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Abstract: A flock pattern is a spatio-temporal pattern that represents a group of moving objects which are close to each
other in a given time segment (Gudmundsson and van Kreveld, Proc. ACM GIS’'06; Benkert, Gudmundsson,
Hubner, Wolle, Computational Geometry, 41:11, 2008). In this paper, we give empirical study of our recent
development of a flock pattern mining algorittfRM and its modifcations, which are the first purely depth-
first algorithms for flock pattern mining. We implemented two extensions of the Basicalgorithm, one is
RFPM for a class of closed patterns, calléghtward length-maximaflock patterns, and the other@&RFPM
with a speed-up technique using geometric indexBs evaluate their performance, we ran experiments on
synthetic datasets. The experiments demonstrate that the modified algorithms with the above extensions are
several order of magnitude faster than the original algorithm in most parameter settings.

1 INTRODUCTION time points in mutual distance at masn L,-normt.
Most of previous studies on mining flock pat-
1.1 Background terns (Benkert et al., 2008; Gudmundsson and van

Kreveld, 2006; Laube et al., 2005) deal with only
| searchingflock patterns in a given trajectory data,
pbut notmining them. For mining the complete set

are collections of sequences of real-valued locations ©f flock patterns with given constraints, (Vieira et al.,
with errors and missing values, have been accumu-2009) presented a micro-cluster based mining algo-

lated. Since mining of trajectory data have different "ithm with memorization, and (Romero, 2011) stud-

characteristics from traditional transaction data min- 1€d @ mining algorithm built on the top of an existing

ing (Pei et al., 2004), research of trajectory mining has fréguent itemset mining algorithiccM (Uno et al.,
attracted a great deal of attention for recent years (Gi- 2004).  Although their algorithms seem depth-first

annotti et al., 2007; Vieira et al., 2009). search algorithms, they do not work in purely depth-
A trajectc;ry datébasen atim’e domaiff = [1,T] first manner since they require to store intermediate

is a collectionSof n trajectories fon moving objects ~ "€Sults on main memory.

such as wild animals, walking people, or floating cars, ~ In this paper, we focus on pattern-growth ap-
where each trajectory is a sequenc@ gfoints onthe ~ Proach for the problem of finding aft, k)-flock pat-
2-dimensional spac&? to which an index called a  térns. We develop the first purely depth-first algo-
trajectory ID is associated. flock patterris a spatio- ~ ithm FPM that can make the complete mining of
temporal pattern, introduced by (Gudmundsson and flock patterns (Arimura et al., 2013). Particularly, this
van Kreveld, 2006), defined as follows. For> 0 paper presents two extensidREPM andG-RFPM of
andk, m> 0, calledmin-lenandmin-sup an(r,k, m)- of FPM. The firs_t oneRFPM, finds a qlass of closed
flock patternin Sis a pairP = (X, [b,€]) of a setX patterns, calledightward length-maximal flock pat-
of trajectory ids and a time intervhl= [b,e] in Tthat ~ terns while the second on&-RFPM, usesspeed-up
represents a set of at leastmoving objects that move

together in a continuous interval of length at lelast 1our (r,k,m)-flock patterns usel.-distance onR?,
while the original (m k,r)-flock patterns of Benkeret

al. (Benkert et al., 2008) usdg-distance orR?

By the rapid progress of mobile devices and positiona
sensors, a massive amount of trajectory data, whic
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Temporal domain T =[1, 5] Trajectory database 2.2 Trajectory Database
Trajectory ids ID ={1,2,3,4,5)  S=1{51,52 55,84 85}
7
RN ! s s 6 LetnandT > 0 are pre-determined nonnegative in-
? 3 R, 7 tegers, which indicate the number of moving objects
S o Lt g 6 and the maximum value for discrete time stamps, re-
R /% A 1o spectively. LetR? be the 2-dimensional continuous
,1_,*'/39 5-5\ o space, or thelane
S' 2 |3 /3/ 6 A trajectory databaseon the space domaiR?
{5 \\6 Y and the time domairl = {1,...,T} is a finite
? ° 7 Faliom parameters setS={s|i=1,....,n} C (R?)T of the trajecto-
A 5512 longth p=3 ries for n moving objectso;,...,0,, where for ev-
. . *supporty =3 eryi=1,....,n, (i) the indexi, called thetrajec-
Figure 1: Examples of a trajectory databa&eon ID = tory ID, is drawn from a set ofi identifiersID =
{1,...,5} andT = [1,7] and a(1.0, 2, 2)-flock patternP; = {1,...,n}, and (i) thei-th trajectorys is a se-

(X,11) = ({2.3,4},[3,5)) with diameter||PL||l»™> <10, quences = s(1].--s[T] € (R2)T of T points on the

lengthlen(P;) = 3, and supporsupgP;) = 3. Here, each i ; 2 ot .
line indicates a trajectory and the numbers attached tdgoin g[;j]lme(r;sm})/n?leslggcﬁ such that itst-th point is
= Xit, Yit .

are time stamps.

technique using geometric indices 2.2.1 Example 1

We implemented the basic and the improved al- _ 4
gorithms above based on pattern-growth mining ap- In F|gl. 1, we show an.exam_ple of_a trajectory database
proach. To evaluate these extensions, we then ran ex~> Which consists of five trajectories of length= 7.
periments on implanted synthetic datasets. The ex- For example, GPS-trajectories of wild animals,
periments demonstrated that both of extensions sig-Walking people with Wifi device, Probe car data (or
nificantly improve on the efficiency of the originalal-  floating car data) are instances of such trajectory
gorithmFPM in a wide range of parameter settings. ~ databases.

For example, in the case of a trajectory database
with 200K points, wher€ = 5 copies ofK = 6 hid- 2.3 The Class of Flock Patterns

den patterns are embedded into 200 trajectories of

length 1K points, the running times f6PM, RFPM, For such trajectory databases, we introduce the class
and G-RFPM found all patterns in 61.61, 0.96, and 7 2 of spatio-temporal patterns, called flock patterns,
0.03 seconds, respectively. From these results, we obbased ote-norm as follows’. Formally, the class of
tained around 60 and 30 times speed-ups by the firstflock patterns is defined as follows.

and second extensions, respectively, and finally, the Definition 1 (FP). A flock patternon T is a pairP =

total speed-up becomes around 2,000 times. (X, [b,€]), where (i)X C ID is a finite set of ids, called
This paper is organized as follows. Sec.2 gives thelD setof P, and (ii)| = [b, €] is a discrete interval

definitions for flock pattern mining including our in [0,T] with b < e < T, whereb ande are called the

rightward length-maximal flock patterns. Sec.3 startandend timeof P.

presents the basic algorithm as well as two improve-

ts. Sec A . " fihi that sh We define the support, length, and width of a flock
ments. Sec.1s amain section ot this paper that s Owspattern as follows. (i) Theupportof P, denoted by
experimental results. Finally, Sec.5 concludes.

supP), is defined by the number of trajectory (ID)

contained inX, that is,supgP) = |X|. (ii) Thelength

of P, denoted bylen(P), is the width of the interval

2 PRELIMINARIES I, that is,len(P) = e—b+1. Clearly, we have &
suppgP) <nand 0<len(P) <T.

2.1 Basic Definitions 231 Example 2

LetR andN be the set of all real numbers and all non-

negative integers, respectively. For integafs (a <

b), we denote bya,b] = {a,a+1,...,b} the discrete

interval betweem andb. If a,b e R, a<b, then[a, b]

In Fig. 1, we show an example of a flock pattern
P1 = (Xg,11), where the ID set is¢; = {2,3,4} and
the interval isl; = [3,5].

denotes a continuous intervallihas usual. For a set 2The original version of flock patterns are defined based
A |A| denotes the cardinality &, andA* denotesthe  on L,-norm in (Laube et al., 2005; Gudmundsson and van
set of all possibly empty, finite sequences ofer Kreveld, 2006).
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To define the width, we require some definitions

below. For a poinp = (x,y) on 2-dimensional plane
RR?, the x- and y-coordinates gf are denoted by by
p.x = x and p.y =y, respectively. For two pointp
andp’ onR?, we denote thé.-distance between p
and g by L (p, p') = max{|p.x— p".x|,[p.y— p".y|}.
By definition,L.(p, p’) is nonnegative, and coincides
zero if and only ifp=p'.

Thediameterof a setA = {px,..., pn} of points,
denoted by||A||«, is the maximunil.-distance be-
tween any two points i&, defined by

Aoo: Loo ,/, 1
| All max (p,p) 1)

The width|| A||. of a setAis always nonnegative,
and equals zero if and only & consists of a single
point. We can show thdtA||. is linear time com-
putable inn = |A| on R2. For anyd > 2, ||Al|. can
be compute®(dn) time inRY, which is still linear in
n for fixed d.

In an input databasg, thet-th time slice, denoted
by SX][t], is the set of all points that appear in the
trajectories ofX with time stampt. Thewidth ||P||S
of a flock patterr® = (X, 1) = (X, [b, €]) is defined by
the maximum diameter of thieth time slice of the
trajectories inX over allt € [b,€]. Actually, we have
the next lemma.

Lemma 1. The width of P can be computed by Al-
gorithm 1 in Qm¢) time, where m= supX) is the
support of P and = len(P) is the length of P.

Algorithm 1: Computing the widtH| P||."> of a flock pat-
ternP = (X, [b,€]) in a databas&€={s|i=1,...,n}.
1: width« 0;
2: fort<bb+1...,edo
3 S« {s[t]]ieX}; > thet-th slice
4:  width< max{width, ||| };
5: return width;

Letr > 0 be a positive number, arldm > 0 are
non-negative integers, respectively, calledaximum
width (max-width), aminimum lengti{min-len), and
aminimum supporfmin-sup) parameters.
Definition 2. An r-flock patternis any flock pattern

P such that|P||. <, An (r,k)-flock patternis any
r-flock patternP with len(P) > k.

2.3.2 Example 3

The patterrP; of Fig. 1 in the last example has diam-
eter||P||=> < 1.0, lengthlen(P;) = 3, and support
supfP1) = 3. Thus, itis &1.0,2,3)-flock pattern for
r=10,k=2, andm=_3.

In this paper, we consider &li, k)-flock patterns
in a given trajectory database.

2.4 Rightward Length-maximal
Patterns

For a given max-width parameter> 0, it is often
useful to find only(r, k)-flock patternd® = (X, [b,€])
whose time intervallb,e] are extended rightward
along time line as long as possible preserving the
diameterr (See (Gudmundsson and van Kreveld,
2006)). This idea ofength-maximal mininds ex-
pected to reduce the number of solutions and running
time than just finding al(r, k)-patterns.

A flock patternP = (X, [b, €]) is said to be aight-
ward length-maximaflock pattern inSif its interval
cannot be extended rightward without changing the
width of Piin S,

Formally, it is defined as follows.

Definition 3 (RFP) A flock patternP = (X, [b,€]) in
Sis arightward length-maximaflock pattern (RFP,
for short) if there is no other flock patter®’ =
(X, [b,€]) in Ssuch that (i)P’ has the same ID set
X asP, and (ii) the right end of’ is strictly more
larger than that oP.

By definition, any RFP irsis an FP. However, the
converse does not hold in general. Thus, we have the
inclusion® F2(r,k) C FP(r,k).

2.4.1 Example 4

In the example of Fig. 1, the flock pattefh =

(X1,[3,5]) of length three is an RFP %, while

P> = (X1,[3,4]) andPs; = (X4, [3]) are non-rightward
length-maximal FPs, wher¥; = {2,3,4}. On the
other handP; has RFPP, = (Xy1,[4,5]) andPs =

(X1, [5]).

2.5 The Data Mining Problems

Forany classnamée {FP,R F P,...} and any pa-
rameter valueg k > 0, we denote by’(r,k) the class
of all (r,k)-flock patterns within the clasg. Sim-
ilarly, we define the classes(r), and C(r,k,m) as
well. From now on, we consider the classg®(r, k)
andR F P(r,k).

We state our data mining problem as follows.
Definition 4. (FLOCK PATTERN MINING PROBLEM
FOR PATTERN CLASS(C) Let C be a class of flock
patterns. Aninputis a tupl&S r, k) of an input trajec-
tory databas&, and parameter valuesandk > 0. The
task is to find all flock patternB in Swithin classC
without repetition that have width at masand length
at leask.
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Algorithm 2 : A basic DFS algorithnPM for finding all to pattern g_rowth gpproach (?'9'* (Peietal., 2004)) aF?'
(r,k)-flock patterns in an input trajectory databa&given proach, as in PrefixSpan (Pei etal., 2004), Eclat (Zaki,

maximum widthr and minimum lengthk. 2000) and LCM (Uno et al., 2004). )
In DFS (or pattern growth) approach, a recursive
1. procedure FPM(ID, S r,K)

mining procedure searches for all descendant of the

2. for £+k,...,Tdo > Every Iength current pattern from smaller to larger in depth-first
3 for bo <~ 1,...,T do »Eachstarttime il anner using backtracking. The advantage of DFS
& lo < bo+0—1; approach is that DFS miners are proven fast in main
S Dy < ID; . memory environment and can be easily implemented
: while 1Dy # 0 do > Eachid inlD as a simple recursive procedure.
6 lo = deletemifiDy); . At the top-level ofFPM, for each possible length
8: Po < ({io},[bo, fol); ~ > Initial pattern < 1k ] no less thark, it invokes the recursive sub-
o RecFPM(Po,1D1,Sr,k); procedureRecFPM given as arguments an initial pat-
ternPy = (Xo, [bo, en]) consisting of a singleton ID set
10: procedure RecFPM(P = (X, [b,€]),ID,Sr,k) Xo = {io} and an intervalbo, &] for every possible
11:  if [|P||»> > r then combination ofig € ID andbg € [0,T]. The end time
12: return ; > P is too wide e is calculated byog and/.
13:  output P; The recursive subprocedurecFPM is a DFS al-
14:" ID3 + ID; gorithm (or a backtracking algorithm) that searches
15: © while ID; #0do the hypothesis space of aiflock patterns with length
16: i = deletemiiiiD1); exactly/ as follow.
17 RecFPM(Q = (X U{i}, [b,€]),ID1,S 1,k); Starting from the initial patter® = (Xo, [bo, €o))
18:  end while consisting of a singleton ID seXo = {io}, the

procedure enumerates all subs#tsf ID using a
Similarly, we can consider the flock pattern min- backtracking algorithm similar to depth-first search

ing problem with parameters, k, m). algorithms for frequent itemset mining, such as
We evaluate the performance of a flock pattern Eclat(Zaki, 2000) and LCM (Uno et al., 2004).
mining algorithm4 in terms of enumeration algo- For each generated sub3gtthe procedure forms

rithms (Avis and Fukuda, 1993). LatandM be the & candidate(r,k)-flock patternP = (X, [b,€]) with a
input size and the number of patterns as solutions. A SPecified intervalb, e]. Then, the algorithm computes
pattern mining algorithnfl is said to haveolynomial ~ the width|[P|[« of the patterrP by accessing the tra-
delay(poly-delay) if thedelay, which is the maximum  Jectories inS, and checks iP s_gﬂsf_les .the width con-
computation time between two consecutive outputs, is Straint|[ P{[» <. If the condition is violated, then it

bounded by a polynomiad(N) in N. 4 is of polyno- prunes the search férand all of its descendants.

mial space(poly-space) if the maximum size of its This width-based pruning rulés justified by the
working space, in addition to that of output stre@n  following lemma, which says the class of.k)-

is bounded by a polynomigi(N). patterns has the anti-monotonicity w.r.t. set inclusion

of their ID sets.

Lemma 2 (anti-monotonicity) Let R = (X;, I;) be two

flock patterns, where+ 1,2. If P, is an (r,k)-flock
3 ALGORITHMS pattern in S and if XC Xz and i C I hold, then P

In this section, we present our pattern mining algo- is also an(r,-k)-flock patternin S. _
rithms for FPs and RFPs. We also give a speed-up  From this lemma, once a candidate pattere-
technique using geometric indexes to prune redundant(X,!) does not satisfy the width and length con-

candidates. straints, any descendant®fobtained by adding new
trajectory (ids) toX no longer satisfies the constraints.

3.1 A Basic DFS Algorithm for FPs Therefore, we can prune the whole search sub-space
for descendants d? for (r,k)-flock patterns.

We first present a basic mining algorithf®M (ba- On the running time and space of the algorithm

sic flock pattern miner) for FPs. In Algorithm 2 FPM, The following proposition is easily derived

we present the algorithiPM with its subprocedure ~ from our manuscript (Arimura et al., 2013).

RecFPM for mining (r,k)-FPs. Proposition 1. (Arimura et al., 2013) Let S be an in-
In the overall design of our algorithiaPM, we put trajectory database S of n trajectories with length

employ DFS (depth-first search) procedure according T. Then, the algorithrAPM in Algorithm 2 solves the
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flock pattern mining problem for the clagsP M (r, k)

of (r,k)-flock patterns in S. It uses(®T?) time per
pattern and Qk?) words of space, respectively, where
k = supgX) = |X] is the support of the pattern X be-
ing enumerated.

From the practical viewQ(T?) term in the time
complexity ofFPM is too large to apply it to long tra-
jectories with largel. We point that thi<O(T?) term
come from the doubly nested for-loop in Lines 2 and 3
of Algorithm 2. In the next subsection, we will see
how we can remove thi®(T?) term by focusing on
mining of RFPMs.

3.2 A Modified Algorithm for RFPs

Next, we present a modified mining algorittRRPM
(rightward flock pattern miner) for RFPs (rightward
length-maximal flock patterns), the class of rightward
length-maximal flock patterns. In Algorithm 4, we
present the algorithnRFPM with its subprocedure
RecRFPM for mining (r, k)-RFPs.

3.2.1 Rightward Horizontal Closure

From the view of frequent pattern mining, RFPs in a
trajectory database are a sorttdsed patternsvhich

Algorithm 3 : An algorithm for computing the unique right-
ward length-maximal flock pattern. Note tHeSX]|[t] ||« is
defined to beo fort ¢ [1,T].

1: procedure RH_CLosURE((X, [bo,&p]); Sr)

2:  t<«bg;

3:  while ||X][t]|]e < T do
4: t+t+1;

5. b« bge«—t—1;

6: return (X,[b,€);

rectness is the following characterization, which can
be easily shown from definition of RFPs.

Lemma 3(characterization)Let P= (X, [b,€]) be an
(r,k)-flock pattern in S. Then, P is rightward length-
maximal if and only if

o ||SX][t]]| <rforallt € [b,e], and

o ||SX][e+1]||o>T,
where we extend the t-th time sli¢&[X]|t] ||« to bec
if eithert < 1 ort > T holds for convenience.

From the above lemma, we have the correctness
below.

Lemma 4. (Arimura et al., 2013) The rightward
horizontal closure Rax of a possibly non-rightward
length-maximal r-FP P is the unique longest r-RFP

have been extensively studied in frequent itemset such that the ID sets and the start time are identical

mining (FIM) field (Uno et al., 2004; Zaki and Hsiao,
2005) as well as formal concept analysis (FCA) field.
Many efficient closed pattern mining algorithms use
a class of operation, calledlosureoperation, which

enlarge a given, possibly non-closed pattern to obtain

its closedversion.

For RFPs, we actually haveightward horizontal
closureoperation that extends the interval of a given
non RFPs to obtain a proper RFP.

Definition 5 (rightward horizontal closure)Let P =
(X, = [b,€]) be any flock pattern in a databaSe
Then, therightward horizontal closuref P in S, de-
noted byRH_Closure(P; S r), is the unique flock pat-
ternPmax= (X, = [b, emay) such thaemax < [0, T] is
the maximum value of end positia satisfying the
equality

1P = (X, [b,€]) [leo = [|P]eo- 2

Note that the rightward horizontal closure opera-
tion only change the end positian but not change
the ID setX or starting timeb of the originalP at all.

In Algorithm 3, we show the procedure
RH_Closure that computes the rightward hori-
zontal closure of non-RFP in O(k¢) time, where
k=supdP) = |X| = O(n) and?¢ = len(Pmax) = O(T).

The following lemmas show the correctness of the
rightward horizontal closure. First, the key of the cor-

to those of P.

Sincelen(Pmax) > len(P) always holds forPmay,
we see that ifP satisfies the(r,k)-constraint then
so does the obtained RA®Rax Hence,Pnax is the
unique longestr, k)-RFP version oP that share the
ID set and start time.

3.2.2 Putting them Together

We describe the computation done by the algorithm
RFPM. The overall structure ®FPM is almost iden-
tical to the basic algorithrBPM. Given a databass,

the main algorithnRFPM invokes the recursive sub-
procedureRecFPM with an initial patternP, as be-
fore.

Only the difference in the top level is thREPM
iterates onlyO(T) iteration here for the start position
bo rather thanO(T?) iteration inFPM using an ini-
tial patternPy = ({io},bo,*) with missing end posi-
tion ey = *, called apartial patternhere.

The computation of the recursive subprocedure
RecRFPM proceeds in the following steps.

e Receiving a partial RF, = (X,b,*) as argu-
ments, the recursive procediRecFPM computes
the rightward horizontal closur® = (X, [b,€])
from P, by the procedur&H_Closure with max-
widthr.
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Algorithm 4 : An algorithm RFPM for finding all length- Algorithm 5: An algorithmG-RFPM for finding all length-
maximal(r,k)-flock patterns appearing in a given trajectory maximal(r, k)-flock patterns appearing in a given trajectory
databaseS with ID for maximum widthr and minimum databaseS with ID for maximum widthr and minimum

lengthk. lengthk.
1: procedure RFPM(ID, S 1,k) 1: procedure G-RFPM(X,b,k,ID,Sr,k)
2. forbg<«1,....,Tdo » Each starttime ifT 2. LetS={sl|i=1,...,n};
3: forip«1,...,ndo > Each id inID 3: forbg«+1,...,Tdo > Each starttime ifT
4: Po = ({io}, [bo, ¥]); 4: Build a grid index for point set) < S[by|;
5: RecRFPM(Py, 1D, Sr,k); 5: > The time slice at timéy
6: forip«< 1,...,ndo > Eachid inID
6: procedure RECRFPM(P = (X, [b,%]),1D,S,1,K) 7 P<So[bo]; 3« r;  winitial point p
7. P=(X,b,€]) + RH.Closure((X, [b,*]);Sr); B: R [p-x=8, px+3]x[p.y—3, p.y+J];
8: if len(P) < kthen 9: > 2r x 2r-query rectangle at center
o: return ; > Pis notan(r,k)-flock pattern 10 IDg <— U.RanggR); Po < ({io}, [bo, *]);
10:  output P; 11: RecRFPM(Py, Do, S1,k);
11: 1Dy« ID; 12: end
12: -~ while ID1 # 0 do 13: end
ijﬁ ||3__cieletem||0|Dl), . rithms, which is orthogonal to the rightward horizon-
; ) = (XU{i}, [b,#]); :
15: RecRFPM(Py, ID1, S, K): tal closure technique.

In Algorithm 5, we present our modified mining
algorithm G-RFPM (grid-based flock pattern miner)
based orRFPM using geometric constraint on the 2-

16:  end while

e Next, if the obtained RFPP satisfies (r.k)-  dimensional plane fofr, k)-patterns. The algorithm
constraints, then output it. Otherwise, we safely ysesrecFPM in Algorithm 5 as subprocedure.
prune all descendants as before. Given a trajectory databas® maximum width

e Finally, RecFPM recursively calls its copy withan 1 >0 and minimum lengttk as arguments, the al-
extended patter® = (XU {i},[b,*]). To avoid  gorithmG-RFPM starts with selecting a combination
duplicated generation of patterns, theiits re- of a trajectory idip in ID and a starting timégg in
moved from the universi. T = [1,T] as in the originaFPM or RFPM.

Letip € ID andbg € [1, T| be any pair of trajectory

ID and start time. Then, we know that the trajectory

S, Starts from the point = s [bg] in the database.

Now, we assume to find anly, k)-flock pattern of the

) form P = (X, [bo, *]) be any(r,k)-pattern such that

Theorem 2. (Arimura et al., 2013) Let S be an ip € X in the database.

input trajectory database S of n trajectories with From theL.,-geometry of the plan&2, we can

length T. Then, the algorithRFPM in Algorithm 4 show that any trajectoriyin ID must be contained in

solves the flock pattern mining problem for the class the rectangl® = R(c, 2r) of size 2 x 2r given by
RFPM(r,k) of (r,k)-flock patterns in S. It uses

O(knT) time per pattern and (%) words of space, R(c,2r) = [x—8,x+3] x [y—3,y+8] CR?,  (3)
respectively, where ¥ supgX) = |X| is the support
of the pattern X being enumerated.

From a similar argument to (Uno et al., 2004)
based on reverse search technique of (Avis and
Fukuda, 1993), we have the following time and space
complexities ofRFPM.

wherex = p.x, y = p.y, andd = r. Consider theé = by
time sliceU of S, that is, the sety of all points with

We can generaliz&FPM for the case of thal- the specified time = by, given by
dimensional spad&? for everyd > 1 with extraO(d) _
factor in time and space by only modifying the proce- U={p=slt][se€SiclD,t=bo}. (4)

d
dureRH_Closure for RY. LetP = (X, [b,€]) with b = by be any targefr, k)-

flock patterns irS. For any trajectory IO, if the ID

i belongs toX then the corresponding trajectosy
starts from any point it NR(c, 2r). Therefore, we
can reduce the original domalB of candidate IDs
for X to the following smaller sub-domain

3.3 Speed-up using Geometric Index

In this subsection, we present a speed-up tech-
nique using geometric index iR?, calledgeometric
database reductignwhich achieve order of magni-
tude acceleration of both dfPM and RFPM algo- ID(R)={ielD|pi=s[bg cUNR}. (5)
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By using an appropriate geometric index, such as
quad trees or range trees, we can compDi{gR) by
making the range query

ID(R) = U.RangéR) (6)

in q= O(log? o) time by quad trees, @(log?n) time
by range trees usin@(nlogn) time preprocessing of
S, wheren=|U| =S ando = ||U ||» are thele-
diameter of points itJ. Then, the total overhead be-
comesO(Nlog?n) time (Arimura et al., 2013), which
is linear in input sizeN with polylogarithmic factor.

As shown in Sec. 4, the above modification on
RFPM to obtain G-RFPM greatly reduces the time
complexity of the algorithm.

4 EXPERIMENTS

e - Algorithms for Mining Flock Patterns from Trajectories

In the experiments, we varied as data parameters,
the numbemn and lengthT of input trajectories, and
as mining parameters, the minlénminsupm, and
minwid r. We used default values for other values.
We note that in Exp 1a and Exp 1b, only the number
of false random trajectories is varied, while the num-
bersC andK of the copies and the true patterns are
kept constant. In plots below, each line indicates the
running time, while the number attached to each mark
indicates the number of solutions.

4.3 Results A: The Speed-up by
Rightward Length-maximal Flock
Patterns

In this subsection, we examine the effect of mining
of RFPs (rightward length-maximal flock patterns)
introduced in Sec. 3.2, compared to mining of FPs

We ran experiments on synthesis datasets to evaluat§original flock patterns). For the purpose, we measure

the efficiency of our algorithms.

4.1 Data

the number of solutions and the running time by run-
ning RFPM (BFPM R, in plots) of Sec. 3.2 for min-
ing-all RFPs with length> k, compared to basiePM
(BFPM) of Sec. 3.1 for mining all FPs with length

We generated a sets of implanted synthesis trajectory> k.
datasets using our data generator implementedin C++

as follows. Leth = 200 andT = 200. Our data set is

a collection of random trajectories in whi€hcopies

of random patterns are implanted as follows. We first
fixed ax a areaA in the plane, whera = 40.0, and
then generated a set oftrajectories of lengtiT by
uniform distribution onA. Then, we embe@ copies

of each ofK random short trajectories of length

are implanted in some of generated trajectories, where
location of the copies are randomly perturbed within
width r,. In our experiments, we s& =5, K = 6,

L. =20, andr, = 1.0. The other parameters are var-
ied in experiments.

4.2 Methods

We implemented our algorithnf®M (BFPM),RFPM
(BFPM R), ands-RFPM (GFPM R) of Sec. 3in C++.
We also implemented a simple grid-based geometric
index in C++, where the plane is divided inlbo< b
grid cells, and cells are looked up by constant time
random access followed by sequential scan of a point
list, whereb = 5 most time.

We compiled the above programs by g++ of GNU,
version 4.6.3. We used a PC with Intel(R) Xeon(R)
CPU E5-1620, 3.60GHz with 32GB of memory on

4.3.1 Expla

In Fig. 2, we show the running time and the number of
patterns of by varying the number of points of input
sizen from 60 to 100 trajectories.
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Figure 2: Exp la: The running time (and the number of
patterns by mark) by algorithn&PM (BFPM) for FPs and
RFPM (BFPM R) for RFPs by varying the the total number
n of input points from 12K to 20K points, where a number
attached to each mark indicates the number of solutions.

OS Ubuntu Linux, version 12.04. We used the follow- 4.3.2 Exp 2a

ing default parameters otherwise stated: Data mining
algorithm use widthr = 1.0, lengthk = 20, and and
min-sup ism = 5 for patterns.

In Fig. 3, we show the running time by varying the
length of input trajectory database from 100 to 200
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Figure 3: Exp 2a: The running time (and the number of Figuré 4: Exp 1b: The running time (and the number of

atterns by mark) by algorithiPM (BFPM) for FPs and ~ Patterns by mark) by algorithnFPM (BFPM R) anda-
EFPM (BFgM R) f%)r %Fpgs varying th(e Iengﬂ)hofinput tra- RFPM (GFPM R) for RFPs by varying the the total number

jectories from 100 to 200 points, where a number attached N ©f iNPut points from 20K to 200K points.

to each mark indicates the number of solutions.
4.4.2 Summary of Results B

trajectories.

From Exp 1b and Exp 2 above, we see that the Overall, in the task of mining RFPs, the modified al-
algorithmRFPM exactly detect the numbé&r =6 of gorithm G-RFPM with geometric database reduction
true patterns, whil&PM detects the larger numbers improves the performance &~PM more than ten to
depending om. 70 times on the basic algorithAPM.

4.3.3 Summary of Results A 4.4.3 Summary of Results A and B

Overall, RFPM with RFPs is around 50 times faster From Fig. 2 of Exp 1a and Fig. 4 of Exp 1b, in the case
thanFPM with FPs as well as the number of RFPs is of the input with 200K points (small dataset), the run-
around 100 times smaller than that of FPs at maxi- ning times forFPM, RFPM, andG-RFPM are 61.61,

mum in our experiments. 0.96, 0.03 (sec), respectively. From these timing, the
speed-ups frorfPM to RFPM andRFPM to G-RFPM

4.4 Results B: The Speed-up by were around 64 times and 32 times. Overall, we ob-

Geometric Database Reduction tained the total speed-up of around 2,000 times from

the basid=PM to most advanceG-RFPM.

In this subsection, we examine the speed-up by ge-

ometric database reduction technique introduced in

Sec. 3.3. The task is mining all RFPs in a database.5 CONCLUSIONS

We compared two algorithmBFPM (BFPM R, in

plots) of Sec. 3.1 an@-RFPM (GFPM R, in plots) of  In this paper, we showed empirical study of the tra-
Sec. 3.3, without and with geometric database reduc-jectory mining algorithmFPM based on th@attern-
tion, respectively. Note that the numbers of solutions growth approach(Pei et al., 2004). We implemented
are same between two algorithms since they solve thetwo improvements ofPM. The experiments demon-
same task. strated that these improved algorithms achieved order

of magnitude speed-up on artificial data sets.
441 Explb

In Fig. 4, we show the running time and the number of
patterns by varying the numbeiof input points from
20K to 200K points, wherd = 200. For example,
in the case of the input with 200K points, the running
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