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Abstract: This article introduces a new extension to fuzzy similarity based fuzzy TOPSIS that uses multi-distance in
ranking. OWA is used in the aggregation process. For the weight generation in OWA the O’Hagan’s method
is used to find optimal weights. Several different, predefined orness values are tested. The presented method
is numerically applied to a research & development project selection problem.

1 INTRODUCTION

This paper investigates and presents a new exten-
sion of the fuzzy similarity based fuzzy Technique
for Order Performance by Similarity to Ideal Solution
(fuzzy TOPSIS). Fuzzy TOPSIS was originally intro-
duced by Chen in (Chen, 2000) and later extended
to include trapezoidal fuzzy numbers in (Chen et al.,
2006). In these contributions a vertex based fuzzy
distance method was used as a measure of distance
from (”similarity to”) the ideal solutions. A similarity
measure based version of fuzzy TOPSIS was intro-
duced in (Luukka, 2011), where the similarity (dis-
tance from) to the ideal solutions is calculated by us-
ing a fuzzy similarity measure. This strain of research
was continued by (Niyigena et al., 2012), where two
different fuzzy similarity measures were considered
and by (Collan and Luukka, 2013), where four fuzzy
similarity measure based fuzzy TOPSIS variants and
a way of holistic overall ranking of projects was pre-
sented.

The fuzzy TOPSIS uses fuzzy numbers as inputs
and is thus able to incorporate inaccurate and impre-
cise information in the analysis (not having to sim-
plify reality by using crisp numbers). The main dif-
ference in using the fuzzy similarity measures and the
(crisp) distance measures in the TOPSIS environment
with fuzzy numbers is that fuzzy similarity measures
can take into consideration more of the information
that is stored in the fuzzy number, e.g. with regards
to the perimeter and the area of the fuzzy number.
The crisp distance measures defuzzify the fuzzy num-
ber in order to calculate a distance between the re-

sulting crisp number and the ideal solution. Using
a crisp distance based measure may cause a loss of
relevant information. The fuzzy similarity measure
used here is introduced in Hejazi et al (Hejazi et al.,
2011) and can take into account the perimeter and
area of fuzzy numbers. This similarity measure was
previously studied in the context of fuzzy similarity
based TOPSIS method in (Niyigena et al., 2012) and
in (Collan and Luukka, 2013).

The new contribution of this paper concentrates
on the application of multi-distances in creating ad-
ditional information for project ranking by similar-
ity coefficients, after they have been analyzed with
fuzzy similarity measure based fuzzy TOPSIS. Multi-
distances are used in analyzing the ”level” of similar-
ity between analyzed criteria. High level of similarity
between criteria means a low multi-distance and can
be interpreted as homogeneity or consistency of, e.g.,
performance or expectations. Such information may
be valuable in the analysis and offers an additional
differentiator between objects. Multi-distances were
examined by Martin and Mayor (Martin and Mayor,
2010), and presented as a generalization of the notion
of distance. Martin and Mayor proposed the construc-
tion of multi-distances by means of OWA functions in
(Martin et al., 2011). Using the multi-distance in the
aggregation will add a step of pairwise distance mea-
surement of similarities between criteria (values) in
the procedure.

Use of multi-distances with fuzzy TOPSIS is, to
the best of our knowledge a new approach.

The remainder of the paper is organized as fol-
lows. In Section 2 the fuzzy similarity relation
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between fuzzy numbers, the OWA operator, multi-
distances, and total ordering of fuzzy numbers are in-
troduced. Section 3 is devoted to the description of
the new approach to fuzzy TOPSIS based on fuzzy
similarity and multi-distances. A numerical example
is introduced in Section 4 and some conclusions in
section 5 close the paper.

2 PRELIMINARIES

In this section some preliminary mathematical con-
cepts, used in the MCDM method, are shortly intro-
duced. They include: fuzzy similarity measures, the
OWA-operator, and one often-used method to gener-
ate the weights for the OWA operator the O’Hagan’s
method. Multi-distances are defined, i.e. following
the work of Martin and Mayor (Martin and Mayor,
2010) and the relationship between the OWA-operator
and multi-distances is presented. Additionally, a way
to find a total ordering for fuzzy numbers is shortly
introduced.

2.1 Fuzzy Similarity of Fuzzy Numbers

By focusing on uncertain objects like in fuzzy sets
or fuzzy numbers, the notion of a fuzzy subset gen-
eralizes that of the classical subset, where the con-
cept of similarity can be considered as a many-
valued generalization of the classical notion of equiv-
alence (Zadeh, 1971). As an equivalence relation is a
familiar way to classify similar objects, fuzzy similar-
ity is an equivalence relation that can be used to clas-
sify multi-valued objects (Niyigena et al., 2012). The
similarity measures’ concept is of high importance in
this work, and it is defined as follow:

Definition 1. For any fuzzy subset F 6= /0 of Rn, and
for any elements A;B2F the similarity measure func-
tion is defined as (Shepard, 1987):

s(A;B) : F�F ! [0;1]

The defined similarity measures s satisfying the
following properties for any x;y;z 2 F ,

� s(x;x) = s(y;y), 8x;y 2 F ( Reflexivity )

� s(x;y)� s(y;y), 8x;y 2 F ( Minimality )

� s(x;y) = s(y;x) ( Symmetry )

� If s(x;y) = s(x;z) it implies that s(x;y) = s(x;z) =
s(y;z) (Transitivity)

Since fuzzy numbers can be considered to be a
certain type of restricted fuzzy sets, the similarity
measures for generalized fuzzy numbers come from
similarity measures for fuzzy sets.

Represented by Chen (Chen, 1985), a gener-
alized trapezoidal fuzzy number’s notation is Ã =
(a;b;c;d;w), where a,b,c and d are real values and
0 < w � 1. Its membership function µÃ satisfies the
following conditions (Chen, 1985):

1. µÃ is a continuous mapping from the universe of
discourse X to the closed interval in [0;1]

2. µÃ = 0, where �¥ < x� a

3. µÃ is monotonically increasing in [a;b]

4. µÃ = w, where b� x� c

5. µÃ is monotonically decreasing in [c;d]

6. µÃ = 0, where d � x < ¥

Due to the fit and the applicability of similarity
measures in the context of decision-making, various
similarity measures have been proposed for the calcu-
lation the degree of similarity between fuzzy numbers
of (Chen, 1985). In this work, a rather recently intro-
duced similarity measure by Hejazi et al in (Hejazi
et al., 2011) is used. The similarity measure takes in
consideration the perimeter and area of fuzzy num-
bers. The similarity measure is denoted s(M;N), and
involves fuzzy numbers M =(m1;m2;m3;m4;wm) and
N = (n1;n2;n3;n4;wn) with 0 � m1 � m2 � m3 �
m4 � 1, 0 � n1 � n2 � n3 � n4 � 1, and M(xi)
and N(xi) their corresponding membership functions
with i 2 f1;2;3;4g for generalized trapezoidal fuzzy
numbers, where wm and wn are their corresponding
heights. The definition is as follows:

s(M;N) = (1� å
4
i=1 jmi�nij

4
)

� min(p(m); p(n))
max(p(m); p(n))

� min(a(m);a(n))+min(wm;wn)

max(a(m);a(n))+max(wm;wn)
(1)

Where the values p(m) and p(n) represent the perime-
ters of the trapezoidal fuzzy numbers M and N, and
are defined as:

p(m) =
q

(m1�m2)2 +w2
m +

q
(m3�m4)2 +w2

m

+ (m3�m2)+(m4�m1)

and

p(n) =
q
(n1�n2)2 +w2

n +
q

(n3�n4)2 +w2
n

+ (n3�n2)+(n4�n1)

The values a(m) and a(n) represent the areas of
the trapezoidal fuzzy numbers M and N, they are de-
fined as:

a(m) =
1
2

wm(m3�m2 +m4�m1);
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and
a(m) =

1
2

wn(n3�n2 +n4�n1):

Notice that the result of the above similarity mea-
sure s(M;N) belongs to the unit interval [0;1] and
the larger the value of the similarity measure is, the
stronger is the similarity between the fuzzy numbers
M and N.

2.2 The OWA Operator

In 1988 Yager introduced a new aggregation operator,
called ordered weighted averaging operator(OWA)
(Yager, 1988) and formalized it as follows:

An ordered weighted averaging (OWA) operator
of dimension m is a mapping Rm ! R that has
associated weighting vector W = [w1;w2; :::;wm] of
dimension m with

å
m
i=1 wi = 1 , wi 2 [0;1] and 1� i� m

such that:

OWA(a1;a2; :::;am) =
m

å
i=1

wibi (2)

where bi is the i�th largest element of the collec-
tion of objects a1;a2; :::;am. The function value
OWA(a1;a2; :::;am) determines the aggregated values
of arguments a1;a2; :::;am. One of the measures
related to the OWA is the so called ”orness” measure.
For a given weighting vector W = [w1;w2; :::;wm]

T

the measure of orness of the OWA aggregation
operator for W is given as

orness(W ) =
1

m�1

m

å
i=1

(m� i)wi: (3)

It can be observed that the weighting vector
has an important role in the OWA operator; next
the O’Hagan’s method for generating the weights
is shortly presented. In 1988 O’Hagan (O’Hagan,
1988) introduced a technique for computing the
weights in OWA. The procedure for obtaining the
aggregation assumes a predefined degree of orness -
the weights are obtained by maximizing the entropy
�å

m
i=1 wiln(wi). The solution is based on the con-

strained optimization problem

maximize �
m

å
i=1

wiln(wi)

subject to a =
1

m�1

m

å
i=1

(m�1)wi

m

å
i=1

wi = 1 and wi � 0:

The above constrained optimization problem can
be solved by using different methods. Here an ana-
lytical solution introduced by (Fullér and Majlander,
2001) is used. Below this weighting scheme is pre-
sented:

a. if m = 2, implies that w1 = a and w2 = 1�a

b. if a = 0 or a = 1 implies that the correspond-
ing weighting vectors are w = (0; :::0;1) or w =
(1;0; :::;0) respectively.

c. if m� 3 and 0� a� 1 then, we have,

wi =
�
wm�i

1 �wi�1
m
� 1

m�1

wm = ((m�1)�a�m):w1+1
(m�1)�a+1�m�w1

w1[(m � 1) � a + 1 � m � w1]
m = ((m � 1) �

a)m�1 � [((m�1) �a�m) �w1 +1]

For m� 3, the weights are computed by obtaining the
first weight, followed by the last weight of the weight-
ing vector, before other weights are computed.

2.3 Multi-distances

A multi-distance is a representation of the notion of
multi-argument distances. The set X is a union of all
m-dimensional lists of elements of X , multi-distance
is defined as a function D : X! [0;¥) on a non empty
set X provided that the following properties are satis-
fied for all m and x1;x2; :::;xm;y 2 X
c1. D(x1;x2; :::;xm) = 0 if and only if xi = x j for all

i; j = 1;2; :::;m

c2. D(x1;x2; :::;xm) = D(xs(1);xs(2); :::;xs(m)) for any
permutation s of i; j = 1;2; :::;m

c3. D(x1;x2; :::;xm) � D(x1;y) + D(x2;y) + ::: +
D(xm;y).
We say that D is a strong multi-distance if it satis-

fies c1;c2, and

c3? D(~x1;~x2; :::;~xm) � D(~x1;~y) + D(~x2;~y) + ::: +
D(~xm;~y). for all~x1;~x2; :::;~xm;~y 2 X

In application contexts, the estimation of distances
between more than two elements of the set X can
be constructed using multi-distances by means of the
OWA operator as suggested by Martin and Mayor
(Martin and Mayor, 2010).

Dw(x1;x2; � � � ;xm) = OWAw(d(x1;x2);d(x2;x3); :::;

d(xm�1;xm)) (4)

In this case, elements x1;x2; � � � ;xm are obtained
from the similarity measure (1), and the distance ap-
plied is d(x;y) = jx� yj.
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2.4 Total Ordering of Fuzzy Numbers

Set inclusion of fuzzy sets is only a partial order,
where all fuzzy sets are not comparable. Kaufman
and Gupta (Kaufman and Gupta, 1988) propose that
when trying to find a total order or linear order for
fuzzy numbers, where all fuzzy numbers and fuzzy
intervals are comparable, we have to first check that
it is possible to find a linear order by giving differ-
ent emphases to different properties of fuzzy sets. To
reach a total order or a linear order of fuzzy numbers,
an importance order must be given to three criteria. If
the first criterion does not give a unique linear order,
then the second criterion should be used. One contin-
ues in this way as long as it is needed. The description
of the three different criteria is given below:

1st The removal: Let us consider an ordinary number
k2R and a fuzzy number A. The left side removal
of A with respect to k, denoted by Rl(A;k), is de-
fined as the area bounded by k and the left side
of the fuzzy number A. Similarly, the right side
removal, Rr(A;k) is defined. The removal of the
fuzzy number A with respect to k is defined as the
mean of Rl(A;k) and Rr(A;k). Thus,

R(A;k) =
1
2
(Rl(A;k)+Rr(A;k)): (5)

The position of k can be located anywhere on the
x-axis including k = 0. By definition, the areas are
positive quantities, but here they are evaluated by
integration taking into account the position (nega-
tive, zero, or positive) of the variable x; therefore,
R(A;k) can be positive, negative or null.
Our first criterion, therefore, will be this removal
with respect to k. However, two different fuzzy
numbers can have the same removal with respect
to the same k. In fact, this criterion decomposes a
set of fuzzy numbers into classes having the same
removal number.
The removal number R(A;k) defined in this crite-
rion, relocated to k = 0 is equivalent to an ”ordi-
nary representative” of the fuzzy number. In the
case of a triangular fuzzy number this ordinary
representative is given by:

bA =
a1 +2a2 +a3

4
; (6)

where A = (a1;a2;a3).

2nd The mode: In each class of fuzzy numbers, one
should look for the mode, and these modes will
generate sub-classes. If the fuzzy numbers under
consideration have a non-unique mode, one takes
the mean position of the modal values. It must
be noted that this is only one way of obtaining

sub-classes, and one may need the following third
divergence criterion for further sub-classification.

3rd The divergence: The consideration of the diver-
gence around the mode in each sub-class leads to
the sub-sub-classes, and this criterion may be suf-
ficient to obtain the final linear ordering of fuzzy
numbers.

When one orders fuzzy numbers to size order, one
proceeds as follows. Apply the above presented cri-
teria in the exact given order, such that if the unique
linear order is not obtained then move to the next cri-
terion.

3 FUZZY SIMILARITY BASED
FUZZY TOPSIS WITH
MULTI-DISTANCES

Fuzzy extension to the Technique for Order Perfor-
mance by Similarity to Ideal Solution (TOPSIS) was
presented by Chen (Chen, 2000) and it has been ex-
tended to solve problems involving trapezoidal fuzzy
numbers and applied, e.g., to solving the supplier se-
lection problems (Chen et al., 2006). It is a Multiple
Criteria Decision Making (MCDM) method (Chen
et al., 2006) (Socorro and Lamata, 2007) useful in
ranking objects, based on the similarity of the object
characteristics to the characteristics of an ideal object
(ideal solution). The method is based on the idea that
objects are ranked higher the shorter their distance is
from the Fuzzy Positive Ideal Solution (FPIS) and the
further away they are from the Fuzzy Negative Ideal
Solution (FNIS). One advantage of having extended
the TOPSIS method to the fuzzy environment is that a
linguistic assessment can be properly used, instead of
being constrained into using only numerical values;
linguistic variables can be mapped to corresponding
fuzzy numbers (Chen, 2000),(Chen et al., 2006).

Solution to the project selection problem, when
using the TOPSIS approach, can be presented by
considering a situation of a finite set of projects
P = fPiji = 1;2; :::;mg which need to be evaluated
by a committee of decision-makers D = fDl jl =
1;2; :::;kg, by considering a finite set of given crite-
ria C = fC jj j = 1;2; :::;ng.
Let us consider a decision matrix representing a set
of performance ratings of each alternative project
Pi; i = 1;2; :::;m with respect to each criterion C j; j =
1;2; :::;n, as follows (Cui et al., 2011):

X =

264 x11 x12 : : : x1n
x21 x22 : : : x2n
: : : : : : : : : : : :
xm1 xm2 : : : xmn

375
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Let us also assume the weight w j of the j�th crite-
rion C j, such that the weight vector is represented as
follows:

W =
�

w1; w2; : : : ; wn
�

Where m rows represent m possible alternatives, n
columns represent n relevant criteria, and xi j repre-
sent the performance rating of the i�th project Pi with
respect to the j�th criterion C j. The above fuzzy
ratings for each decision-maker Dl ; l = 1;2; :::;k are
represented by positive trapezoidal fuzzy numbers
R̂l = (al ;bl ;cl ;dl); l = 1;2; :::;k with the respective
membership function µR̂l

(x). As the rating R̂l =

(al ;bl ;cl ;dl) is for the l�th decision-maker, the ag-
gregated fuzzy number that can stand for all decision-
makers’ rating is:

R̂ = (a;b;c;d)

with:
a = minlfalg, b = 1

k å
k
l=1 bl , c = 1

k å
k
l=1 cl , d =

maxlfdlg. The fuzzy rating and importance
weight of the l�th decision-maker can respec-
tively be represented by xi jl = (ai jl ;bi jl ;ci jl ;di jl) and
ŵ = (w jl1;w jl2;w jl3;w jl4) with i = 1;2; :::;m; j =
1;2; :::;n. Then, the aggregated fuzzy ratings xi j of
alternatives with respect to each criterion are:

xi j = (ai j;bi j;ci j;di j);

calculated as: ai j =minlfai jlg, bi j =
1
k å

k
l=1 bi jl , ci j =

1
k å

k
l=1 ci jl , di j = maxlfdi jlg. The aggregated fuzzy

weight ŵ j of each criterion can be calculated as :

ŵ j = (w j1;w j2;w j3;w j4)

with w j1 = minlfw jl1g, w j2 = 1
k å

k
l=1 w jl2, w j3 =

1
k å

k
l=1 w jl3, w j4 = maxlfw jl4g. After aggregation the

decision matrix and the weight vector are of the fol-
lowing form X = fxi jgm�n and W = fw jg1�n, where
i = 1;2; :::;m and j = 1;2; :::;n.
These matrices’ elements are given by positive trape-
zoidal fuzzy numbers as :
xi j = (ai j;bi j;ci j;di j) and w j = (w j1;w j2;w j3;w j4).
The linear scale transformation is used to transform
the various criteria scales into comparable scales in
order to avert overly complex mathematical opera-
tions in a decision process. By dividing the set of
criteria into benefit criteria B, where the larger the
rating, the greater the preference and cost criteria C,
where the smaller the rating, the greater the prefer-
ence. A normalization method designed to preserve
the property in which the elements are normalized
trapezoidal fuzzy numbers is used. The normalized
value of xi j is ri j, and the normalized fuzzy decision
matrix is then represented as:

R = [ri j]m�n (7)

with
ri j = (

ai j

d+
j
;

bi j

d+
j
;

ci j

d+
j
;

di j

d+
j
); j 2 B

ri j = (
a�j
di j

;
a�j
ci j

;
a�j
bi j

;
a�j
ai j

); j 2C

where d+
j = maxifdi jg; j 2 B and a�j = minifai jg; j 2

C. The weighted normalized value of ri j is called vi j,
and by considering the importance of each criterion,
the weighted normalized fuzzy decision matrix is rep-
resented as:

V = [vi j]m�n (8)
where vi j = ri j �w j. For all i, j, the elements vi j are
now normalized positive trapezoidal fuzzy numbers.

Next, the ideal solutions must be determined and
taken from the given criteria which are linguistically
expressed, they are commonly referred to as Fuzzy
Positive Ideal Solution (FPIS) and Fuzzy Negative
Ideal Solution (FNIS). By considering a finite set of
given criteria C = fC jj j = 1;2; :::;ng, the ways to se-
lect the FPIS(P+) and the FNIS(P�) come from the
weighted normalized decision matrix V = (vi j)m�n,
where the obtained weighted normalized values vi j
are fuzzy numbers expressed as:

vi j = (vi j1;vi j2;vi j3;vi j4)

The fuzzy positive-ideal solution P+ and the fuzzy
negative-ideal solution P�, respectively are:

P+ = [v+1 ;v
+
2 ; :::;v

+
n ] (9)

P� = [v�1 ;v
�
2 ; :::;v

�
n ] (10)

One way for choosing the FPIS (P+) and the FNIS
(P�) have been explained in (Luukka, 2011), and is
given as follows:

Every element of P+ is the maximum for all i
weighted normalized value , and every element of P�

is the minimum for all i weighted normalized value:

v+j = (max
i

vi j1;max
i

vi j2;max
i

vi j3;max
i

vi j4) (11)

v�j = (min
i

vi j1;min
i

vi j2;min
i

vi j3;min
i

vi j4) (12)

This was also considered in our approach. The simi-
larity measure between each project and the ideal so-
lutions P+ and P� will be needed later, when calculat-
ing the closeness coefficients to determine the ranking
order of all possible alternative projects.

The similarities s+i from the positive and negative
ideal solution are calculated as:

s+i = fsi1(vi1;v+1 );si2(vi2;v+2 ); � � � ;sin(vin;v+n )g (13)

s�i = fsi1(vi1;v�1 );si2(vi2;v�2 ); � � � ;sin(vin;v+n )g (14)
where for similarity we used the similarity mea-

sure from equation (1).
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Table 1: Evaluation of R & D projects.

Project C1 C2 C3 C4
P1 (53;62;68;78) (43;50;55;63) (115;128;128;141) 0:06
P2 (83;98;108;123) (85;100;110;125) (126;140;140;154) 0:0594
P3 (157;185;204;231) (170;200;220;250) (170;189;189;208) 18
P4 (204;240;268;300) (170;200;220;250) (164;182;182;200) 0:54
P5 (259;305;336;381) (510;600;660;750) (209;232;232;255) 3:10
P6 (85;100;110;125) (85;100;110;125) (185;206;206;227) 5
P7 (259;305;336;381) (510;600;660;750) (209;232;232;255) 3:10
P8 (94;110;121;138) (85;100;110;125) (177;197;197;217) 1:58
P9 (140;165;182;206) (153;180;198;225) (238;264;264;290) 17:15
P10 (190;223;245;279) (323;380;418;475) (257;285;285;314) 1:65
P11 (60;70;77;88) (68;80;88;100) (148;164;164;180) 10:03
P12 (91;107;118;134) (85;100;110;125) (144;160;160;176) 2:39
P13 (247;290;319;363) (34;40;44;50) (297;330;330;363) 0
P14 (370;435;479;544) (595;700;770;875) (338;375;375;413) 278:25
P15 (166;195;215;244) (425;500;550;625) (279;310;310;341) 320:25
P16 (221;260;286;325) (255;300;330;375) (315;350;350;385) 39:66
P17 (235;277;305;346) (298;350;385;438) (311;346;346;381) 72:48
P18 (281;330;363;413) (468;550;605;688) (331;368;368;405) 231
P19 (344;405;446;506) (680;800;880;1000) (365;406;406;447) 414:75
P20 (451;530;583;663) (978;1150;1265;1438) (394;438;438;482) 651

These similarity vectors are then aggregated using
OWA, as follows:

S+iw = OWAw(s+i1;s
+
i2; � � � ;s

+
in) (15)

S�iw = OWAw(s�i1;s
�
i2; � � � ;s

�
in) (16)

Besides this we also aggregate s+i vector by using
multi-distance as
D+

iw(s
+
i1;s

+
i2; � � � ;s

+
in) = OWAw(d(s+i1;s

+
i2);d(s

+
i2;s

+
i3);

:::;d(s+i(n�1);s
+
in)) (17)

In the closeness coefficient we now want to take
both into account, the similarities from the positive
and the negative ideal solution but also the multi-
distance. This is now done by modifying the close-
ness coefficient in form given in equation (18). The
closeness coefficients of the alternative project Pi with
respect to the positive ideal solution by using the dis-
tance matrix (CCi) are defined as:

CCi =
S�iw +D+

iw

D+
iw +S+iw +S�iw

; i = 1;2; :::;m (18)

Next we rank the projects by closeness coeffi-
cients, now using ascending order.

For all i = 1;2; :::;m and j = 1;2; :::;n. Differ-
ent steps for the given TOPSIS algorithm can be pre-
sented as follows:

Step1: Form a decision-makers’ committee, and
identify the evaluation criteria.

Step2: Choose the appropriate linguistic variables
for the importance weight of the criteria and the
linguistic ratings for alternative projects.

Step3: Aggregate the weight of criteria to get the ag-
gregated fuzzy weight ŵ j of the criterion C j and
join the decision-makers’ ratings to get the aggre-
gated fuzzy rating xi j of the project Pi in consid-
eration of the criterion C j.

Step4: Construct the fuzzy decision matrix and the
normalized fuzzy decision matrix.

Step5: Construct the weighted normalized fuzzy de-
cision matrix.

Step6: Determine the fuzzy positive (and negative)
ideal solution FPIS (and FNIS).

Step7: Construct the similarity matrix by calculating
the similarity measure of each project from the
FPIS (and FNIS).

Step8: Calculate aggregated similarity values for
each project wrt. FPIS and FNIS by using OWA.

Step9: Calculate multi-distance value for each
project wrt. FPIS.

Step10: Calculate the closeness coefficient for each
project in order to determine the projects’ ranking
order.

4 NUMERICAL EXAMPLE

This numerical example uses the same data that is also
used in (Hassanzadeh et al., 2012). A pharmaceutical
company can select a certain number of projects to in-
vest in from among 20 R & D projects. Criteria that
are used in the example come from costs, revenues,
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budget constraints, and real option values (ROV) cal-
culated for each project by using the pay-off method
for real option valuation (Collan et al., 2009); these
are represented as trapezoidal fuzzy numbers. First
and third criteria are cost criterias and second and
fourth, benefit criterias.

In Table 1 one can see evaluations of the differ-
ent criteria by using trapezoidal fuzzy numbers. The
fourth (ROV) criterion is carried out in computations
as a fuzzy number of form A = (a1;a2;a3;a4), where
a1 = a2 = a3 = a4.

For different a values, the following Table 2
shows the computed closeness coefficients and the
rankings for each of the twenty projects for three dif-
ferent orness values a. In computation of fuzzy num-
bers a larger set of values of a was used. There a

values were a = 0:1;0:2; � � � ;0:9;1 .

Table 2: Projects’ closeness coefficients values and rank-
ings, for a = 0:1;0:5;1.

Project CC(a=0:1) Rank CC(a=0:5) Rank CC(a=1) Rank
P1 0:83 19 0:710 8 0:709 8
P2 0:813 13 0:728 11 0:728 11
P3 0:79 10 0:741 15 0:741 15
P4 0:80 11 0:751 19 0:751 19
P5 0:61 2 0:614 2 0:615 2
P6 0:821 17 0:74 14 0:739 14
P7 0:819 15 0:717 10 0:716 10
P8 0:824 18 0:744 17 0:743 17
P9 0:809 12 0:751 18 0:75 18
P10 0:68 6 0:681 7 0:682 7
P11 0:81 14 0:716 9 0:715 9
P12 0:82 16 0:737 13 0:736 13
P13 0:85 20 0:798 20 0:797 20
P14 0:64 4 0:674 6 0:674 6
P15 0:58 1 0:612 1 0:613 1
P16 0:77 9 0:742 16 0:743 16
P17 0:75 8 0:729 12 0:729 12
P18 0:64 3 0:672 5 0:673 5
P19 0:68 5 0:661 4 0:662 4
P20 0:71 7 0:652 3 0:651 3

In Table 3, the minimum, mean, and the maximum
rankings from our experimental setup are summa-
rized. These are then used in the formation of trian-
gular fuzzy numbers for each project.

Table 3: The minimum, mean, and the maximum rankings.

Project Minimum Mean Maximum
P1 8 10:3 19
P2 11 11:9 14
P3 10 13:7 15
P4 11 17:1 19
P5 2 2 2
P6 14 15:2 18
P7 10 11 15
P8 17 17:5 19
P9 12 17:1 18
P10 6 6:8 7
P11 9 10 14
P12 13 14:1 17
P13 20 20 20
P14 4 5:4 6
P15 1 1 1
P16 9 13:6 16
P17 8 10:5 12
P18 3 4:4 5
P19 4 4:3 5
P20 3 4:1 7

Total ordering is found for fuzzy numbers pre-
sented in Table 3 by using the method introduced by
Kaufman and Gupta (Kaufman and Gupta, 1988). For
this purpose removal number, dispersion, and modal
value are calculated in a way presented above - Table
4 presents the resulting overall ranking. According to
the result the top five projects are 15;5;18;19, and 20.

Table 4: Overall rankings of the R & D projects using re-
moval number, dispersion, and modal value.

Project Rank Removal no div mode
P15 1 1 0 1
P5 2 2 0 2
P18 3 4.2 2 4.4
P19 4 4.4 1 4.3
P20 5 4.55 4 4.1
P14 6 5.2 2 5.4
P10 7 6.65 1 6.8
P17 8 10.25 4 10.5
P11 9 10.75 5 10
P7 10 11.75 5 11
P1 11 11.9 11 10.3
P2 12 12.2 3 11.9
P16 13 13.05 7 13.6
P3 14 13.1 5 13.7
P12 15 14.55 4 14.1
P6 16 15.6 4 15.2
P9 17 16.05 6 17.1
P4 18 16.05 8 17.1
P8 19 17.75 2 17.5
P13 20 20 0 20

5 CONCLUSIONS

A new multiple-criteria decision making approach
was presented; it is an extension for the fuzzy simi-
larity based fuzzy TOPSIS. OWA was used for aggre-
gating similarity to fuzzy negative and positive ideal
solutions for each criterion and multi-distance was
used in collecting information about the ”similarity
of these similarities” that can be understood as a mea-
sure of homogeneity or consistency of a given project.
This has allowed the inclusion of more relevant infor-
mation than the use of a simple defuzzification. The
method was applied to a R & D project selection prob-
lem. The results are dependent on the proper selection
of a, when the weights are generated for the OWA
operator. This weight generation was done by using
O’Hagan’s method that finds the weights as an op-
timal solution for a predefined (given) orness value
(a). We examined the effect of the pre-selection by
testing with a number of orness values. We presented
a way to take in to consideration the ”created” infor-
mation with different orness values by forming fuzzy
numbers from the different rankings of the projects
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created in this way. By using multidistances a mea-
sure of homogeneity of similarity of the different cri-
teria of each project to the fuzzy positive ideal solu-
tion was calculated. This was done to include infor-
mation about the consistency of the level of goodness
of projects (by the selected criteria). This informa-
tion was included in the closeness coefficient that was
used in the ranking of the projects. The final ranking
thus includes information about the goodness of each
project (as ranked by TOPSIS) and about the ”stabil-
ity” of the level of goodness of each of the criteria of
each project. The top five projects from the numerical
example were found to be 15;5;18;19, and 20. No-
table from the results is that projects 15 and 5 were
always top 2 choices, but project 20 varied between
rankings 3 to 7 so that with lower values of orness
ranking was lower and after orness value 0:6 it was
always the third best choice. Forming a fuzzy number
from different rankings allows one to include differ-
ent points of view and creating an intelligent overall
ranking. Furthermore, more relevant information is
carried along in the analysis, until the ranking stage,
enabling the ranking to take more things into consid-
eration and thus being based on a more holistic view
of the problem.
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