies (r,k)-
constraints, then output it. Otherwise, we safely
prune all descendants as before.

• Finally,RecFPM recursively calls its copy with an
extended patternP1 = (X ∪ {i}, [b,∗]). To avoid
duplicated generation of patterns, the idi is re-
moved from the universeID.

From a similar argument to (Uno et al., 2004)
based on reverse search technique of (Avis and
Fukuda, 1993), we have the following time and space
complexities ofRFPM.

Theorem 2. (Arimura et al., 2013) Let S be an
input trajectory database S of n trajectories with
length T . Then, the algorithmRFPM in Algorithm 4
solves the flock pattern mining problem for the class
R F P M (r,k) of (r,k)-flock patterns in S. It uses
O(knT) time per pattern and O(k2) words of space,
respectively, where k= supp(X) = |X| is the support
of the pattern X being enumerated.

We can generalizeRFPM for the case of thed-
dimensional spaceRd for everyd≥ 1 with extraO(d)
factor in time and space by only modifying the proce-
dureRH Closure for Rd.

3.3 Speed-up using Geometric Index

In this subsection, we present a speed-up tech-
nique using geometric index inR2, calledgeometric
database reduction, which achieve order of magni-
tude acceleration of both ofFPM and RFPM algo-

Algorithm 5 : An algorithmG-RFPM for finding all length-
maximal(r,k)-flock patterns appearing in a given trajectory
databaseS with ID for maximum widthr and minimum
lengthk.

1: procedure G-RFPM(X,b,k, ID,S, r,k)
2: Let S= { si | i = 1, . . . ,n};
3: for b0← 1, . . . ,T do ⊲ Each start time inT
4: Build a grid index for point setU ← S[b0];
5: ⊲ The time slice at timeb0
6: for i0← 1, . . . ,n do ⊲ Each id inID
7: p← si0[b0]; δ← r; ⊲ initial point p
8: R← [p.x−δ, p.x+δ]×[p.y−δ, p.y+δ];
9: ⊲ 2r×2r-query rectangle at centerp

10: ID0←U.Range(R); P0← ({i0}, [b0,∗]);
11: RecRFPM(P0, ID0,S, r,k);

12: end
13: end

rithms, which is orthogonal to the rightward horizon-
tal closure technique.

In Algorithm 5, we present our modified mining
algorithmG-RFPM (grid-based flock pattern miner)
based onRFPM using geometric constraint on the 2-
dimensional plane for(r,k)-patterns. The algorithm
usesRecFPM in Algorithm 5 as subprocedure.

Given a trajectory databaseS, maximum width
r > 0 and minimum lengthk as arguments, the al-
gorithmG-RFPM starts with selecting a combination
of a trajectory idi0 in ID and a starting timeb0 in
T= [1,T] as in the originalFPM or RFPM.

Let i0∈ ID andb0∈ [1,T] be any pair of trajectory
ID and start time. Then, we know that the trajectory
si0 starts from the pointc = si0[b0] in the database.
Now, we assume to find any(r,k)-flock pattern of the
form P = (X, [b0,∗]) be any(r,k)-pattern such that
i0 ∈ X in the database.

From theL∞-geometry of the planeR2, we can
show that any trajectoryi in ID must be contained in
the rectangleR= R(c,2r) of size 2r×2r given by

R(c,2r) = [x−δ,x+δ]×[y−δ,y+δ]⊆ R
2, (3)

wherex= p.x, y= p.y, andδ= r. Consider thet = b0
time sliceU of S, that is, the setU of all points with
the specified timet = b0, given by

U = { p= si [t] |si ∈ S, i ∈ ID, t = b0}. (4)

Let P= (X, [b,e]) with b= b0 be any target(r,k)-
flock patterns inS. For any trajectory IDi, if the ID
i belongs toX then the corresponding trajectorysi
starts from any point inU ∩R(c,2r). Therefore, we
can reduce the original domainID of candidate IDs
for X to the following smaller sub-domain

ID(R) = { i ∈ ID | pi = si [b0] ∈U ∩R}. (5)

KDIR�2013�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

148

By using an appropriate geometric index, such as
quad trees or range trees, we can computeID(R) by
making the range query

ID(R) =U.Range(R) (6)

in q=O(log2 σ) time by quad trees, orO(log2n) time
by range trees usingO(nlogn) time preprocessing of
S, wheren = |U | = |S| and σ = ||U ||∞ are theL∞-
diameter of points inU . Then, the total overhead be-
comesO(N log2n) time (Arimura et al., 2013), which
is linear in input sizeN with polylogarithmic factor.

As shown in Sec. 4, the above modification on
RFPM to obtain G-RFPM greatly reduces the time
complexity of the algorithm.

4 EXPERIMENTS

We ran experiments on synthesis datasets to evaluate
the efficiency of our algorithms.

4.1 Data

We generated a sets of implanted synthesis trajectory
datasets using our data generator implemented in C++
as follows. Letn= 200 andT = 200. Our data set is
a collection of random trajectories in whichC copies
of random patterns are implanted as follows. We first
fixed a×a areaA in the plane, wherea = 40.0, and
then generated a set ofn trajectories of lengthT by
uniform distribution onA. Then, we embedC copies
of each ofK random short trajectories of lengthL∗
are implanted in some of generated trajectories, where
location of the copies are randomly perturbed within
width r∗. In our experiments, we setC = 5, K = 6,
L∗ = 20, andr∗ = 1.0. The other parameters are var-
ied in experiments.

4.2 Methods

We implemented our algorithmsFPM (BFPM),RFPM
(BFPM R), andG-RFPM (GFPM R) of Sec. 3 in C++.
We also implemented a simple grid-based geometric
index in C++, where the plane is divided intob×b
grid cells, and cells are looked up by constant time
random access followed by sequential scan of a point
list, whereb= 5 most time.

We compiled the above programs by g++ of GNU,
version 4.6.3. We used a PC with Intel(R) Xeon(R)
CPU E5-1620, 3.60GHz with 32GB of memory on
OS Ubuntu Linux, version 12.04. We used the follow-
ing default parameters otherwise stated: Data mining
algorithm use widthr = 1.0, lengthk = 20, and and
min-sup ism= 5 for patterns.

In the experiments, we varied as data parameters,
the numbern and lengthT of input trajectories, and
as mining parameters, the minlenk, minsupm, and
minwid r. We used default values for other values.
We note that in Exp 1a and Exp 1b, only the number
of false random trajectories is varied, while the num-
bersC andK of the copies and the true patterns are
kept constant. In plots below, each line indicates the
running time, while the number attached to each mark
indicates the number of solutions.

4.3 Results A: The Speed-up by
Rightward Length-maximal Flock
Patterns

In this subsection, we examine the effect of mining
of RFPs (rightward length-maximal flock patterns)
introduced in Sec. 3.2, compared to mining of FPs
(original flock patterns). For the purpose, we measure
the number of solutions and the running time by run-
ning RFPM (BFPM R, in plots) of Sec. 3.2 for min-
ing all RFPs with length≥ k, compared to basicFPM
(BFPM) of Sec. 3.1 for mining all FPs with length
≥ k.

4.3.1 Exp 1a

In Fig. 2, we show the running time and the number of
patterns of by varying the number of points of input
sizen from 60 to 100 trajectories.

Num of Points * 100

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

1074

1074

1074

1074

1074

120 140 160 180 200

0
1
0

2
0

3
0

4
0

5
0

6
0

6 6 6 6 6

BFPM EXACTLEN

BFPM R MINLEN

Figure 2: Exp 1a: The running time (and the number of
patterns by mark) by algorithmsFPM (BFPM) for FPs and
RFPM (BFPM R) for RFPs by varying the the total number
n of input points from 12K to 20K points, where a number
attached to each mark indicates the number of solutions.

4.3.2 Exp 2a

In Fig. 3, we show the running time by varying the
length of input trajectory database from 100 to 200

Trajectory�Pattern�Mining�in�Practice�-�Algorithms�for�Mining�Flock�Patterns�from�Trajectories

149

Length of DB * 100

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

474

594

714

834

954

1074

1 1.2 1.4 1.6 1.8 2

0
3
0

6
0

9
0

1
2
0

1
6
0

2
0
0

6 6 6 6 6 6

BFPM EXACTLEN

BFPM R MINLEN

Figure 3: Exp 2a: The running time (and the number of
patterns by mark) by algorithmFPM (BFPM) for FPs and
RFPM (BFPM R) for RFPs varying the lengthT of input tra-
jectories from 100 to 200 points, where a number attached
to each mark indicates the number of solutions.

trajectories.
From Exp 1b and Exp 2 above, we see that the

algorithmRFPM exactly detect the numberK = 6 of
true patterns, whileFPM detects the larger numbers
depending onn.

4.3.3 Summary of Results A

Overall, RFPM with RFPs is around 50 times faster
thanFPM with FPs as well as the number of RFPs is
around 100 times smaller than that of FPs at maxi-
mum in our experiments.

4.4 Results B: The Speed-up by
Geometric Database Reduction

In this subsection, we examine the speed-up by ge-
ometric database reduction technique introduced in
Sec. 3.3. The task is mining all RFPs in a database.
We compared two algorithmsRFPM (BFPM R, in
plots) of Sec. 3.1 andG-RFPM (GFPM R, in plots) of
Sec. 3.3, without and with geometric database reduc-
tion, respectively. Note that the numbers of solutions
are same between two algorithms since they solve the
same task.

4.4.1 Exp 1b

In Fig. 4, we show the running time and the number of
patterns by varying the numbern of input points from
20K to 200K points, whereT = 200. For example,
in the case of the input with 200K points, the running
times forRFPM andG-RFPM are 61.61 (sec) and 0.96
(sec), respectively, resulting around 70 times speed-
up.

Num of Points * 100

R
u
n
n
in

g
 T

im
e
 (

s
e
c
)

6 6 6 6 6 6

200 560 920 1280 1640 2000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

6 6

6

6

6

6
GFPM R MINLEN

BFPM R MINLEN

Figure 4: Exp 1b: The running time (and the number of
patterns by mark) by algorithmsRFPM (BFPM R) andG-
RFPM (GFPM R) for RFPs by varying the the total number
n of input points from 20K to 200K points.

4.4.2 Summary of Results B

Overall, in the task of mining RFPs, the modified al-
gorithm G-RFPM with geometric database reduction
improves the performance ofRFPM more than ten to
70 times on the basic algorithmFPM.

4.4.3 Summary of Results A and B

From Fig. 2 of Exp 1a and Fig. 4 of Exp 1b, in the case
of the input with 200K points (small dataset), the run-
ning times forFPM, RFPM, andG-RFPM are 61.61,
0.96, 0.03 (sec), respectively. From these timing, the
speed-ups fromFPM to RFPM andRFPM to G-RFPM
were around 64 times and 32 times. Overall, we ob-
tained the total speed-up of around 2,000 times from
the basicFPM to most advancedG-RFPM.

5 CONCLUSIONS

In this paper, we showed empirical study of the tra-
jectory mining algorithmFPM based on thepattern-
growth approach(Pei et al., 2004). We implemented
two improvements ofFPM. The experiments demon-
strated that these improved algorithms achieved order
of magnitude speed-up on artificial data sets.

REFERENCES

Arimura, H., Geng, X., and Uno, T. (2013). Efficient min-
ing of length-maximal flock patterns from large trajec-
tory data. Manuscript, DCS, IST, Hokkaido Univer-
sity. http://www-ikn.ist.hokudai.ac.jp/∼arim/papers/
flockpattern201303.pdf.

KDIR�2013�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

150

Avis, D. and Fukuda, K. (1993). Reverse search for enu-
meration.Discrete Applied Math., 65:21–46.

Benkert, M., Gudmundsson, J., Hubner, F., and Wolle, T.
(2008). Reporting flock patterns.Computational Ge-
ometry, 41:111–125.

Giannotti, F., Nanni, M., Pinelli, F., and Pedreschi, D.
(2007). Trajectory pattern mining. InProc. KDD’07,
pages 330–339. ACM.

Gudmundsson, J. and van Kreveld, M. (2006). Comput-
ing longest duration flocks in trajectory data. In
Proc. ACM GIS ’06, pages 35–42. ACM.

Laube, P., van Kreveld, M., and Imfeld, S. (2005). Find-
ing REMO — detecting relative motion patterns in
geospatial lifelines. InSpatial Data Handling, pages
201–215.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H.,
Chen, Q., Dayal, U., and Hsu, M.-C. (2004). Mining
sequential patterns by pattern-growth: The prefixspan
approach.IEEE TKDE, 16(11):1424–1440.

Romero, A. O. C. (March 2011). Mining moving flock pat-
terns in large spatio-temporal datasets using a frequent
pattern mining approach. Msc. Thesis, U. Twente.

Uno, T., Asai, T., Uchida, Y., and Arimura, H. (2004). An
efficient algorithm for enumerating closed patterns in
transaction databases. InProc. DS’04, LNCS 3245,
pages 16–31.

Vieira, M. R., Bakalov, P., and Tsotras, V. J. (2009). On-line
discovery of flock patterns in spatio-temporal data. In
Proc. GIS’09, pages 286–295. ACM.

Zaki, M. J. (2000). Scalable algorithms for association min-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 12(3):372–390.

Zaki, M. J. and Hsiao, C.-J. (2005). Efficient algorithms
for mining closed itemsets and their lattice structure.
IEEE TKDE, 17(4):462–478.

Trajectory�Pattern�Mining�in�Practice�-�Algorithms�for�Mining�Flock�Patterns�from�Trajectories

151

