
Component-based Parallel Programming for Peta-scale Particle
Simulations

Cao Xiaolin, Mo Zeyao and Zhang Aiqing
Institute of Applied Physics and Computational Mathematics, No. 2, East Fenghao Road, Beijing, China

Keywords: Parallel Programming, Parallel Integrator Component, JASMIN Infrastructure, Particle Simulation.

Abstract: A major parallel programming challenge in scientific computing is to hide parallel computing details of data
distribution and communication. Component-based approaches are often used in practice to encapsulate
these computer science details and shield them from domain experts. In this paper, we present our
component-based parallel programming approach for large-scale particle simulations. Our approach
encapsulates parallel computing details in parallel integrator components on top of a patch-based data
structure in JASMIN infrastructure. It enables domain programmers to “think parallel, write sequential”.
They only need to assemble necessary components and write serial numerical kernels on a patch invoked by
components. Using this approach, two real application programs have been developed to support the peta-
scale simulations with billons of particles on tens of thousands of processor cores.

1 INTRODUCTION

The complexity of application systems and that of
supercomputer architectures are providing a great
challenge for parallel programming in the field of
scientific computing. Parallel software infra-
structures are the new tendency toward solving such
challenges (Post and Votta, 2005). These
infrastructures are intrinsically different to
traditional libraries because they provide data
structures and parallel programming interfaces to
shield the details of parallel computing from the
users. Based on software infrastructures, a user can
easily develop parallel programs for complex
computers.

J Adaptive Structured Meshes applications
Infrastructure (JASMIN) is a parallel software
infrastructure oriented to simplify the development
of parallel software for multi-physics peta-scale
simulations on multi-block or adaptive structured
meshes (Mo and Zhang, 2010). Patch-based data
structures, efficient communication algorithms,
robust load balancing strategies, scalable parallel
algorithms, object-oriented parallel programming
models are designed and integrated. Tens of codes
have been developed using JASMIN and have scaled
up to tens of thousands of processors.

Particle simulations are a kind of typical
applications supported by JASMIN. For these

applications, particles can randomly distribute
across the cells of a uniform rectangular mesh.
These applications are usually used for the large
scale computing of molecular dynamics,
electromagnetism and so on. Usually, these
simulations require careful tradeoff among data
structures, communication algorithms (Brown et al.,
2011), load balancing strategies (Chorley et al.,
2009). Several particle application programs have
been developed on JASMIN to support the peta-
scale simulations tens of thousands of processors are
used.

Component-based programming has been
applied to address the requirements of large scale
applications from sciences and engineering with
high performance computing requirements
(Francisco and Cenez, 2011). Component-based
software engineering is to enable interoperability
among modules that have been developed
independently by different groups (Jalender et al.,
2012). It treats applications as assemblies of
software components that interact with each other
only through well-defined interfaces within a
software infrastructure.

In this paper, we emphasize component-based
parallel programming for these particle application
programs. Parallel integrator components are
presented to shield the details of parallel data
distribution, data communication and dynamic load
balancing. They invoke numerical subroutines

334 Xiaolin C., Zeyao M. and Aiqing Z..
Component-based Parallel Programming for Peta-scale Particle Simulations.
DOI: 10.5220/0004587603340339
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 334-339
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

written by users for numerical computing on a single
patch. A particle application program can be
assembled by using these components. The software
complexity has been significantly reduced.

The organization of the paper is the following.
We first briefly describe the software architecture
and data structure of JASMIN infrastructure. Then,
we detail the design and implementation of typical
parallel integration components. We especially focus
on the numerical integration component involving
data communication and numerical computing. In
section 4, a molecular dynamics parallel program
has been developed by assembling these components.
The program achieves a parallel efficiency above
60% on 36000 processor cores.

2 OVERVIEW OF JASMIN

2.1 Software Architecture

Figure 1 depicts the three layers architecture of
JASMIN. The bottom layer mainly consists of
modules for high performance computing for SAMR
meshes. These modules encapsulate memory
management, restart, data structures, data
communication and load balancing strategies. The
middle layer of JASMIN contains the modules for
the numerical algorithms shared by many
applications including computational geometry, fast
solvers, mathematical operations on matrix and
vectors, time integration schemes, toolkits, and so on.
The top layer is a virtual layer consisting of C++
interfaces for parallel programming. On the top of
this layer, users can write serial numerical
subroutines for physical models, parameters, discrete
stencils, special algorithms, and so on; these
subroutines constitute the application program.

Figure 1: Software architecture of JASMIN.

2.2 Patch-based Data Structures

Figure 2 depicts a typical patch-based data structure
(Mo and Zhang, 2009). Figure 2(a) shows a two-
dimensional structured mesh consisting of 20x20
cells on one patch level. It is decomposed into seven
patches and each patch is defined on a logical index
region named “Box”. In each patch level, patches
are distributed among processors according to their
computation loads. In Figure 2(b), these patches are
ordered and distributed between two processors. The
left four patches belong to one processor and the
right three green patches belong to the other
processor. In Figure 2(c), the sixth patch is shown to
illustrate the neighbour relationships. It is the
neighbourhood of the other four patches and it
shares contact with the physical boundaries.

Figure 2: A mesh includes seven patches.

In JASMIN, patch is a fundamental container for all
physical variables living on a logically rectangular
mesh region and that all such data is accessible via
the patch. A patch level is used to manage the
structured mesh. For the patch level, a user can
freely define the physical variables. On each patch,
physical variables exist in the form of an array of
patch-data. Patch-data is defined on the region with
a ghost box. To store the data transferred from
neighbour patches, each patch extends its box to a
ghost box within a specific width. When memory

Component-based�Parallel�Programming�for�Peta-scale�Particle�Simulations

335

allocation is requested, the memory of each patch of
data for all related variables is allocated on each
patch.

3 PARALLEL INTEGRATOR
COMPONENTS

3.1 Design Idea

On the patch-based data structure, the parallel
algorithm designed on BSP model is organized as a
series of parallel computing patterns involving data
communication and/or numerical computations on
patches. These typical patterns cover various data
dependencies which occur in different phases of a
numerical simulation such as variable initialization,
time stepping, numerical computing, memory
management, patch-data copy, parallel sweeping,
particle motion, etc.

A parallel integrator component (PIC) was
designed to encapsulate each parallel computing
pattern. The component encapsulates the details of
parallel data distribution and data communication
among MPI processors. Furthermore, it organizes
concurrent numerical computing among MPI
processors or OpenMP threads. The component
invokes user function to perform problem-specific
numerical computing.

3.2 Implementation

The Strategy pattern is the primary object-oriented
design tool employed in JASMIN to encapsulate a
family of PIC components by making their
constituent parts interchangeable through common
interfaces. It was used to implement a family of PIC
components. The StandardComponentPatchStrategy
abstract base class defines an interface between the
PIC components and problem-specific integrator
object.

For example, the NumericalPIC component
encapsulates a parallel computing pattern involving
data communication phase and numerical computing
phase. In data communication phase, it transfers data
among processors for exchanging boundary data
among patches. In numerical computing phase, it
performs numerical computing on each processor for
updating numerical solution on each patch. For the
NumericalPIC, two abstract interfaces were defined
in the abstract base class.
 registerPatchData() for registering physical

variables needed to fill ghost cells before
numerical computing.

 computingOnPatch() for implementing serial and
numerical subroutine on one patch.

The NumericalPIC component possesses two
private functions for data communication. Function
createScheduleOnLevel() constructs schedule on
new patch level for physical variables registered by
user. This schedule includes memory copy in the
same processor or message passing across
processors. When a patch level was created or
changed, the function was automatically called.
Function fillDataAmongPatches() manages data
transfer guided by the communication schedule for
exchanging boundary data among patches.

The NumericalPIC component supplies a public
function computingOnLevel(), which performs
following two steps.

 In data communication phase, function
fillDataAmongPatches() is automatically invoked
for exchanging boundary data among patches.
 In numerical computing phase， each processor

loops over all local patches and performs
numerical computing on each patch by calling user
function computingOnPatch(). For OpenMP
threads parallelization, each thread deals with one
or several patches.

3.3 Typical Components

Table 1 lists seven PIC components in JASMIN for
typical parallel computing patterns covering various
data dependencies in single level application(Mo,
2009). The name of PIC components was listed in
the first column. The second column shows these
functions involving parallel data distribution and
data communication without user intervention.
These numerical computing functions are shown in
the third column.

For the four components involving numerical
computing, user interfaces are defined in the
StandardComponentPatchStrategy base class
described as following:

 initializePatchData() for InitializePIC.
 computingOnPatch() for NumericalPIC.
 getPatchDt() for DtPIC.
 getLoadOnPatch() for DlbPIC.

In the user interface, parameter patch is very
important for containing all physical variables. All
data of physical variables are accessible via the
patch. All dependent data coming from neighbour
patches have been filled in ghost cells of patch after
data communication. Therefore, user can write serial
function to deal with physical variables on one patch.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

336

Table 1: Seven typical parallel integrator components.

name Parallel operations
Numerical
computing

Initialize
Allocate memory;

initialize from
restart files

set initial value of
physical variables

Numerical Fill ghost cells
Update value of

physical variables

Dt
reduce min value of

dt
Compute dt

Particle-
Comm

Migrate or fill
particles

None

Copy
Copy physical

variables
None

Memory
Allocate or

deallocate memory
None

Dlb
Dynamics load

balance
Compute load of

cells

4 REAL APPLICATION

Particle simulations are typical applications
supported by JASMIN infrastructure. Two particle
application programs have been developed, which
include classical molecular dynamics (MD) program,
laser plasma intersection program and so on. Take
MD program as an example of how we apply these
PIC components for parallel programming in section
4.1-4.3. In section 4.4, laser plasma intersection
program is briefly introduced.

4.1 Parallel Algorithm

The MD application calculates the time dependent
behavior of a molecular system. The new position
and the velocity of each particle are computed by
numerical integration of Newton's laws of motion
equations. every time step. The forces between
particles are obtained by the summation of
interactions between two particles at the cut-off
radius. The interaction between two particles is
obtained by potential function. Here we use the

EAM (Embedded Atom Method) potential function
(Brown et al., 2011). Parallel MD method based
domain decomposition is described in algorithm 1
involving 7 steps. It mainly computes the forces and
the positions of each particle while it transfers data
for filling ghost cells and migrating particles.

4.2 Component-based Programming

For parallel programming on JASMIN, some PIC
components have been assembled for implementing
the corresponding step in algorithm 1.

In step 1 and 7, a DlbPIC component named d_dlb
was used for assigning initial load and performing
dynamic load balancing. In step 1, it assigns evenly
patches across processors. In step 7, it migrate
patches across processors. The DlbPIC component
includes many load balancing methods such as the
space filling curves coupled with the multilevel
average weights methods, greedy methods,
geometrical bisection methods, etc. It invokes user
function loadOnPatch() for defining the loads of
each cell in a patch. Using this information, the
DlbPIC can automatically distribute and adjust loads
across processors. Figure 3 and Figure 4 depicts the
load distribution and adjustment on 8 processors.
Figure 3 shows the initial distribution of patches
with non-uniform distribution of particles. Figure 4
depicts the redistribution of patches after the motion
of particles. Patches with the same color are
assigned the same processor. The patch with over-
weight load is divided into several small patches.

In step 2, a InitializePIC named d_init was used
for performing initial distribution of particles based
on physical model. It calls user function
initializeOnPatch() for setting the initial positions of
particles and all attributes such as velocity, mass etc
on a patch at time zero. These particles can
distribute across the cells of a uniform rectangular
mesh based on metal crystal structure.

In step 3 and step 6, a ParticleCommPIC named
d_pcomm is used for halo-swapping and particle

Algorithm 2: assemble components
1) d_dlb->assign() //Dlb
2) d_init->initialize()//Initialize
for all time steps do

3) d_pcomm->fill() //ParticleComm
4) d_force->computing() //Numerical
5) d_position->computing//Numerical
6) d_pcomm->migrate()//ParticleComm
7) d_dlb->adjust() //Dlb
end do

Algorithm 1: parallel MD method
1) initial load balancing
2) set particles in each cell
 for all time steps do
3) fill particles in ghost cells
4) compute forces of particles
5) update positions of particles
6) migrate particles among cells
7) dynamic load balancing
end do;

Component-based�Parallel�Programming�for�Peta-scale�Particle�Simulations

337

Figure 3: Assign initial load with non-uniform distribution
of particles on 8 processors.

Figure 4: Dynamic load balancing after the motion of
particles on 8 processors.

migration. Before computing forces of particles, the
information about particles in cells at patch
boundaries needs to be communicated. The
component uses its own public function fill() for
exchanging boundary particles among patches. After
updating positions of particles, some particles might
move from one cell to another. The component uses
its own public function migrate() for migrating
particles across processors. The two functions are
performed without user intervention.

In step 4, a NumericalPIC named d_force is used
for computing forces of particles. In step 5, a
NumericalPIC named d_position is used for
updating positions of particles. The two components
both call user function computingOnPatch(). In the
function, users implement two numerical
subroutines written with F77 language. One is
computingForce() , the other is updatingPosition().
In the first subroutine, the forces are computed
between particles in the same or neighbour cells. In
the second subroutine, the positions of particles are
computed by integrating Newton’s equation of
motion. The two functions loop through all cells in
one patch.

4.3 Peta-scale Simulations of MD

We developed a MD code with EAM potential on
JASMIN infrastructure, which is named with
md3d_EAM. A dynamics response of metal with

nano-metre hole model has been simulated on 36000
cores of TianHe-1A supercomputer (Yang et al.,
2011). The total number of particles in the
simulation is 5.12×108 with a void density of 0.5%.
Table 2 shows the parallel performance of strong
scalability experiment with fixed the number of
particles in 10 time steps. It has achieved parallel
efficiency above 60% on 36000 cores.

This real whole simulation costs about 4 hours
for 30000 steps. In figure 5, we can see from the
simulation that voids collapsed by the emission of
dislocation loops and hot spot initiated through the
collapse of voids.

Table 2: Parallel performance with fixed problem size.

Cores Time(s) Efficiency
6000 15.92 100.0%
12000 9.32 85.4%
18000 5.88 90.2%
24000 5.35 74.3%
36000 4.37 60.7%

Figure 5: The shock structure and dynamic response of
copper with hundreds of nano-metre hole.

4.4 Parallel Program of Laser Plasma
Intersection

LARED-P is a three-dimensional program for the
simulation of laser plasma intersections using the
method of Particle-In-Cell. Electrons and ions are
distributed in the cells of a uniform rectangular mesh.
The Maxwell electromagnetic equations coupled
with particle movement equations are solved.
Particles intersect with the electromagnetic fields.

The LARED-P program has been developed by
assembling these components described in Table 1.
The program achieves a parallel efficiency above
45% for a typical real model using 20 billion
particles on 36000 processor cores. For this

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

338

simulation, the efficient load balancing strategies
are essential for successful executions.

Figure 6 shows the distribution of particles in a
snapshot and the related volume rendering of laser
intensity. The distribution of the particles is showed
with yellow colour. Laser energy is mainly
distributed in the internal cavity of cone target. It
demonstrated clearly the existence of plasma
significantly affects the light propagation and the
generation of relativistic electrons.

Figure 6: Focusing transport of laser in plasma taper.

5 CONCLUSIONS

Component-based software engineering is very
useful to address the requirements of large scale
applications in scientific computing. Components
are logical means of encapsulating parallel details
from computer science domain for use by those in
real application domain. Parallel integrator
components in JASMIN infrastructure are presented
to shield the details of parallel data distribution, data
communication and dynamic load balancing. It has
been proved that particle application programs can
be easily implemented by assembling these
components. Users mainly write application-specific
numerical subroutines invoked by these components.

The complexity of parallel programming
continues to increase as multi-model, multi-physics,
multi-disciplinary simulations are becoming
widespread. These challenges make it clear that high
performance scientific computing community needs
advanced software engineering techniques which
facilitate managing such complexity while
maintaining scalability and parallel performance.
Parallel software infrastructures along with these
advanced techniques will allow domain
programmers to “think parallel, write sequential”.

ACKNOWLEDGEMENTS

This work was under the auspices of the National
Natural Science Foundation of China (Grant Nos.
61033009), the National Basic Key Research Special
Fund (2011CB309702) and the National High
Technology Research and Development Program of
China (863 Program) (2012AA01A309). Thanks for
the many contributions from members of the high
performance computing centre in IAPCM.

REFERENCES

Brown W. M., Wang P., Plimpton S. J., 2011.
Implementing molecular dynamics on hybrid high
performance computers - short range forces. Comp
Phys Comm. 182: 898-911.

Chorley M. J., Waker D. W., Guest M .F. Hybrid
message-passing and shared-memory programming in
a molecular dynamics application on multicore cluster.
International Journal of high Performance Computing
Applications. 23(3): 196-211, 2009.

Francisco H. C., Cenez A. R., 2011. Component-based
refactoring of parallel numerical simulation programs:
a case study on component-based parallel
programming. In SBAC-PAD '11, 23rd International
Symposium on Computer Architecture and High
Performance Computing. IEEE Computer Society.

Jalender B., Govardhan A., Premchand P., 2012.
Designing code level reusable software components.
Int. J. Software Engineering & Applications. 3(1):
219-229.

Mo Z. Y., Zhang A. Q., 2010. JASMIN: A parallel
software infrastructure for scientific computing. Front.
Comput. Sci. China. 4(4): 480-488.

Mo Z. Y., Zhang A. Q., 2009. User’s guide for JASMIN,
Technical Report . https://www.iapcm.ac.cn/jasmine.

Pei W. B., Zhu S.P., 2009. Scientific computing in Laser
Fusion. Physics (in Chinese), 38(8): 559-568.

Post D. E., Votta L. G., 2005. Computational science
demands a new paradigm. Physics Today, 58(1): 35-
41.

Yang X. J., Liao X. K., Lu. K., 2011. The TianHe-1A
supercomputer: Its hardware and software. J. of
Computer Science and Technology. 26(3): 344-351.

Component-based�Parallel�Programming�for�Peta-scale�Particle�Simulations

339

