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Abstract: The goal of this work is to present an approach to constructive definition of information processes and 
objects. Our approach is based on applicative computational systems (ACS), so that both (information) 
processes and objects are formal entities in an ACS. We also outline the usage of π-calculus as an 
operational semantics for our constructive processes execution. The usage of the presented ideas in a 
distributed application development framework is outlined.  

1 INTRODUCTION 

Of the different definitions of the notion of a 
(computer) program one may be formulated in the 
way that a (computer) program is a system 
containing at least one of the following components: 
 a model of information processes running in a 

domain and information objects participating 
in those processes; 

 a system of information processes and 
information objects that themselves exists in 
that domain; 

 an environment providing those objects’ and 
existence and processes’ execution. 

In a computer program we cannot deal directly with 
‘physical’ objects and processes such as (machine) 
parts and their assembling, so we have to create a 
model for those objects and processes to represent 
them in our program. On the other hand, some 
objects and processes (for example, software, digital 
images and movies sold and distributed through 
internet) are digital in their nature and thus may be 
themselves made part of our programs. And 
generally those objects and processes in a program 
cannot exists all alone, they require some support, an 
environment to allow their interaction, as well as 
lifecycle management, and the like.  

Therefore, the understanding of what information 
objects and processes are, what is their structure and 
laws of existence – is essenssial. 

It is worth noting that many of the problems 
occuring in software development are due to the 
huge gap that commonly exists between the problem 
damain’s (conceptual) models and the conceptual 
system (semantics) of the programming language in 
use, if any such system is indeed clearly specified, 
which is rarely the case. It is beneficial, of course, to 
use the same conceptual system, or at least the same 
basic approach in constructing conceptual systems – 
the one for domain modelling and the one for the 
programming language. 

The main idea of the present paper is that such a 
common basis may be found in applicative 
computational systems (ACS). ACS provide a 
constructive, compositional style of building objects; 
when augmented with an appropriate type system, 
abilities of (automatic) extraction of semantic 
information are drastically increased; 
interoperability problems are solved relatively 
easily; effective valuation techniques may be 
devised, including those with optimization features. 

The rest of the paper is organized in the 
following way. Section 2 presents an introduction to 
ACS’s basics – in a way suitable for the purposes of 
the paper. The sections 3 and 4 provide an outline 
for modelling information processes and information 
objects in a constructive way. Section 5 discusses 
connection with the π-calculus, section 6 discusses 
an implementation of stated ideas. Section 7 sums up 
the paper’s main results. 
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2 A GENERALIZED MODEL FOR 
OBJECTS IN APPLICATIVE 
COMPUTATIONAL SYSTEMS 

In applicative computational systems (ACS) objects 
are functional entities such that: 
 the main way to construct composite objects is 

using the application operation (an object-
function being applied to an object-argument); 

 object’s role (to be either a function or an 
argument) depends on the context in which the 
object appears, and an object, in an untyped 
system, may be applied to itself; 

 objects-functions’ arity is not, potentially, 
predefined and shows itself in the course of 
computations; 

Following the idea from (Roslovtsev and Luchin, 
2009), the class of objects in an ACS is constructed 
by induction on objects structure: 

1. (induction basis) 
a) there is an infinite set of variables and a set 

(possibly, empty) of atomic objects; 
b) variables and atomic objects are atoms, and 

all atoms are objects; 
2. (induction step) if ܣଵ,… ,  ߪ  are objects andܣ

is an ݊-ary term-forming function (TFF) then 
ଵܣߪ  . is an objectܣ…

A TFF is a meta-operation used to construct 
complex objects from simpler ones. For example, 
application operation ‘⋅⋅’ is a binary TFF (if ܣ and ܤ 
are objects then so is ‘ܤܣ’). In λ-calculus there is 
another (binary) TFF – functional abstraction, which 
binds one variable in one object: if ‘ݔ’ is a variable 
and ‘ܣ’ is an object then ‘ݔߣ.  is also an object. In ’ܣ
applied systems other TFFs may be defined, e.g. 
tuple constructors. The notation ‘ܣߪଵ  ’ impliesܣ…
that the TFF ߪ is higher-order ‘function’ of a type of 
the form ‘ ଵܶ → ⋯ → ܶ → ܶାଵ’. The alternative is 
to write ߪሺܣଵ  having a type of the ߪ ሻ, withܣ…
form ଵܶ ൈ …ൈ ܶ ൈ ܶାଵ. This second option, for 
example, illustrates that we do not usually deal with 
‘partially constructed’ objects. The first approach, 
on the other hand, is more natural to ACSs and less 
demanding to the meta-theory’s expressive power 
since there is no predefined notion of Cartesian 
product in ACS. For the purposes of the present 
paper it is unimportant which option to choose. 

The question of choosing a set of atomic objects 
is a good one – even too good to be even tried to 
discuss it in any depth, much less to be answered, in 
the present paper. Two points, however, are worth 
noting. The first is that, actually, objects’ atomicity 
is not part of their nature, it is not absolute, but, 

rather, it is a motivated assumption: further 
decomposition of such objects is either redundant or 
leads to inconsistencies (Wolfengagen, 2004). 
Secondly, though one may chose different suitable 
sets of atomic objects for different purposes, those 
sets would share a common computing foundation – 
for which combinators K and S are good candidates, 
see (Wolfengagen, 2010). 

Since all objects of an ACS are built from a 
fixed set of atomic objects ܦ using a fixed set of 
TFFs ܨ, the generalized applicative prestructure may 
be written in the form of the pair: 

ሺܦ,   ሻܨ

In ACS, application operation exists by default and 
may be omitted in ܨ. In case of combinatory logic 
with IKS basis that prestructure would look like 
ሺሼI, K, Sሽ, ሼሽሻ, and for the pure (without any atomic 
objects included) λ-calculus: ሺሼሽ, ሼߣ ⋅.⋅ሽሻ. 

There is a very important kind of objects, called 
combinators. Combinator is an object that contains 
no free variables. In combinatory logic it means that 
a combinator is built out of atomic objects only, and 
in λ-calculus every variable occurring in that object 
is bound by a functional abstraction operation. 

3 INFORMATION PROCESSES 
CONSTRUCTION 

The basic idea underlying our process 
decomposition approach is that every process must 
be a combinator of some kind. That yields several 
advantages: 
 every process is closed, does not reference any 

global variables and its output depends only 
on the data supplied explicitly to the process’s 
input; 

 because of that, too, and because a process is, 
more or less, an ordinary object, an existing 
process, be it simple or complex, may be re-
used to define other processes; 

 a process may be passed to another process as 
an argument, thus allowing computation 
adjustment at run-time; 

 very powerful, yet relatively simple, process 
algebras may be formulated. 

Generally, processing an input object comprises 
three stages. First, the input object is decomposed 
onto several components and each of them, 
secondly, is sent to a corresponding specialized 
(sub)process (which may be either a structural part 
of the given process, or an independent entity). 
Finally, the partial results yielded by the 
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‘subprocesses’ are aggregated in some way, e.g. 
‘wrapped’ with a TTF into a resulting object. 

One powerful approach in process construction is 
defining a set of ‘standard’ process ‘schemes’ to 
combine the already constructed processes into a 
more complex one. 

Let ܨ: ଵܶ → ⋯ → ܶ → ܶାଵ be a TFF. For 
every such TFF let us define a set of ‘projecting’ 
objects ߨி

 : ܶାଵ → ܶ (of course, with ݅ ∈ ሾ1,݉ሿ), 
such that: 

ிߨ
 ሺܽܨଵ …ܽሻ ൌ ܽ,  

– for every suitable set of objects ܽଵ: ଵܶ, … , ܽ: ܶ. 
Finally, consider the currying ‘operator’ ԯ with the 
combinatory characteristics: 

ԯ݂ሾݔଵ, … ሿݔ ൌ ଵݔ݂   ݔ…

Assume that 〈 ଵ݂, … , ݂〉ݔ ൌ ሾ ଵ݂ݔ, … , ݂ݔሿ holds 
for every suitable (e.g. type-compatible, according to 
a certain type system of choice) set of objects 
ଵ݂, … , ݂ and ݔ. Then a process that takes an object 
ଵܽܨ …ܽ and yields another object ܾܩଵ …ܾ would 
in general look like this: 

࣠ ൌ ԯ࣡ ∘ 〈 ଵ݃, … , ݃〉 ∘ 〈 ଵ݂ ∘ ࣠ߨ
ଵ , … , ݂ ∘ ࣠ߨ

〉, (1)

or 

࣠ ൌ ԯ࣡ ∘ 〈 ଵ݃ ∘ ଵ݂, … , ݃ ∘ ݂〉, (2)

where all ݂ are subprocesses that perform a certain 
pre-processing of the input (on a by-component 
basis in case of (1), and in case of (2) – on a more 
general one). The responsibility of subprocesses 
ଵ݃, … , ݃ is to yield individual components ܾଵ,… , ܾ 

of the resulting object. Finally, ԯ࣡ unpacks the 
tuple ሾܾଵ, … , ܾሿ and produces the final result. Of 
course, both in (1) and (2) one may add explicit 
post-processing handlers. An essential point is that 
every component ܾଵ,… , ܾ is evaluated 
independently of all others, which is rather handy in 
parallelized environments. If, on the other hand, 
some of these components depend on the others, an 
appropriate scheme may also be devised, but it is 
likely to be more complex and, obviously, yield a 
lower parallelization rate. 

In (1) and (2) every ଵ݂, … , ݂, ଵ݃, … ݃ may be 
either an internal part of ࣠ or an external process 
(and may be replaced independently), or it may 
stand for a ‘process variable’  (݅ ൌ ሾ1, ݇ሿ), or 
contain its (free) occurrence(s). Functional 
abstraction of ࣠ by such variables will produce a 
schema: 

࣠ ൌ ଵߣ .… ࣠  

Given already constructed processes ܘଵ,… ,  , oneܘ
may construct a new complex process ࣠ܘଵ  .ܘ…
Note that, actually, the scheme ࣠  may be replaced 

with another one, provided that all typing constraints 
are satisfied. Next, very naturally (most type systems 
would allow that) one can introduce variables 
ranging over schemes, thus leading to ‘scheme 
constructors’. 

Most of those schemes and scheme constructors 
are likely to be domain-dependent and the purpose 
of their introduction is to facilitate (automate, if 
possible) the construction of processes in such 
environments where: 
 the number of processes is exceedingly high 

and/or processes structure is very complex and 
requires extensive decomposition; 

 processes makeup and/or structure is unfixed 
by the domain nature and adjustments are to 
be made in a timely fashion. 

The approach described in this section is partly 
inspired by D. Scott’s flow diagrams, see (Scott, 
1971). 

4 BUILDING INFORMATION 
OBJECTS 

Information objects are objects of a formal system 
representing entities from the ‘real world’ in 
computations and reflecting their attributes: 
characteristics and relations, the difference between 
these concepts being, strictly speaking, informal 
since the same attribute of the same entity might be 
called a characteristic or a relationship depending on  
the assumed point of view. The difference between 
ground types and concepts in description logics does 
not help in the matter. E.g. person’s full name might 
be seen, and with benefit, as a characteristic, and yet 
its range would be a concept. 

The relational approach is perfectly suitable for 
attribute representation but ultimately fails in 
reflecting entities’ structure, being rather unnatural 
at this point. In pure relational systems the concept 
of computed attributes is represented via ‘views’ 
(i.e. relations that are named but not stored – 
actually, relation variables rather than relations, see 
(Date and Darwen, 2000) for detailed explanation). 
A more advanced and sound method is provided by 
some frame algebras (Roussopulos, 1977) and 
(Wolfengagen, 1984). But the structural aspect is 
still only mimicked via relationships. 

In ACS the structural aspect is reflected very 
easily and naturally using TFFs in generally the 
same way as was shown with process schemes. The 
difficult part is to find suitable tools to represent 
attributes. 

Applicative�Approach�to�Information�Processes�Modeling�-�Towards�a�Constructive�Information�Theory

325



 

For computed attributes the obvious way is using a 
function – likewise to how the property construction 
in object-oriented languages like C# is implemented 
through methods. For non-computed attributes one 
has to yield a stored value, and there are two basic 
options: to use one single tuple to store all values 
related to the given object, or to use a distinct pair 
for every attribute. The pros and contras in each case 
are about the same as using highly normalized and 
denormalized relations in a relational environment, 
but we, at least presently, prefer the normalized 
version since it leads to conceptually more clear 
solutions. 

Let ܽ: ܶ be an object of type ܶ in a ACS. This 
object is either atomic, or it is complex and build out 
of, in the end, atomic object using TFFs, as was 
explained earlier. A property (of objects of type ܶ) is 
a function of type ܶ → ܶ′, where ܶ′ is property’s 
range. In case of a computed property it is an 
ordinary λ-expression, very likely, but not 
necessarily, referencing other object properties (the 
exact syntax is of no importance to us at this time). 
A non-computed property would reference a binary 
relation variable associated with the attribute to 
retrieve the relevant values. 

Thus, we end up with a relational environment, 
not unlike the one described by E.F. Codd in (Codd, 
1979). The most straightforward way of embedding 
relations in an ACS is conceptually simple. A 
relation may be thought of as a pair, with relation’s 
header and body for the pair’s elements. The header 
is a list of attributes, where every attribute is a 
domain- name pair; the relation’s body is a list of 
tuples.  

There are several ways to represent tuples in 
ACS, one of them being: 

ሺܽଵ, … , ܽሻ ൌ .ݎߣ ଵܽݎ …ܽ  

The usual way to represent a list is via nested pairs. 
In conclusion to this section we note that both 

information processes and information objects are 
built likewise and follow the same rules. That 
means, in particular, that a process may have 
attributes, and, in a sense, an information objects 
may contain information processes as part of their 
definition – in the form of (computed) properties. 

5 RELATED WORK: 
PI-CALCULUS 

π-calculus is an extension of the standard calculus of 
communicating systems (CCS) allowing advanced 
process description: sending (and retrieving) named 

data blocks over named channels, the channels 
themselves being legal ‘data blocks’. Every process 
in this theory is a sequence of subprocesses that 
either send or receive data blocks (purely 
computational processes are not considered). The 
main connectives to build complex processes out of 
simpler ones are: sequential execution, parallel 
execution and conditional branching. 

In our approach processes are closed applicative 
objects (combinators), therefore we suggest using an 
extension of asynchronous polymorphic π-calculus 
as process execution semantics. That requires a 
certain extension of the standard ‘chemical’ model 
to formalize not only data exchange but processes’ 
components execution as well. Also, such an 
extended model allows defining processes that 
involve data exchange between several systems. 

Assuming (1) as process’ scheme and ࣲ standing 
for a certain input object of ࣠, here below are stated 
the main process execution rules: 

1. Every ‘projection’ mapping ࣠ߨ
  is translated to 

ܽሺࣲሻ	|	൫1࣠ߨ
ଵࣲ	|… ࣠ߨ݉|

ࣲ൯, i.e. execution of the 
process ࣠ begins with distribution, over a number of 
channels ܽ, data required to get input object’s 
components. 

2. Every subprocess ଵ݂, … , ݂ must not contain 
any data exchange actions, i.e. it must be a purely 
computational, closed (at least, within ࣠) process, in 
which case the following holds: ݂ → 	݅ሺ݀ሻ. ݅ ݂݀.  

3. Every subprocess ଵ݃, … , ݃ receives, as its 
input, a data block containing all the processed 
components of ࣲ and yields a certain component of 
the resulting output object. Accordingly, 

݃ → .ଵሻݕሺ1ሺݐߥ ଵݕݐ |… |݉ሺݕሻ. 	|	ݕݐ
ଵݖሺݐ| … .ሻݖ  ݃ݖଵ …  ሻݖ

 

Note that such an execution scheme is possible in an 
asynchronous environment only.  

4. Every process ݃ returns it’s result over the 
internal channel ; the ‘last’ stage of the process ࣠ 
awaits for all such partial results and then constructs 
the final result, e.g. using a certain TFF. 

These rules outline the use of π-calculus as a 
mechanism underlying execution of our constructive 
processes. 

6 IMPLEMENTATION 
CONSIDERATIONS 

Based on the ideas presented in this paper, the 
authors are working on a framework (for Microsoft 
.NET Framework platform). This framework is 
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intended in providing flexible, extendable and 
scalable environment for process (and, of course, 
object) definition and execution. It is being 
implemented in the form of a distributed 
heterogeneous computational network (DHCN) 
consisting of nodes of several types: 
 computational nodes that host processes; 
 resource nodes, being (persistent) data 

storages; 
 service nodes of various kinds; 
 transport nodes that form a transport network 

to link together all other nodes and provide 
isolation and communication between 
different parts of the overall system. 

Due to space limitations, we cannot present here a 
complete and detailed description of the 
framework’s design and functioning. Briefly, 
DHCN’s basic terminology is that of solving tasks: 
for every task defined in the system there are solvers 
somewhere in the network, hosted on computational 
nodes, capable to solve tasks of that particular type, 
actual input data being located on one or more 
resource nodes and the whole process being initiated 
from a client node (a kind of service node). Solvers 
playing one the central roles in the whole system, 
their development is facilitated by both requiring 
only to override a couple of abstract methods (in the 
decompose-compose style) and providing a set of 
solver composition schemas,  each of which may be 
created in almost the same way as an ordinary 
solver. 

Nodes’ spanning over the physical network may 
be nearly arbitrary, of course, without solvers or 
clients being aware of the fact, thus making the 
framework suitable for (scalable) distributed systems 
development. Developing such systems initially was 
the main framework’s application in mind, but 
presently higher-level interfaces, offering a 
conceptual basis of processes and components, are 
under design. 

We conclude this section by noting that the main 
theoretical and engineering solutions regarding the 
framework under discussion are published in 
(Roslovtsev and Shumsky, 2012a) and in 
(Roslovtsev and Shumsky, 2012b). 

7 CONCLUSIONS 

In this paper we present a constructive approach to 
information processes and objects definition, which 
way being, in our opinion, beneficial in several 
ways. Our approach is based on applicative 
computational systems (ACS), so that both 

(information) processes and objects are formal 
entities in an ACS. We provide an extended model 
for objects in an applicative environment to facilitate 
processes and objects construction. We present a 
way of constructing information objects so that both 
their structure and properties being presented 
explicitly and soundly, and how that leads to 
integration of the applicative and relational 
paradigms. We also outline the usage of π-calculus 
as an operational semantics for our constructive 
processes execution. The usage of some the 
presented ideas in a distributed application 
development framework is outlined. 
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