
Dynamic Software Updating with Gosh!
Current Status and the Road Ahead

Allan Raundahl Gregersen1, Michael Rasmussen1 and Bo Nørregaard Jørgensen2
1ZeroTurnaround, Tartu, Estonia

2The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark

Keywords: Dynamic Software Updating, Unanticipated Run-time Evolution, Run-time Phenomena.

Abstract: Any non-trivial software system has to be upgraded regularly to incorporate bug fixes and security patches
or simply to keep up with the inevitable evolution in end-user requirements. Software upgrading is
challenging, especially when it comes to online upgrading of running systems. In this paper, we present the
current status of Gosh!, a dynamic-software-updating system for Java, which provides comprehensive
support for changing class definitions of live objects, including adding, removing and moving fields,
methods, classes and interfaces anywhere in the inheritance hierarchy. Prior to the acquisition by
zeroturnaround.com, Gosh! was known as Javeleon. In this paper we demonstrate the capabilities of Gosh!
by performing a dynamic updating experiment on five consecutive revisions of the classical arcade game
Breakout. Based on the result of this experiment we show that dynamic updating of class definitions for live
objects may under some circumstances result in different run-time behavior than would be observed after a
cold restart of the upgraded application. Finally, we conclude by discussing the implication of this finding
for future research directions within dynamic software updating.

1 INTRODUCTION

Software is subject to continuous change, not only as
part of its development cycles, but also over time to
stay useful to its users (Lehman, 1997). In most
standard deployment environments this implies that
use of the next software version typically requires
halting the currently running version before
deploying and starting the new version. Using a
dynamic software-updating system (DSU) this is no
longer necessary, as the DSU system will
dynamically replace the running version with the
new version. Depending on how advanced the DSU
system is this may happen more or less transparent
to end-users. We say that a DSU system is end-user
transparent if it does not require any intervention of
end-users during an update, and similarly we say it
is developer transparent if it does not require
developers to take specific precautions. Hence, the
two forms of transparency is a key quality for any
DSU system, since it strongly influences the degree
to which it will be successful. The success of DSU
systems is especially important as software systems
tend to become more complex in terms of internal
run-time state and interactions with external

systems. This trend is for instance present in
mission-critical systems such as surveillance and
control of air traffic, ground transportation, oil and
gas production, industrial process, power generation,
and smart-grids. These application domains are all
subject to safety, environmental and economical
regulations and restrictions, which make system
downtime due to maintenance tasks like software
updates not only inconvenient but also very
expensive.

Where past research has contributed significantly
toward making DSU practical for systems written in
C or C++, upgrading of server functionality
(Neamtiu et al., 2006; Chen et al., 2007; Makris and
Bazzi, 2009), deploying security patches (Altekar et
al., 2005), and operating systems upgrades (Soules
et al., 2003; Baumann et al., 2005; Baumann et al.,
2007; Makris and Ryu, 2007; Chen et al., 2006;
Arnold and Kaashoek, 2009), there used to be a gap
when it comes to systems written in managed
languages, such as Java, Ruby, and C#. In the past
DSU for managed languages was limited to HotSpot
JVM (Sun Microsystems, 2004) for Java. For some
.NET languages (Microsoft Corporation, 2008) a
similar limited support of on-the-fly updating of

220 Raundahl Gregersen A., Rasmussen M. and Nørregaard Jørgensen B..
Dynamic Software Updating with Gosh! - Current Status and the Road Ahead.
DOI: 10.5220/0004562302200226
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 220-226
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

method bodies applies. However, this support is too
restricting for all but the simplest updates. Limiting
changes to method bodies would render the DSU
system useless for updating most of the revision
improvements reported for the Jetty webserver in
(Gustavson, 2003). Academic approaches (Ritzau
and Andersson, 2000; Malabarba et al, 2000; Orso et
al., 2002; Bierman et al., 2008) offer more
flexibility, but remain still to be proven on realistic
development scenarios. Furthermore, these
approaches employ designs for method and object
indirection, which impose substantial space and time
overheads on steady-state execution. The lack of
approaches supporting managed languages had the
potential to become a severe problem as an
increasing number of enterprise systems and
embedded systems are written in those languages.
Fortunately, the research on DSU for managed
languages has caught up and includes now multiple
promising approaches. State-of-the-art approaches
for Java includes; JRebel (Kabanov, 2010), an
application-level system which is currently the de-
facto commercial tool for class reloading in Java;
Dynamic Code Evolution VM (Würthinger et al.,
2010), a VM-enhancement of the Java HotSwapTM
VM (Dmitriev, 2001); JVolve (Subramanian et al.,
2009), a VM approach based on the Jikes Research
VM, and Gosh! (Gregersen and Jørgensen, 2009), an
application-level system.

In this paper, we first provide an overview of
code changes supported by DSU systems targeting
Java; we then give an introduction to the design and
implementation of Gosh!, followed by the latest
development in the performance benchmarking of
Gosh!. Then, we demonstrate the capabilities of
Gosh! by applying it to a series of consecutive
revisions of an in-house implementation of the
classical arcade game Breakout. Finally, we discuss
the result of this experiment and its implication for
future research direction within dynamic software
updating.

2 GOSH! COMPARED TO OTHER
APPROACHES

A comparison of the code changes supported by
DSU systems that are currently public available is
given in table 1. As the table shows, Gosh! is at the
moment the DSU system with the most
comprehensive support for redefinition of Java
classes. The Issues symbol in table 1 indicates that
there are circumstances where the code change is not
fully supported by the DSU system.

Tabel 1: DSU system comparison.

Code change

G
os

h
!

JR
eb

el

D
C

E
V

M

Changes to method bodies

Adding/removing fields

Adding/removing methods

Adding/removing constructors

Adding/removing classesi

Replace superclass

Adding/removing implemented interfaces
Automatic new instance field initialization
(developer-defined default value)ii

Automatic new static field initialization
(developer-defined default value)iii, iv

Move field to super class (preserving the state)iv

Move field to sub class (preserving the state)iv

Changing static field valueiii

Changing primitive static final field valuev

Adding/removing enum valuesvi

Supported Not supported Issues

i. Only Gosh! and JRebel provide integration with custom
class-loaders for adding new classes that is not present on
the class path.

ii. Gosh! supports automatic field initialization without re-
executing the constructor/static initializer. However,
automatic initialization does currently not support
branching (try/catch, ternary operator etc.)

iii. Currently, JRebel is the only approach with support for
changing static field values. However, it is based on re-
executing the entire static initializer which may lead to
serious side-effects caused by repeated execution of code
which should only execute once.

iv. Gosh! is currently the only DSU system cable of correctly
transferring values of fields which have been moved up or
down in the inheritance hierarchy. DCEVM copies field
values to super/sub classes even in situations where the
field is also retained in the former class version.

v. Only Gosh! fully supports changing primitive static final
field values, as both JRebel and DCEVM gives wrong
results for constant values accessed through reflection after
updating.

vi. JRebel claims support. However, simple tests show that e.g.
removing and adding enum values is not handled correctly
in switch statements.

3 GOSH! DESIGN AND
IMPLEMENTATION

The core idea of the Gosh! updating model is to
allow multiple versions of the same objects to co-
exist in a running system. This is achieved by
creating new class loaders for each new version, thus
setting up distinct type namespaces. Since this

Dynamic�Software�Updating�with�Gosh��-�Current�Status�and�the�Road�Ahead

221

approach imposes a version barrier (Sato and Chiba,
2005) of incompatibility between differently
versioned classes and objects, the updating model
must maintain a versioned view of the involved
objects and classes. Gosh! utilizes a novel concept of
Dynamic Correspondence Proxification, a
combination of the two mechanisms In-Place
Proxification and Correspondence Mapping which
transform live objects and classes of former versions
into proxies that delegate to the most recent
versions. In-Place Proxification enforces shared
identity and state across the version barrier, while
Correspondence Mapping handles type conversion
for crossing the version barrier. Details on Dynamic
Correspondence Mapping can be found in prior
work (Gregersen and Jørgensen, 2009). In this
paper, we solely outline the architecture of Gosh!.
Details on the architecture are provided in
(Gregersen et al., 2012).

Figure 1: Architectural overview of Gosh!.

The architecture of Gosh!, shown in figure 1,
features the following components:

 The bootstrap-class-transformer and sub-
process-spawner components are responsible for
statically transforming the JVM bootstrap-classes
and to automatically spawn a new JVM process
with the set of modified bootstrap-classes. This
setup is necessary to make Gosh! transparent to
the end-user, as the class instrumentation
mechanism introduced in JDK 5.0 does not
support instrumentation of bootstrap-classes on
class loading.

 The class-loading plug-in component is used to
integrate Gosh! with the class loading and
resource management of different application
frameworks. At present, Gosh! only provides an
integration component for the NetBeans Platform,

besides standard Java SE support. In general, the
responsibility of these components is to deal with
all the issues that cannot be handled simply by
updating Java class files, i.e. reflecting changes
made to application resources and configuration
files.

 The bytecode-transformer component is
responsible of instrumenting classes as they are
loaded into the JVM. We distinguish between
system classes that are made dynamic update-
aware and application classes that are made
dynamic update-enabled. Update-aware classes
impose less run-time overhead than update-
enabled classes. We make this distinction,
because we consider it less likely that system
classes are dynamically updated, as this would
most likely include a dynamic update of the JVM.
However, although system classes are not
considered subject to dynamic updating they must
be instrumented to accommodate changes to their
possible subclasses.

 The run-time component implements the
underlying dynamic updating model, which uses
the In-Place-Proxification technique in
combination with Correspondence Mapping to
delegate requests to the most recent versions of
updated classes. This component also ensures
correct identity and equality preservation,
handling of hashCode, thread synchronization,
array-access handling for differently versioned
objects etc. The core execution component is also
responsible of transferring state from former
versions to the new version. State is transferred
using a thread-safe, non-blocking, lazy-state
copying mechanism, which only transfers state
when it is requested from within the new version.
This ensures that the application stays responsive
during dynamic updating as all state does not
have to be transferred at once. In case all state
had to be transferred at once, the end-user would
experience a transition bump, where the
application turns temporally inaccessible.

4 BENCHMARKING GOSH!

We have used SPECjvm2008 to measure the steady-
state performance overhead introduced by Gosh! and
JRebel 4.5.2. We chose to compare Gosh! with
JRebel and not DCEVM, as Gosh! and JRebel are
both application-level approaches whereas DCEVM
is based on a modified Java HotSpotTM VM. As
shown by figure 2, Gosh! and JRebel are comparable
in performance, both approaches also show similar

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

222

bottlenecks. The tests were performed so both Gosh!
and JRebel identified the benchmark classes as
update-enabled.

Figure 2: Gosh! vs. JRebel 4.5.2 [operations/min.].

Since the SPECjvm2008 test only allowed us to
measure the steady-state performance overhead
before updating we also designed a number of micro
benchmarks to measure the run-time overhead
imposed by newly inserted code after updating. The
result of our recursive Fibonacci number
benchmarks is shown in figure 3. The dynamic
update simply renames the recursive method, thus
simulating the insertion of a new method. The
benchmark results show that Gosh! is faster than
JRebel both before and after an update. Furthermore,
the results also show that the runtime overhead
remains constant for Gosh! after updating whereas it
increases drastically for JRebel. Hence, Gosh!
demonstrates that it scales for supporting continues
updating.

Figure 3: Recursive Fibonacci Benchmark
[operations/min.].

5 EXPERIENCE

To evaluate practical application of Gosh!, we made
four updates using five revisions of an in-house-
developed version of the classical arcade game
Breakout. The first version of the game contains 14
classes and 1.012 lines of code, which developed
into 36 classes and 2.405 lines of code in the final
version. The five revisions of the game contain
many non-trivial code changes. A total of 120 code
changes were found by manual inspection. Each
code change has been classified according to the
classification developed in (Gustavson, 2003). Table
2 summarizes the code changes found for successive
revisions. The ID numbering of the code changes is
not consecutive, as we have only listed the code
changes that took place between successive
revisions. A blank field in the table indicates that no
occurrences of the code change were found. The last
column in the table summarizes the frequency of
each code change for all revisions. We included this
column to show how often a particular code change
occurs during development of the game.

Tabel 2: Code change analysis of Breakout.

ID Code change description

R
1-

R
2

R
2-

R
3

R
3-

R
4

R
4-

R
5

%

6 Class added 2 9 3 3 14

30 Constructor implementation
changed in class 1 1 2

33 Instance method added to
class 3 11 2 8 20

34 Instance method removed
from class 2 2

35 Instance method renamed in
class 4 3

37 Instance method return type
changed in class 4 3

38
Instance method
implementation changed in
class

12 11 3 10 30

44
Static method
implementation changed in
class

4 3

68 Instance field added to class 2 2 3

84 Interface added 1 1

120 Resource added a 8 1 4 8 18

121 Resource removed a 1 1

a. ID 120 and 121 is a refinement of ID 117 ‘Environment state change’ in 0

The experiment showed that the Breakout game
could be successfully updated from one revision to
the next, however, under some circumstances the
applied updating sequence resulted in a run-time
behavior that was quite different from that of a cold
restart of the game. Updates that resulted in different

Dynamic�Software�Updating�with�Gosh��-�Current�Status�and�the�Road�Ahead

223

behavior did so, because they introduced code
changes that caused run-time phenomena. A
classification of run-time phenomena in dynamic
software updating was first introduced in (Gregersen
and Jørgensen, 2011). The code changes listed in
table 3 were herein identified as the cause of these
phenomena. It is important to note that these code
changes may cause run-time phenomena, but that it
is not always the case. Whether run-time phenomena
do occur is very dependent on the application’s
design and the time of updating.

Tabel 3: Run-time Phenomena.

ID Code change description
Possible run-time

phenomenon

7 Class removed Phantom objects

8 Class renamed
Phantom objects / Lost
State

16
Modifier abstract added to
class

Phantom objects

6 Class added Absent state

22 Super class of class changed Absent state

68/
71

Instance/static field added to
class

Absent state

21
Modifier static removed from
inner class

Absent state

70/
73

Instance/static field type
changed in class

Lost state

65
Static initialization impl.
changed in class

Oblivious update

30
Constructor impl. changed in
class

Oblivious update

114 Static field value changed Broken assumption

38/
44

Instance/static method impl.
changed (e.g., conditional
statement, method split /
merged)

Broken assumption /
Transient inconsistency

 Phantom Objects are live objects whose classes
have been removed by a dynamic update. Whilst
phantom objects will continue to exist in the
system, their existence in the updated application
will be void. Hence, if such objects are part of the
existing application state, the updated application
may try to reference them indirectly through, for
instance, an array or a collection. Although
removing classes is typically discouraged, there
are situations where classes are either in-lined or
renamed due to refactoring. For the DSU systems
discussed in this paper, in-lining and class
renaming corresponds to class-removed and
class-added operations. Likewise, the use of
dayfly classes (Lanza et al., 2005) is another
example of class removals. Dayfly classes are

classes that are typically created for evaluating a
new idea and then removed shortly thereafter.

 Absent State refers to the situation where objects
created in a former version lack state defined by
the updated versions of their classes. Such state
would typically have been created during a cold
restart by an extra argument in a modified
constructor.

 Lost State happens when an updated class makes
binary incompatible changes to the type of a
member field. E.g., change the field ‘name’ of
type String to type Name. Given that it is not
possible for the automatic state-transfer
mechanism of Gosh! to automatically deduct how
a changed type relates to a previously declared
type, the run-time effect of changing the field
type is that the field value for all existing objects
of that class is lost and the new value is set to the
default value.

 Oblivious Update refers to the situation where
some or all features introduced in the new
revision are missing after updating. That is, the
run-time behavior of the updated application is
different from that of a cool restart. Changing
constructors to initialize new state fields is often
the cause for oblivious updates, as constructor
changes will not have any effect on already
created objects.

 Broken Assumption may surface when constraints
governing the interrelationship between program
state and program logic change between
successive revisions. If, for instance, the value of
a member field, e.g. a counter, depends on some
other member field, e.g. a constant, then changing
either the value of the constant or the logic of the
code maintaining this interdependency may break
objects when moved to the new class. Exception-
based program termination is often the result.

 Transient Inconsistency refers to the situation
where an updated application is temporally
brought into a run-time state that the new version
of the application would never enter after a cold
restart. If the updated application does not enter a
valid run-time state in the new version after a
finite period of time, it is said to be captured in an
erroneous state. Erroneous state can be caused by
a Broken Assumption that does not produce any
run-time exceptions.

An interesting example of the Phantom Object
and Lost State phenomena can be observed if we
perform a dynamic roll-back by dynamically
updating revision 4 back to revision 3 in the middle
of a level. The resulting run-time effect of dynamic
update is shown in figure 4. Here we see that the

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

224

special bricks introduced in revision 4 disappear
after the roll-back to revision 3. This happens
because revision 4 uses subclasses of the abstract
parent class (Brick.class) to model special feature
bricks, such as concrete bricks and bonus bricks that
drop bonuses when hit. This roll-back corresponds
to a class-removed code change, as the subclasses do
not exist in revision 3. Hence, the roll-back resulted
in a run-time behavior that is different from that of a
cold restart, where the brick wall would have
appeared solid consisting of only blue bricks.
However, this effect is a Transient Inconsistency as
the brick wall is drawn correctly when continuing to
the next game level.

We observed during our experiments with
dynamically updating of the Breakout game that the
result of a dynamic update is highly dependent on
application design. The roll-back goes through
despite the occurrence of run-time phenomena,
because of a loosely coupled design that uses a
lookup service for storing the brick wall. An
alternative design storing the brick wall in an array
of type Brick[][] would result in program
termination due to a null pointer exception, because
the state-migration mechanism in Gosh! cannot map
objects of subclasses for special feature bricks in
revision 4 to any objects in revision 3, as the
subclasses do not exist here. Hence, the state-
migration mechanism will instead insert null
references in place of the original special brick
objects in the array. It is these null-references that
cause program termination due to a null pointer
exception when traversing the array. More examples
on the run-time phenomena and their causes are
given in (Gregersen and Jørgensen, 2011).

Figure 4: Disappearing objects after class removals.

6 CONCLUSIONS

In this paper, we have provided an overview of the
current state-of-the-art of the DSU systems targeting

Java, by comparing the set of code changes they
support. The comparison shows that Gosh! is
currently the most comprehensive DSU system
available. Furthermore, we have benchmarked Gosh!
against the only commercially available DSU system
JRebel and shown that Gosh! delivers comparable
run-time performance before updating and
considerable better performance after updating.
Whereas JRebel’s updating model introduces a
significant overhead for handling changed code,
Gosh!’s updating model scales and continues to
perform with the same constant run-time overhead.
Hence, Gosh! shows the capability to provide
support for dynamic updating of long-lived
applications, like application- and web-servers. To
evaluate Gosh!, we made four updates using five
revisions of an in-house developed version of the
classical arcade game Breakout. The experiment
showed that it was possible to incrementally update
the consecutive revisions of the Breakout game.
However, what the experiment also showed was that
dynamic updating may result in so-called run-time
phenomena. I.e., situations where the run-time
behavior of the updated application diverges from
the behavior expected after a cold restart. Hence, to
increase predictability of DSU systems there is a
need for creating dynamic impact analysis tools that
can determine whether code changes differentiating
successive revisions may potentially lead to
manifestation of run-time phenomena or not.
Dynamic analysis is necessary as both the run-time
state and the time of updating have significant
impact on the result of an update, hence static
impact analysis alone cannot determine whether a
dynamic update will be successful, it can only
identify potential risks of run-time phenomena. The
advent of dynamic analysis tools will, among other
things, determine the future success and feasibility
of dynamic updating for mission critical software
systems.

REFERENCES

Altekar, G., Bagrak, I., Burstein, P., Schultz, A., 2005.
OPUS: Online patches and updates for security. In
Proc. USENIX Security.

Arnold, J., Kaashoek, F., 2009. Ksplice: Automatic
rebootless kernel updates. In Proc. EuroSys.

Baumann, A., Appavoo, J., Silva, D. D., Kerr, J., Krieger,
O., Wisniewski, R. W., 2005. Providing dynamic
update in an operating system. In Proc. USENIX
Annual Technical Conference.

Baumann, A., Appavoo, J., Wisniewski, R. W., Silva, D.
D., Krieger, O., Heiser, G., 2007. Reboots are for

Dynamic�Software�Updating�with�Gosh��-�Current�Status�and�the�Road�Ahead

225

hardware: challenges and solutions to updating an
operating system on the fly. In Proc. USENIX Annual
Technical Conference.

Bierman, G., Parkinson, M., Noble, J., 2008. UpgradeJ:
Incremental typechecking for class upgrades. In Proc.
ECOOP.

Chen, H., Chen, R., Zhang, F., Zang, B., Yew, P. C., 2006.
Live updating operating systems using virtualization.
In Proc. VEE.

Chen, H., Yu, J., Chen, R., Zang, B., Yew, P., 2007.
POLUS: A POwerful Live Updating System. In Proc.
ICSE.

Dmitriev, M., 2001. Safe Evolution of Large and Long-
Lived Java Applications. PhD thesis, Department of
Computing Science, University of Glasgow, Glasgow
G12 8QQ, Scotland.

Gustavson, J., 2003. A Classification of Unanticipated
Runtime Software Changes in Java. In Proc. ICSM.

Gregersen, A. R., Jørgensen, B. N., 2009. Dynamic update
of Java applications—balancing change flexibility vs
programming transparency. In J. Softw. Maint. Evol.:
Res. Pract. 21.

Gregersen, A. R., Jørgensen, B. N., 2011. Run-time
Phenomena in Dynamic Software Updating: Causes
and Effects. In Proc. IWPSE-EVOL.

Gregersen, A. R., Hadaytullah, Koskimies, K., Jørgensen,
B. N., 2012. An Integrated Platform for Dynamic
Software Updating and its Application in Self-*
systems. In Proc. SCET.

Kabanov, J., 2010. JRebel Tool Demo. In Proc. Bytecode
2010.

Lanza, M., Ducasse, S., Gall, H., and Pinzger, M., 2005.
CodeCrawler: an information visualization tool for
program comprehension. In Proc. ICSE.

Lehman, M. M., 1997. Laws of Software Evolution
Revisited, pos. paper, EWSPT96, Oct. 1996, Lecture
Notes in Computer Science, Vol. 1149, Springer-
Verlag.

Makris, K., Bazzi, R., 2009. Multi-threaded dynamic
software updates using stack reconstruction. In Proc.
USENIX Annual Technical Conference.

Makris, K., Ryu, K. D., 2007. Dynamic and adaptive
updates of non-quiescent subsystems in commodity
operating system kernels. In Proc. EuroSys.

Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.
F., 2000. Runtime support for type-safe dynamic Java
classes. In Proc. ECOOP.

Microsoft Corporation. Edit and continue.
http://msdn2.microsoft.com/en-us/library/
bcew296c.aspx, 2008.

Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M., 2006.
Practical dynamic software updating for C. In Proc.
PLDI.

Orso, A., Rao, A., Harrold, M. J., 2002. A technique for
dynamic updating of Java software. In Proc. ICSM.

Ritzau, T., Andersson, J., 2000. Dynamic deployment of
Java applications. In Proc. Java for Embedded
Systems Workshop.

Sato, Y., Chiba, S.,2005. Loosely-separated "Sister"
Namespaces in Java. In Proc. ECOOP’05.

Soules, C., Appavoo, J., Hui, K., Silva, D. D., Ganger, G.,
Krieger, O., Stumm, M., Wisniewski, R., Auslander,
M., Ostrowski, M., Rosenburg, B., Xenidis, J., 2003.
System support for online reconfiguration. In Proc.
USENIX Annual Technical Conference.

Subramanian, S., Hicks, M., McKinley K. S., 2009.
Dynamic software updates: a VM-centric approach.
SIGPLAN No. 44, 6.

Sun Microsystems. Java Platform Debugger Architecture,
2004. This supports class replacement. See
http://java.sun.com/javase/6/docs/technotes/guides
/jpda/.

Würthinger, T., Wimmer,C. and Stadler, L. 2010.
Dynamic code evolution for Java. In Proc. PPPJ.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

226

