
Applicative Approach to Information Processes Modeling
Towards a Constructive Information Theory

Viacheslav Wolfengagen, Vladimir Roslovtsev, Leonid Shumsky,
Artyom Bohulenkov and Artyom Sakhatskiy

Department of cybernetics, Moscow Engineering Physics Institute “MEPhI”, Kashirskoe sh., Moscow, Russia

Keywords: Applicative Computational Environment, Information Process, Information Object.

Abstract: The goal of this work is to present an approach to constructive definition of information processes and
objects. Our approach is based on applicative computational systems (ACS), so that both (information)
processes and objects are formal entities in an ACS. We also outline the usage of π-calculus as an
operational semantics for our constructive processes execution. The usage of the presented ideas in a
distributed application development framework is outlined.

1 INTRODUCTION

Of the different definitions of the notion of a
(computer) program one may be formulated in the
way that a (computer) program is a system
containing at least one of the following components:
 a model of information processes running in a

domain and information objects participating
in those processes;

 a system of information processes and
information objects that themselves exists in
that domain;

 an environment providing those objects’ and
existence and processes’ execution.

In a computer program we cannot deal directly with
‘physical’ objects and processes such as (machine)
parts and their assembling, so we have to create a
model for those objects and processes to represent
them in our program. On the other hand, some
objects and processes (for example, software, digital
images and movies sold and distributed through
internet) are digital in their nature and thus may be
themselves made part of our programs. And
generally those objects and processes in a program
cannot exists all alone, they require some support, an
environment to allow their interaction, as well as
lifecycle management, and the like.

Therefore, the understanding of what information
objects and processes are, what is their structure and
laws of existence – is essenssial.

It is worth noting that many of the problems
occuring in software development are due to the
huge gap that commonly exists between the problem
damain’s (conceptual) models and the conceptual
system (semantics) of the programming language in
use, if any such system is indeed clearly specified,
which is rarely the case. It is beneficial, of course, to
use the same conceptual system, or at least the same
basic approach in constructing conceptual systems –
the one for domain modelling and the one for the
programming language.

The main idea of the present paper is that such a
common basis may be found in applicative
computational systems (ACS). ACS provide a
constructive, compositional style of building objects;
when augmented with an appropriate type system,
abilities of (automatic) extraction of semantic
information are drastically increased;
interoperability problems are solved relatively
easily; effective valuation techniques may be
devised, including those with optimization features.

The rest of the paper is organized in the
following way. Section 2 presents an introduction to
ACS’s basics – in a way suitable for the purposes of
the paper. The sections 3 and 4 provide an outline
for modelling information processes and information
objects in a constructive way. Section 5 discusses
connection with the π-calculus, section 6 discusses
an implementation of stated ideas. Section 7 sums up
the paper’s main results.

323Wolfengagen V., Roslovtsev V., Shumsky L., Bohulenkov A. and Sakhatskiy A..
Applicative Approach to Information Processes Modeling - Towards a Constructive Information Theory.
DOI: 10.5220/0004563303230328
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 323-328
ISBN: 978-989-8565-60-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 A GENERALIZED MODEL FOR
OBJECTS IN APPLICATIVE
COMPUTATIONAL SYSTEMS

In applicative computational systems (ACS) objects
are functional entities such that:
 the main way to construct composite objects is

using the application operation (an object-
function being applied to an object-argument);

 object’s role (to be either a function or an
argument) depends on the context in which the
object appears, and an object, in an untyped
system, may be applied to itself;

 objects-functions’ arity is not, potentially,
predefined and shows itself in the course of
computations;

Following the idea from (Roslovtsev and Luchin,
2009), the class of objects in an ACS is constructed
by induction on objects structure:

1. (induction basis)
a) there is an infinite set of variables and a set

(possibly, empty) of atomic objects;
b) variables and atomic objects are atoms, and

all atoms are objects;
2. (induction step) if ܣଵ,… , ߪ are objects andܣ

is an ݊-ary term-forming function (TFF) then
ଵܣߪ . is an objectܣ…

A TFF is a meta-operation used to construct
complex objects from simpler ones. For example,
application operation ‘⋅⋅’ is a binary TFF (if ܣ and ܤ
are objects then so is ‘ܤܣ’). In λ-calculus there is
another (binary) TFF – functional abstraction, which
binds one variable in one object: if ‘ݔ’ is a variable
and ‘ܣ’ is an object then ‘ݔߣ. is also an object. In ’ܣ
applied systems other TFFs may be defined, e.g.
tuple constructors. The notation ‘ܣߪଵ ’ impliesܣ…
that the TFF ߪ is higher-order ‘function’ of a type of
the form ‘ ଵܶ → ⋯ → ܶ → ܶାଵ’. The alternative is
to write ߪሺܣଵ having a type of the ߪ ሻ, withܣ…
form ଵܶ ൈ …ൈ ܶ ൈ ܶାଵ. This second option, for
example, illustrates that we do not usually deal with
‘partially constructed’ objects. The first approach,
on the other hand, is more natural to ACSs and less
demanding to the meta-theory’s expressive power
since there is no predefined notion of Cartesian
product in ACS. For the purposes of the present
paper it is unimportant which option to choose.

The question of choosing a set of atomic objects
is a good one – even too good to be even tried to
discuss it in any depth, much less to be answered, in
the present paper. Two points, however, are worth
noting. The first is that, actually, objects’ atomicity
is not part of their nature, it is not absolute, but,

rather, it is a motivated assumption: further
decomposition of such objects is either redundant or
leads to inconsistencies (Wolfengagen, 2004).
Secondly, though one may chose different suitable
sets of atomic objects for different purposes, those
sets would share a common computing foundation –
for which combinators K and S are good candidates,
see (Wolfengagen, 2010).

Since all objects of an ACS are built from a
fixed set of atomic objects ܦ using a fixed set of
TFFs ܨ, the generalized applicative prestructure may
be written in the form of the pair:

ሺܦ, ሻܨ

In ACS, application operation exists by default and
may be omitted in ܨ. In case of combinatory logic
with IKS basis that prestructure would look like
ሺሼI, K, Sሽ, ሼሽሻ, and for the pure (without any atomic
objects included) λ-calculus: ሺሼሽ, ሼߣ ⋅.⋅ሽሻ.

There is a very important kind of objects, called
combinators. Combinator is an object that contains
no free variables. In combinatory logic it means that
a combinator is built out of atomic objects only, and
in λ-calculus every variable occurring in that object
is bound by a functional abstraction operation.

3 INFORMATION PROCESSES
CONSTRUCTION

The basic idea underlying our process
decomposition approach is that every process must
be a combinator of some kind. That yields several
advantages:
 every process is closed, does not reference any

global variables and its output depends only
on the data supplied explicitly to the process’s
input;

 because of that, too, and because a process is,
more or less, an ordinary object, an existing
process, be it simple or complex, may be re-
used to define other processes;

 a process may be passed to another process as
an argument, thus allowing computation
adjustment at run-time;

 very powerful, yet relatively simple, process
algebras may be formulated.

Generally, processing an input object comprises
three stages. First, the input object is decomposed
onto several components and each of them,
secondly, is sent to a corresponding specialized
(sub)process (which may be either a structural part
of the given process, or an independent entity).
Finally, the partial results yielded by the

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

324

‘subprocesses’ are aggregated in some way, e.g.
‘wrapped’ with a TTF into a resulting object.

One powerful approach in process construction is
defining a set of ‘standard’ process ‘schemes’ to
combine the already constructed processes into a
more complex one.

Let ܨ: ଵܶ → ⋯ → ܶ → ܶାଵ be a TFF. For
every such TFF let us define a set of ‘projecting’
objects ߨி

 : ܶାଵ → ܶ (of course, with ݅ ∈ ሾ1,݉ሿ),
such that:

ிߨ
 ሺܽܨଵ …ܽሻ ൌ ܽ,

– for every suitable set of objects ܽଵ: ଵܶ, … , ܽ: ܶ.
Finally, consider the currying ‘operator’ ԯ with the
combinatory characteristics:

ԯ݂ሾݔଵ, … ሿݔ ൌ ଵݔ݂ ݔ…

Assume that 〈 ଵ݂, … , ݂〉ݔ ൌ ሾ ଵ݂ݔ, … , ݂ݔሿ holds
for every suitable (e.g. type-compatible, according to
a certain type system of choice) set of objects
ଵ݂, … , ݂ and ݔ. Then a process that takes an object
ଵܽܨ …ܽ and yields another object ܾܩଵ …ܾ would
in general look like this:

࣠ ൌ ԯ࣡ ∘ 〈 ଵ݃, … , ݃〉 ∘ 〈 ଵ݂ ∘ ࣠ߨ
ଵ , … , ݂ ∘ ࣠ߨ

〉, (1)

or

࣠ ൌ ԯ࣡ ∘ 〈 ଵ݃ ∘ ଵ݂, … , ݃ ∘ ݂〉, (2)

where all ݂ are subprocesses that perform a certain
pre-processing of the input (on a by-component
basis in case of (1), and in case of (2) – on a more
general one). The responsibility of subprocesses
ଵ݃, … , ݃ is to yield individual components ܾଵ,… , ܾ

of the resulting object. Finally, ԯ࣡ unpacks the
tuple ሾܾଵ, … , ܾሿ and produces the final result. Of
course, both in (1) and (2) one may add explicit
post-processing handlers. An essential point is that
every component ܾଵ,… , ܾ is evaluated
independently of all others, which is rather handy in
parallelized environments. If, on the other hand,
some of these components depend on the others, an
appropriate scheme may also be devised, but it is
likely to be more complex and, obviously, yield a
lower parallelization rate.

In (1) and (2) every ଵ݂, … , ݂, ଵ݃, … ݃ may be
either an internal part of ࣠ or an external process
(and may be replaced independently), or it may
stand for a ‘process variable’ (݅ ൌ ሾ1, ݇ሿ), or
contain its (free) occurrence(s). Functional
abstraction of ࣠ by such variables will produce a
schema:

࣠ ൌ ଵߣ .… ࣠

Given already constructed processes ܘଵ,… , , oneܘ
may construct a new complex process ࣠ܘଵ .ܘ…
Note that, actually, the scheme ࣠ may be replaced

with another one, provided that all typing constraints
are satisfied. Next, very naturally (most type systems
would allow that) one can introduce variables
ranging over schemes, thus leading to ‘scheme
constructors’.

Most of those schemes and scheme constructors
are likely to be domain-dependent and the purpose
of their introduction is to facilitate (automate, if
possible) the construction of processes in such
environments where:
 the number of processes is exceedingly high

and/or processes structure is very complex and
requires extensive decomposition;

 processes makeup and/or structure is unfixed
by the domain nature and adjustments are to
be made in a timely fashion.

The approach described in this section is partly
inspired by D. Scott’s flow diagrams, see (Scott,
1971).

4 BUILDING INFORMATION
OBJECTS

Information objects are objects of a formal system
representing entities from the ‘real world’ in
computations and reflecting their attributes:
characteristics and relations, the difference between
these concepts being, strictly speaking, informal
since the same attribute of the same entity might be
called a characteristic or a relationship depending on
the assumed point of view. The difference between
ground types and concepts in description logics does
not help in the matter. E.g. person’s full name might
be seen, and with benefit, as a characteristic, and yet
its range would be a concept.

The relational approach is perfectly suitable for
attribute representation but ultimately fails in
reflecting entities’ structure, being rather unnatural
at this point. In pure relational systems the concept
of computed attributes is represented via ‘views’
(i.e. relations that are named but not stored –
actually, relation variables rather than relations, see
(Date and Darwen, 2000) for detailed explanation).
A more advanced and sound method is provided by
some frame algebras (Roussopulos, 1977) and
(Wolfengagen, 1984). But the structural aspect is
still only mimicked via relationships.

In ACS the structural aspect is reflected very
easily and naturally using TFFs in generally the
same way as was shown with process schemes. The
difficult part is to find suitable tools to represent
attributes.

Applicative�Approach�to�Information�Processes�Modeling�-�Towards�a�Constructive�Information�Theory

325

For computed attributes the obvious way is using a
function – likewise to how the property construction
in object-oriented languages like C# is implemented
through methods. For non-computed attributes one
has to yield a stored value, and there are two basic
options: to use one single tuple to store all values
related to the given object, or to use a distinct pair
for every attribute. The pros and contras in each case
are about the same as using highly normalized and
denormalized relations in a relational environment,
but we, at least presently, prefer the normalized
version since it leads to conceptually more clear
solutions.

Let ܽ: ܶ be an object of type ܶ in a ACS. This
object is either atomic, or it is complex and build out
of, in the end, atomic object using TFFs, as was
explained earlier. A property (of objects of type ܶ) is
a function of type ܶ → ܶ′, where ܶ′ is property’s
range. In case of a computed property it is an
ordinary λ-expression, very likely, but not
necessarily, referencing other object properties (the
exact syntax is of no importance to us at this time).
A non-computed property would reference a binary
relation variable associated with the attribute to
retrieve the relevant values.

Thus, we end up with a relational environment,
not unlike the one described by E.F. Codd in (Codd,
1979). The most straightforward way of embedding
relations in an ACS is conceptually simple. A
relation may be thought of as a pair, with relation’s
header and body for the pair’s elements. The header
is a list of attributes, where every attribute is a
domain- name pair; the relation’s body is a list of
tuples.

There are several ways to represent tuples in
ACS, one of them being:

ሺܽଵ, … , ܽሻ ൌ .ݎߣ ଵܽݎ …ܽ

The usual way to represent a list is via nested pairs.
In conclusion to this section we note that both

information processes and information objects are
built likewise and follow the same rules. That
means, in particular, that a process may have
attributes, and, in a sense, an information objects
may contain information processes as part of their
definition – in the form of (computed) properties.

5 RELATED WORK:
PI-CALCULUS

π-calculus is an extension of the standard calculus of
communicating systems (CCS) allowing advanced
process description: sending (and retrieving) named

data blocks over named channels, the channels
themselves being legal ‘data blocks’. Every process
in this theory is a sequence of subprocesses that
either send or receive data blocks (purely
computational processes are not considered). The
main connectives to build complex processes out of
simpler ones are: sequential execution, parallel
execution and conditional branching.

In our approach processes are closed applicative
objects (combinators), therefore we suggest using an
extension of asynchronous polymorphic π-calculus
as process execution semantics. That requires a
certain extension of the standard ‘chemical’ model
to formalize not only data exchange but processes’
components execution as well. Also, such an
extended model allows defining processes that
involve data exchange between several systems.

Assuming (1) as process’ scheme and ࣲ standing
for a certain input object of ࣠, here below are stated
the main process execution rules:

1. Every ‘projection’ mapping ࣠ߨ
 is translated to

ܽሺࣲሻ	|	൫1࣠ߨ
ଵࣲ	|… ࣠ߨ݉|

ࣲ൯, i.e. execution of the
process ࣠ begins with distribution, over a number of
channels ܽ, data required to get input object’s
components.

2. Every subprocess ଵ݂, … , ݂ must not contain
any data exchange actions, i.e. it must be a purely
computational, closed (at least, within ࣠) process, in
which case the following holds: ݂ → 	݅ሺ݀ሻ. ݅ ݂݀.

3. Every subprocess ଵ݃, … , ݃ receives, as its
input, a data block containing all the processed
components of ࣲ and yields a certain component of
the resulting output object. Accordingly,

݃ → .ଵሻݕሺ1ሺݐߥ ଵݕݐ |… |݉ሺݕሻ. 	|	ݕݐ
ଵݖሺݐ| … .ሻݖ ݃ݖଵ … ሻݖ

Note that such an execution scheme is possible in an
asynchronous environment only.

4. Every process ݃ returns it’s result over the
internal channel ; the ‘last’ stage of the process ࣠
awaits for all such partial results and then constructs
the final result, e.g. using a certain TFF.

These rules outline the use of π-calculus as a
mechanism underlying execution of our constructive
processes.

6 IMPLEMENTATION
CONSIDERATIONS

Based on the ideas presented in this paper, the
authors are working on a framework (for Microsoft
.NET Framework platform). This framework is

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

326

intended in providing flexible, extendable and
scalable environment for process (and, of course,
object) definition and execution. It is being
implemented in the form of a distributed
heterogeneous computational network (DHCN)
consisting of nodes of several types:
 computational nodes that host processes;
 resource nodes, being (persistent) data

storages;
 service nodes of various kinds;
 transport nodes that form a transport network

to link together all other nodes and provide
isolation and communication between
different parts of the overall system.

Due to space limitations, we cannot present here a
complete and detailed description of the
framework’s design and functioning. Briefly,
DHCN’s basic terminology is that of solving tasks:
for every task defined in the system there are solvers
somewhere in the network, hosted on computational
nodes, capable to solve tasks of that particular type,
actual input data being located on one or more
resource nodes and the whole process being initiated
from a client node (a kind of service node). Solvers
playing one the central roles in the whole system,
their development is facilitated by both requiring
only to override a couple of abstract methods (in the
decompose-compose style) and providing a set of
solver composition schemas, each of which may be
created in almost the same way as an ordinary
solver.

Nodes’ spanning over the physical network may
be nearly arbitrary, of course, without solvers or
clients being aware of the fact, thus making the
framework suitable for (scalable) distributed systems
development. Developing such systems initially was
the main framework’s application in mind, but
presently higher-level interfaces, offering a
conceptual basis of processes and components, are
under design.

We conclude this section by noting that the main
theoretical and engineering solutions regarding the
framework under discussion are published in
(Roslovtsev and Shumsky, 2012a) and in
(Roslovtsev and Shumsky, 2012b).

7 CONCLUSIONS

In this paper we present a constructive approach to
information processes and objects definition, which
way being, in our opinion, beneficial in several
ways. Our approach is based on applicative
computational systems (ACS), so that both

(information) processes and objects are formal
entities in an ACS. We provide an extended model
for objects in an applicative environment to facilitate
processes and objects construction. We present a
way of constructing information objects so that both
their structure and properties being presented
explicitly and soundly, and how that leads to
integration of the applicative and relational
paradigms. We also outline the usage of π-calculus
as an operational semantics for our constructive
processes execution. The usage of some the
presented ideas in a distributed application
development framework is outlined.

REFERENCES

Codd, E. F., 1979. Extending the Database Relational
Model to Capture More Meaning. In ACM
Transactions on Database Systems, Vol. 4, No. 4,
1979, pp. 397-434.

Date, C. J., Darwen, H., 2000. Foundation for Future
Database Systems. The Third Manifesto. 2nd edition.
Addison Wesley Longman, Inc.

Roslovtsev, V. V., Luchin, A. E., 2009. Concept of
Higher-Order Applicative Computational
Environment. In Proceedings of the 11th international
workshop on computer science and information
technologies CSIT'2009, pp. 48-53.

Roslovtsev, V. V., Shumsky, L. D., 2012a. Applicative
Methods of Computational Process Decomposition.
[In Russian.] In Proceedings of the 3rd International
Conference on Applicative computation Systems
(ACS’2012). NEI Institute of Contemporary Education
“JurInfoR-MGU”, Moscow, Russia. pp. 224-233.

Roslovtsev, V. V., Shumsky, L. D., 2012b. Developing a
Service Bus for Computational Process Distributing
Environment. [In Russian.] In Proceedings of the 3rd
International Conference on Applicative computation
Systems (ACS’2012). NEI Institute of Contemporary
Education “JurInfoR-MGU”, Moscow, Russia. pp.
258-265.

Scott, D., 1971. The Lattice of Flow Diagrams. Lecture
Notes in Mathematics, Vol. 188. – Springer. – pp.
311-366.

Roussopulos, N. D., 1977. A semantic network model of
data bases. Ph.D. Thesis. Dep. of Computer Science,
University of Toronto.

Wolfengagen, W. E., 1984. Frame Theory and
Computations. In Computers and Artificial
Intelligence, Vol. 3, No. 1, 1984. pp. 3-32.

Wolfengagen, W. E., 2004. Methods and Means for
Computations with Objects. Applicative
Computational Systems. "Center JurInfoR", Moscow,
Russia. [In Russian].

Wolfengagen, W. E., 2010a. Applicative computing. Its
quarks, atoms and molecules. Edited by Dr. L.Yu.
Ismailova. “Center JurInfoR”, Moscow, Russia.

Applicative�Approach�to�Information�Processes�Modeling�-�Towards�a�Constructive�Information�Theory

327

Wolfengagen, W. E., 2010b. The Parameterized Relational
Model. Towards 40th Anniversary of Relational Data
Model. In Proceedings of the Second International
Conference on Applicative Computational Systems.
NEI Institute of Contemporary Education “JurInfoR-
MGU”, Moscow, Russia.

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

328

