
Continuous Test-Driven Development
A Novel Agile Software Development Practice and Supporting Tool

Lech Madeyski1 and Marcin Kawalerowicz2

1Wroclaw University of Technology, Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland
2Opole University of Technology, ul. Sosnkowskiego 31, 45-272 Opole, Poland

Keywords: Continuous Testing, Test-Driven Development, TDD, Continuous Test-driven Development, CTDD, Agile.

Abstract: Continuous testing is a technique in modern software development in which the source code is constantly unit
tested in the background and there is no need for the developer to perform the tests manually. We propose an
extension to this technique that combines it with well-established software engineering practice called Test-
Driven Development (TDD). In our practice, that we called Continuous Test-Driven Development (CTDD),
software developer writes the tests first and is not forced to perform them manually. We hope to reduce the
time waste resulting from manual test execution in highly test driven development scenario. In this article we
describe the CTDD practice and the tool that we intend to use to support and evaluate the CTDD practice in a
real world software development project.

1 INTRODUCTION

In 2001 a group of forward thinking software devel-
opers published ”Manifesto for Agile Software De-
velopment” (Beck et al., 2001). It proposes a set of
12 principles that the authors recommend to follow.
It is not without reason that the first principle of the
Agile Manifesto is that the highest priority is to sat-
isfy the customer, while the continuous delivery of
valuable software is a way to achieve it. This prin-
ciple is in the center of our research. We are targeting
the concept of test first programming, rediscovered by
Beck in the eXtreme Programming (XP) methodol-
ogy (Beck, 1999; Beck and Andres, 2004). One of the
XP concepts is that the development is driven by tests.
From this concept Test-Driven Development (TDD)
practice arose. It is proposed that using TDD one can
achieve better test coverage (Astels, 2003) and devel-
opment confidence (Beck, 2002). Empirical studies
by Madeyski (Madeyski, 2010a) showed that TDD is
better in producing loosely coupled software in com-
parison with traditional test last software development
practice.

In this paper we propose the extension of
TDD, called Continuous Test-Driven Development
(CTDD), in which we combine TDD with continuous
testing (Saff and Ernst, 2003) to solve the problem of
time consuming test running during the development.

Furthermore, we show the current state of tools

around continuous testing and present the tool we
use to empirically evaluate the CTDD practice (Au-
toTest.NET4CTDD), an open source continuous test-
ing plug-in for Microsoft Visual Studio Integrated De-
velopment Environment (IDE), that we modified to
perform an empirical study in industrial environment
on commercial software development project.

We have also performed a preliminary evaluation
(pre-test) of the AutoTest.NET4CTDD tool using a
survey inspired by Technology Acceptance Model
(TAM) (Davis, 1989; Venkatesh and Davis, 2000).
The survey was performed in a team of professional
software engineers from software development com-
pany located in Poland.

2 BACKGROUND

In the subsequent subsections we describe two pillars
of the Continuous Test-Driven Development practice
proposed in this paper, namely continuous testing and
Test-Driven Development practice.

2.1 Test-Driven Development

TDD constitutes an incremental development prac-
tice which is based on selecting and understanding
a requirement, specifying a piece of functionality as

260 Madeyski L. and Kawalerowicz M..
Continuous Test-Driven Development - A Novel Agile Software Development Practice and Supporting Tool.
DOI: 10.5220/0004587202600267
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 260-267
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



a test, making sure that the test can potentially fail,
then writing the production code that will satisfy the
test condition (i.e. following one of the green bar pat-
terns), refactoring (if necessary) to improve the inter-
nal structure of the code, and ensuring that tests pass,
as shown in Figure 1.

TDD provides feedback through tests, and sim-
plicity of the internal structure of the code through
rigorous refactoring. The tests are supposed to be
run frequently, in the course of writing the production
code, thus driving the development process. The tech-
nique is usually supported by frameworks to write and
run automated tests (e.g. JUnit (Gamma and Beck,
2013; Tahchiev et al., 2010), NUnit (Osherove, 2009),
CppUnit, PyUnit and XMLUnit (Hamill, 2004)). A
good practical approach to TDD is provided in (Free-
man and Pryce, 2009), (Koskela, 2007), (Newkirk
and Vorontsov, 2004).

TDD has gained recent attention in professional
settings (Beck and Andres, 2004; Koskela, 2007; As-
tels, 2003; Williams et al., 2003; Maximilien and
Williams, 2003; Canfora et al., 2006; Bhat and Na-
gappan, 2006; Sanchez et al., 2007; Nagappan et al.,
2008; Janzen and Saiedian, 2008) and has made
first inroads into software engineering education (Ed-
wards, 2003a; Edwards, 2003b; Melnik and Maurer,
2005; Müller and Hagner, 2002; Pančur et al., 2003;
Erdogmus et al., 2005; Flohr and Schneider, 2006;
Madeyski, 2005; Madeyski, 2006; Gupta and Jalote,
2007; Huang and Holcombe, 2009). For example,
Madeyski in his monograph on empirical evaluation
and meta-analysis of the effects of TDD (Madeyski,
2010a) points out that TDD leads to code that is
loosely coupled. As a consequence of Constantine’s
law, one may claim that TDD supports software main-
tenance due to loosely coupled code that is less error-
prone and less vulnerable to problems arising from
normal programming activities, e.g. modifications
due to design changes or maintenance (Endres and
Rombach, 2003). This important result, although not
codified as a law, has serious consequences with re-
spect to software development and maintenance costs.

2.2 Continuous Testing

Continuous Testing (CT) was introduced by Saff and
Ernst (Saff and Ernst, 2003) as a mean to reduce the
time waste for running the tests. The idea was coined
also by Gamma and Beck (Gamma and Beck, 2003)
as one of the features of a plugin they described was
ability to automatically run all the tests for a project
every time the project was built (they called this fea-
ture “auto-testing”). One of the goals of TDD is to
run the tests often. But while running the tests of-

ten the developer needs to interrupt his work often to
physically run the tests. Modern IDEs like Eclipse
or Visual Studio provide the possibility to keep the
codebase in compiled state. This practice is called
sometimes continuous compilation (automatic compi-
lation, automatic build). This approach eliminates the
waste from compiling the code manually after writ-
ing some source code by providing the functionality
in IDE to perform the build in background while the
developer is writing and/or saving the file. CT relies
on this approach and goes one step further by per-
forming the tests while the developer works. There is
no need to interrupt the work to run the tests. The tests
are ran automatically in the background and feedback
is provided to the developer immediately. Saff reports
that the waste that is eliminated by doing so is be-
tween 92 and 98% (Saff and Ernst, 2003) and has sig-
nificant effect on success in completing programming
tasks (Saff and Ernst, 2004). Good practical approach
to CT is given in (Rady and Coffin, 2011) and (Du-
vall et al., 2007).

There are numerous plug-ins for various IDEs and
other tools on the market that enable CT. The tools are
mostly provided as plug-ins for modern IDEs. The
first tools were developed for Eclipse IDE and Java.
Analogous tools were developed for Visual Studio
and .NET. There are also tools for other languages
like Ruby. Some of the tools supporting CT are In-
finitest (open source Eclipse and IntelliJ plug-in), JU-
nit Max (Eclipse CT plugin), Contester (Eclipse plug-
in from the students of Software Engineering Soci-
ety at Wroclaw University of Technology), NCrunch
(NCrunch is very rich commercial continuous testing
plug-in for Visual Studio), Autotest (continuous test-
ing for Ruby), Continuous Testing for VS (commer-
cial Visual Studio plug-in), AutoTest.NET (see sec-
tion 4.2 for details), Mighty Moose (packaged ver-
sion of AutoTest.NET).

Nowadays CT becomes recognized by the IDE
creators themselves. The newest version of Microsoft
Visual Studio 2012 comes with continuous testing
build-in. This option is available only in the two high-
est and most expensive versions of Visual Studio 2012
that is Premium and Ultimate.

Hence, the value of the CT practice became recog-
nized by the industry and our aim is to go even further
and to take advantage of the synergy of the both ideas
(TDD and CT) combined together into an agile soft-
ware development practice, as well as to collect an
empirical evidence on the usefulness of the proposed
practice in industrial settings.

Continuous�Test-Driven�Development�-�A�Novel�Agile�Software�Development�Practice�and�Supporting�Tool

261



Write the test

Run the test

Write the 
functionality

Run the test

Y

Test fails?

Y

N

Refactor

Test fails?

Y

DoneN

Run the test

Test fails?

N

Figure 1: Test-Driven Development activities.

3 CONTINUOUS TEST-DRIVEN
DEVELOPMENT

In the aforementioned papers concerning CT we will
not find discussion of relationship between CT and
TDD. The only exception we know of is a MSc the-
sis by Olejnik supervised by the first author but their
research paper is not even submitted yet.

As the software industry employs millions of peo-
ple worldwide, even small increases in their produc-
tivity could be worth billions of dollars a year. Hence,
we decided to investigate a possible synergy of the
both aforementioned ideas (TDD and CT) and com-
bine them into an agile software development practice
which would demonstrate this synergy. Furthermore,
our aim is to provide a preliminary empirical evalua-
tion of the proposed practice which we call Continu-
ous Test-Driven Development (CTDD).

As in TDD the developer writes a potentially fail-
ing test for the functionality that not yet exists. Unlike
in the TDD there is no need to run the test. The test
is run under the hood by an IDE and the test feed-
back is provided to the developer. The developer can
start right away to create the functionality. When he
is done (or even while he is typing) the tests will be
run in the background and the feedback will be pro-
vided. There is no need to manually start the tests to
ensure the functionality passes the tests. That is the
case for refactoring activity too. There is no need to
perform the tests manually. The tests are continuously
performed in the background.

Figure 1 shows the common TDD strategy called
Red-Green-Refactor. The test is written. The test is
run but it fails (or even the code does not compile).
We have so called red bar. The functionality is writ-
ten (possibly faked) as quickly as possible. The tests
are run until the green bar is reached. The code is
refactored and the tests are run until the code reaches
desired form.

Figure 2 shows the enhanced Continuous Test-
Driven Development (CTDD) technique. All the
steps involving manual test executions are removed
because they are no longer being necessary. All the

tests are run in the background and feedback is pro-
vided straight forward and friction free to the devel-
oper. All other steps are still necessary (including
the refactoring). It is quite important to deliver the
test results to the developer without introducing addi-
tional noise to the development process. The devel-
oper should not be interrupted in his effort to produce
good software but he needs to be provided with visual
indicator that the process works as expected or not.

4 USING AutoTest.NET4CTDD TO
GATHER EMPIRICAL DATA IN
INDUSTRIAL SETTINGS

This section introduces a measurement infrastructure
we prepared in order to evaluate the CTDD practice
in professional settings.

4.1 Measurement Infrastructure

Figure 3 shows the software/hardware infrastructure
assembled to gather the empirical data.

Developers are using Microsoft Windows 7 com-
puters with Visual Studio 2010 installed. To support
the continuous testing AutoTest.NET4CTDD tool is
used (more information in Section 4.2). Measure-
ment data are gathered automatically using web ser-
vices and stored in Microsoft SQL Server database.
To protect our study from malfunctioning networks
or database we added fall-back logging capacities that
use local developer machine hard drives and text files.
We additionally store all the data in CSV flat file/s.
The data gathered will be than assessed using “Eval-
uator” showed on Figure 3. We purposefully left the
description of this part of our infrastructure because
it is being developed at the time of writing this paper.
Some inspirations are drawn from Zorro (Kou et al.,
2010), user action logger (Müller and Höfer, 2007)
and ActivitySensor (Madeyski and Szala, 2007).

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

262



Write the test

Write the 
functionality

Refactor

Y Test fails?

Y

N Test fails?

Y

DoneN

Test fails?

N

Figure 2: Continuous Test-Driven Development activities.

AutoTest.NET
Developer 1

AutoTest.NET
Developer 2

AutoTest.NET
Developer n

Intranet/
internet

Web Services
IIS

Database
SQL Server

WCF

WCF

WCF

Evaluator

Figure 3: Measurement infrastructure architecture.

4.2 AutoTest.NET4CTDD Description

AutoTest.NET was originally a .NET implementation
of Ruby Autotest framework. It was first started by
James Avary and hosted on Google Code and then
maintained by Svein Arne Ackenhausen on GitHub.

AutoTest.NET does not run all the tests all the
time. Such would have devastating influence on large
systems. First of all the tests are run only if something
significant changes - the developer saves the file. Sec-
ond not all the tests are run every time. AutoTest.NET
is intelligent enough to detect what changes influence
what tests and run only the tests that are relevant to the
change made. The tests are run in the background and
the report is provided in a friction free manner. The
development is not interrupted with any dialogue win-
dows. The system runs the tests in the background.
Nevertheless for large systems with a lot of tests de-
fined it might require high level of hardware equip-
ment. The computers the developers use need to be
fast. Along with the preliminary evaluation of Au-
toTest.NET4CTDD discussed in Section 6 we have
asked the developers if their IDE performs noticeably
slower with AutoTest.NET4CDD activated - major-
ity of developers reported no change in performance
(only 14% reported above average drop of perfor-
mance). But it is worth mentioning that the evaluation

was performed on average to small projects.
To prepare for the empirical evaluation of the

CTDD practice in industrial environment where Mi-
crosoft technologies are required, we have chosen Au-
toTest.NET open source plug-in. We were able to
fork it on GitHub add new functionality required to
gather measurement data (using Visual Studio 2012
CT functionality would lock us to the newest IDE
version and prevent us from extending it with mea-
surements). We have called it AutoTest.NET4CTDD
(abbreviation of AutoTest.NET for CTDD). The first
version of our plug-in is able to save the various mea-
surements, e.g. related to each build or test run. In the
investigated environment, with AutoTest.NET4TDD
installed, the empirical data will be stored in a ded-
icated database and on the developer machine. We
built into our version of AutoTest.NET (i.e. Au-
toTest.NET4CTDD) a client for simple web server
that we installed on one of the servers in the com-
pany. For web services Microsoft Windows Commu-
nication Foundation (WCF) framework is used.

AutoTest.NET4TDD is stored in “Impres-
sive Code” repository as a fork of the original
AutoTest.NET plug-in on GitHub. The cen-
tral web page for our plug-in is hosted under http://
madeyski.e-informatyka.pl/tools/autotestdotnet4ctdd/.

Our Plug-in is under constant development and

Continuous�Test-Driven�Development�-�A�Novel�Agile�Software�Development�Practice�and�Supporting�Tool

263



new functionalities are planned. It is planned to en-
rich AutoTest.NET4CTDD with functionality derived
from ActivitySensor Eclipse plug-in (Madeyski and
Szala, 2007).

5 RESEARCH GOAL,
QUESTIONS AND METRICS

The overall goal we are going to reach in the empirical
study we are preparing to is thorough evaluation of the
CTDD impact on software development efficiency.
However, the intermediate goal we are going to ad-
dress in this paper, a set of questions that define this
goal and the measurements needed to answer these
questions (as required by the GQM method (Basili
et al., 1994)) are as follows:

Goal: The evaluation of the new CTDD tool ac-
ceptance by professional software developers.

Question 1: What is the Perceived Usefulness of
the AutoTest.NET4CTDD Continuous Testing Tool?

Metrics:
M1.1 (better code actuator) — Au-

toTest.NET4CTDD will help to me produce better
code;

M1.2 (efficient work actuator) — Au-
toTest.NET4CTDD will help to work faster and
efficient;

M1.3 (test coverage actuator) — Au-
toTest.NET4CTDD will help to maintain better
test coverage;

M1.4 (subjective perceived usefulness) — Do I
want to use AutoTest.NET4CTDD in my projects?

Question 2: What is the Perceived Ease of Use of
the AutoTest.NET4CTDD Continuous Testing Tool?

Metrics:
M2.1 (ease of install) — I find the installation pro-

cess easy and straightforward;
M2.2 (ease of configuration and use) — Au-

toTest.NET4CTDD is easy to configure and use;
M2.3 (tool discoverability) — Use of Au-

toTest.NET4CTDD is self-explanatory;
M2.4 (tool performance) — Visual Studio per-

forms noticeably slower with AutoTest.NET4CTDD
plug-in activated;

M2.5 (quality of feedback) — Au-
toTest.NET4CTDD feedback window is useful.

Question 3: Are the developers intending to use
the AutoTest.NET4CTDD Continuous Testing Tool?

Metrics:
M3.1 (use intention) — Assuming I had access to,

I intend to use it;
M3.2 (use prediction) — Given that I had access

to, I predict that I would use it;

M3.3 (commitment level) — My personal level of
commitment to using AutoTest.NET4CTDD is low;

M3.4 (intention level) — My personal intention to
use AutoTest.NET4CTDD is high.

Question 4: How is the tool perceived in terms of
subjective norm?

Metrics:
M4.1 (approval level) — Most people that are im-

portant in my professional career would approve of
my use of AutoTest.NET4CTDD;

M4.2 (recommendation level) — Most people that
are important in my professional career would tend to
encourage my use of AutoTest.NET4CTDD.

Question 5: How is the tool perceived in terms of
organizational usefulness?

Metrics:
M5.1 (success ratio) — My use of Au-

toTest.NET4CTDD would make my organization
more successful;

M5.2 (benefit ratio) — My use of Au-
toTest.NET4CTDD would be beneficial for my
organization.

Table 1 shows 7-point Likert scale used to mea-
sure the metrics.

Table 1: Survey scale.

Answer Level

Strongly disagree 1
Disagree 2
Disagree somewhat 3
Undecided 4
Agree somewhat 5
Agree 6
Strongy agree 7

We have used the tool described above and per-
formed an empirical acceptance study on it.

6 A PRELIMINARY EVALUATION
OF AutoTest.NET4CTDD BY
DEVELOPERS

User acceptance of novel technologies and tools is
an important field of research. Although many mod-
els have been proposed to explain and predict the use
of a tool, the Technology Acceptance Model (Davis,
1989; Venkatesh and Davis, 2000) has been the one
which has captured the most attention of the Informa-
tion Systems community.

A survey based on Technology Acceptance Model
was carried out among a small group of six profes-
sional developers at one of the software development

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

264



Table 2: TAM Survey results of the AutoTest.NET4CTDD Continuous Testing Tool.

Question Mode Median Q1 Q3
(25th percentile) (75th percentile)

Perceived Usefulness:
better code actuator 5 5 5 5.75
efficient work actuator 3 4.5 3.25 5
test coverage actuator 6 6 5.25 6.75
subjective perceived usefulness 5 5 4.25 5.75
Perceived Ease of Use:
ease of install 7 7 7 7
ease of configuration and use 4 4.5 4 5.75
discoverability 7 6.5 6 7
tool performance 4 4 2.5 4
quality of feedback 7 7 6.25 7
Intention to Use:
use intention 5 5 5 5
use prediction 5 5 5 5.75
commitment level 4 4 4 4.75
intention level 4 4.5 4 6.5
Subjective Norm
approval level 4 5 4 6.75
recommendation level 4 5.5 4.25 6
Organizational Usefulness:
success ratio 5 5 5 5.75
benefit ratio 5 5 5 5

companies in Opole, Poland. The developers were
asked to install the AutoTest.NET4CTDD tool, to use
it on a real project and to provide a preliminary eval-
uation of the tool using our web survey. We asked the
developers for example if they think they will be more
productive and efficient using the tool, if the tool in
their opinion will provide better way to maintain bet-
ter test coverage, it the tool is easy to use and useful
and if the want to use it at all and how committed to
use it they are. Table 2 shows results of the survey.

The questions were divided into 5 groups: Per-
ceived Usefulness (PU), Perceived Ease of Use
(EOU), Intention to Use (ITU), Subjective Norm
(SN), Organizational Usefulness (OU) of the Au-
toTest.NET4CTDD Continuous Testing Tool. The
PU and EOU are drawn from first version of TAM
model (Davis, 1989). SN is drawn from the sec-
ond version of TAM model (Venkatesh and Davis,
2000). PU and EOU are determinants of the inten-
tion to use AutoTest.NET4CTDD Continuous Testing
Tool among developers. SN is determinant of inten-
tion. ITU and OU are variations of determinants de-
scribing the direct intention to use (ITU) and an orga-
nizational impact of the AutoTest.NET4CTDD Con-
tinuous Testing Tool (OU).

After the questionnaire is completed, each item
may be analysed separately. Given the Likert Scale’s
ordinal basis, it makes sense to summarize the cen-
tral tendency of responses from a Likert scale by us-
ing the mode and the median, with variability mea-

sured by quartiles or percentiles i.e. first quartile Q1
(25th percentile which splits lower 25% of data), sec-
ond quartile which is median, third quartile Q3 (75th
percentile which splits lower 75%).

Both, mode and median (if we transform answers
of negated questions) show that the tool is perceived
as rather useful (although not necessarily will help
to work faster) and easy to use (although not nec-
essarily easy to configure). The preliminary inten-
tion of developers to use our tool is somewhere be-
tween positive and sitting on the fence. The subjective
norm and organizational usefulness seem to be dis-
cernible although slightly. The most positive results
regard the usefulness of the AutoTest.NET4CTDD
feedback window and the easiness of the installation
process. In both cases mode and median are equal to
7 (strongly agree). The former result is promising the
usefulness of the fast feedback from the tool is the key
concept which could determine the usefulness of the
CTDD development practice.

7 DISCUSSION, CONCLUSIONS
AND FUTURE WORK

In this paper we have described a novel combination
of TDD and CT that we called CTDD. It seems plau-
sible that the CTDD practice as an enhancement of the
TDD practice and supported by proper tool (we pro-
posed and made available such a tool) has a chance

Continuous�Test-Driven�Development�-�A�Novel�Agile�Software�Development�Practice�and�Supporting�Tool

265



not only to gain attention in professional settings, but
also impact the development speed and software qual-
ity. These kinds of effects have been investigated
with regard to the TDD practice, e.g. (Madeyski,
2010a; Madeyski, 2010b; Madeyski and Szala, 2007;
Madeyski, 2006; Madeyski, 2005). We showed that
the possible synergy effect between TDD and CT can
be useful and is worth empirical investigation.

In our empirical study that will came after this pa-
per we will measure the benefits that the CTDD prac-
tice deliver in the real-world software project. We will
use our AutoTest.NET4CTDD tool (which is an open
source tool, available to download) to constitute the
“C” that we added to the “TDD” to form CTDD. Per-
formed tool acceptance study showed promising re-
sults for further research. The developers found the
tool rather useful and easy to use. Extending the Au-
toTest.NET proved to be relatively easy task. We were
able to add the functionality for gathering measure-
ments quite fast. We have developed infrastructure
to confidently collect the measurement data. We are
certain that the tool gives us enough flexibility to add
new functionality in the future during the course of
our studies over CTDD.

ACKNOWLEDGEMENTS

Marcin Kawalerowicz is a fellow of the ”PhD Schol-
arships - an investment in faculty of Opole province”
project. The scholarschip is co-financed by the Euro-
pean Union under the European Social Fund.

REFERENCES

Astels, D. (2003). Test Driven development: A Practical
Guide. Prentice Hall Professional Technical Refer-
ence.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The
goal question metric approach. In Encyclopedia of
Software Engineering. Wiley.

Beck, K. (1999). Extreme Programming Explained: Em-
brace Change. Addison-Wesley, Boston, MA, USA.

Beck, K. (2002). Test Driven Development: By Example.
Addison-Wesley, Boston, MA, USA.

Beck, K. and Andres, C. (2004). Extreme Programming Ex-
plained: Embrace Change. Addison-Wesley, Boston,
MA, USA, 2nd edition.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R. C., Mellor, S., Schwaber, K., Sutherland,
J., and Thomas, D. (2001). Manifesto for agile soft-
ware development. http://agilemanifesto.org/.

Bhat, T. and Nagappan, N. (2006). Evaluating the effi-
cacy of test-driven development: industrial case stud-
ies. In ISESE’06: ACM/IEEE International Sympo-
sium on Empirical Software Engineering, pages 356–
363, New York, NY, USA. ACM Press.

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and Vis-
aggio, C. A. (2006). Evaluating advantages of test
driven development: a controlled experiment with
professionals. In ISESE’06: ACM/IEEE Interna-
tional Symposium on Empirical Software Engineer-
ing, pages 364–371, New York, NY, USA. ACM
Press.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13(3):319–340.

Duvall, P., Matyas, S. M., and Glover, A. (2007). Con-
tinuous Integration: Improving Software Quality and
Reducing Risk (The Addison-Wesley Signature Series).
Addison-Wesley Professional.

Edwards, S. H. (2003a). Rethinking computer science ed-
ucation from a test-first perspective. In OOPSLA’03:
Companion of the 18th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 148–155, New
York, NY, USA. ACM.

Edwards, S. H. (2003b). Teaching software testing: auto-
matic grading meets test-first coding. In OOPSLA’03:
Companion of the 18th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 318–319, New
York, NY, USA. ACM.

Endres, A. and Rombach, D. (2003). A Handbook of Soft-
ware and Systems Engineering. Addison-Wesley.

Erdogmus, H., Morisio, M., and Torchiano, M. (2005). On
the Effectiveness of the Test-First Approach to Pro-
gramming. IEEE Transactions on Software Engineer-
ing, 31(3):226–237.

Flohr, T. and Schneider, T. (2006). Lessons Learned from an
XP Experiment with Students: Test-First Need More
Teachings. In Münch, J. and Vierimaa, M., editors,
PROFES’06: Product Focused Software Process Im-
provement, volume 4034 of Lecture Notes in Com-
puter Science, pages 305–318, Berlin, Heidelberg.
Springer.

Freeman, S. and Pryce, N. (2009). Growing Object-
Oriented Software, Guided by Tests. Addison-Wesley
Professional, 1st edition.

Gamma, E. and Beck, K. (2003). Contributing to Eclipse:
Principles, Patterns, and Plugins. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA,
USA.

Gamma, E. and Beck, K. (2013). JUnit.
http://www.junit.org/ Accessed Jan 2013.

Gupta, A. and Jalote, P. (2007). An experimental eval-
uation of the effectiveness and efficiency of the test
driven development. In ESEM’07: International Sym-
posium on Empirical Software Engineering and Mea-
surement, pages 285–294, Washington, DC, USA.
IEEE Computer Society.

Hamill, P. (2004). Unit test frameworks. O’Reilly.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

266



Huang, L. and Holcombe, M. (2009). Empirical inves-
tigation towards the effectiveness of Test First pro-
gramming. Information and Software Technology,
51(1):182–194.

Janzen, D. and Saiedian, H. (March–April 2008). Does
Test-Driven Development Really Improve Software
Design Quality? IEEE Software, 25(2):77–84.

Koskela, L. (2007). Test driven: practical tdd and accep-
tance tdd for java developers. Manning Publications
Co., Greenwich, CT, USA.

Kou, H., Johnson, P. M., and Erdogmus, H. (2010). Op-
erational definition and automated inference of test-
driven development with zorro. Automated Software
Engineering, 17(1):57–85.

Madeyski, L. (2005). Preliminary Analysis of the Effects
of Pair Programming and Test-Driven Development
on the External Code Quality. In Zieliński, K. and
Szmuc, T., editors, Software Engineering: Evolution
and Emerging Technologies, volume 130 of Frontiers
in Artificial Intelligence and Applications, pages 113–
123. IOS Press.

Madeyski, L. (2006). The Impact of Pair Programming and
Test-Driven Development on Package Dependencies
in Object-Oriented Design – An Experiment. Lecture
Notes in Computer Science, 4034:278–289.

Madeyski, L. (2010a). Test-Driven Development - An Em-
pirical Evaluation of Agile Practice. Springer.

Madeyski, L. (2010b). The impact of test-first programming
on branch coverage and mutation score indicator of
unit tests: An experiment. Information and Software
Technology, 52(2):169–184.

Madeyski, L. and Szala, L. (2007). The impact of test-
driven development on software development produc-
tivity - an empirical study. In Abrahamsson, P., Bad-
doo, N., Margaria, T., and Messnarz, R., editors, Soft-
ware Process Improvement, volume 4764 of Lecture
Notes in Computer Science, pages 200–211. Springer
Berlin Heidelberg.

Maximilien, E. M. and Williams, L. (2003). Assessing
test-driven development at IBM. In Proceedings of
the 25th International Conference on Software Engi-
neering, ICSE ’03, pages 564–569, Washington, DC,
USA. IEEE Computer Society.

Melnik, G. and Maurer, F. (2005). A cross-program inves-
tigation of students’ perceptions of agile methods. In
ICSE’05: International Conference on Software En-
gineering, pages 481–488.

Müller, M. M. and Hagner, O. (2002). Experiment about
test-first programming. IEE Procedings-Software,
149(5):131–136.

Müller, M. M. and Höfer, A. (2007). The effect of experi-
ence on the test-driven development process. Empiri-
cal Software Engineering, 12(6):593–615.

Nagappan, N., Maximilien, E. M., Bhat, T., and Williams,
L. (2008). Realizing quality improvement through
test driven development: results and experiences of
four industrial teams. Empirical Software Engineer-
ing, 13(3).

Newkirk, J. W. and Vorontsov, A. A. (2004). Test-Driven
Development in Microsoft .Net. Microsoft Press, Red-
mond, WA, USA.

Osherove, R. (2009). The Art of Unit Testing: With Exam-
ples in .Net. Manning Publications Co., Greenwich,
CT, USA, 1st edition.

Pančur, M., Ciglarič, M., Trampuš, M., and Vidmar, T.
(2003). Towards empirical evaluation of test-driven
development in a university environment. In EURO-
CON’03: International Conference on Computer as a
Tool, pages 83–86.

Rady, B. and Coffin, R. (2011). Continuous Testing: with
Ruby, Rails, and JavaScript. Pragmatic Bookshelf, 1st
edition.

Saff, D. and Ernst, M. D. (2003). Reducing wasted devel-
opment time via continuous testing. In Fourteenth In-
ternational Symposium on Software Reliability Engi-
neering, pages 281–292, Denver, CO.

Saff, D. and Ernst, M. D. (2004). An experimental eval-
uation of continuous testing during development. In
ISSTA 2004, Proceedings of the 2004 International
Symposium on Software Testing and Analysis, pages
76–85, Boston, MA, USA.

Sanchez, J. C., Williams, L., and Maximilien, E. M. (2007).
On the Sustained Use of a Test-Driven Development
Practice at IBM. In AGILE’07: Conference on Agile
Software Development, pages 5–14, Washington, DC,
USA. IEEE Computer Society.

Tahchiev, P., Leme, F., Massol, V., and Gregory, G. (2010).
JUnit in Action. Manning Publications, Greenwich,
CT, USA, 2nd edition.

Venkatesh, V. and Davis, F. D. (2000). A theoretical exten-
sion of the technology acceptance model: Four longi-
tudinal field studies. Management science, 46(2):186–
204.

Williams, L., Maximilien, E. M., and Vouk, M. (2003).
Test-Driven Development as a Defect-Reduction
Practice. In ISSRE’03: International Symposium on
Software Reliability Engineering, pages 34–48, Wash-
ington, DC, USA. IEEE Computer Society.

Continuous�Test-Driven�Development�-�A�Novel�Agile�Software�Development�Practice�and�Supporting�Tool

267


