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Abstract: A major parallel programming challenge in scientific computing is to hide parallel computing details of data 
distribution and communication. Component-based approaches are often used in practice to encapsulate 
these computer science details and shield them from domain experts. In this paper, we present our 
component-based parallel programming approach for large-scale particle simulations. Our approach 
encapsulates parallel computing details in parallel integrator components on top of a patch-based data 
structure in JASMIN infrastructure. It enables domain programmers to “think parallel, write sequential”. 
They only need to assemble necessary components and write serial numerical kernels on a patch invoked by 
components. Using this approach, two real application programs have been developed to support the peta-
scale simulations with billons of particles on tens of thousands of processor cores. 

1 INTRODUCTION 

The complexity of application systems and that of 
supercomputer architectures are providing a great 
challenge for parallel programming in the field of 
scientific computing. Parallel software infra-
structures are the new tendency toward solving such 
challenges (Post and Votta, 2005). These 
infrastructures are intrinsically different to 
traditional libraries because they provide data 
structures and parallel programming interfaces to 
shield the details of parallel computing from the 
users. Based on software infrastructures, a user can 
easily develop parallel programs for complex 
computers. 

J Adaptive Structured Meshes applications 
Infrastructure (JASMIN) is a parallel software 
infrastructure oriented to simplify the development 
of parallel software for multi-physics peta-scale 
simulations on multi-block or adaptive structured 
meshes (Mo and Zhang, 2010). Patch-based data 
structures, efficient communication algorithms, 
robust load balancing strategies, scalable parallel 
algorithms, object-oriented parallel programming 
models are designed and integrated. Tens of codes 
have been developed using JASMIN and have scaled 
up to tens of thousands of processors.  

Particle simulations are a kind of typical 
applications supported by JASMIN. For these 

applications,  particles can randomly distribute 
across the cells of a uniform rectangular mesh. 
These applications are usually used for the large 
scale computing of molecular dynamics, 
electromagnetism and so on. Usually, these 
simulations require careful tradeoff among data 
structures, communication algorithms (Brown et al., 
2011), load balancing strategies (Chorley et al., 
2009). Several particle application programs have 
been developed on JASMIN to support the peta-
scale simulations tens of thousands of processors are 
used. 

Component-based programming has been 
applied to address the requirements of large scale 
applications from sciences and engineering with 
high performance computing requirements 
(Francisco and Cenez, 2011). Component-based 
software engineering is to enable interoperability 
among modules that have been developed 
independently by different groups (Jalender et al., 
2012). It treats applications as assemblies of 
software components that interact with each other 
only through well-defined interfaces within a 
software infrastructure. 

In this paper, we emphasize component-based 
parallel programming for these particle application 
programs. Parallel integrator components are 
presented to shield the details of parallel data 
distribution, data communication and dynamic load 
balancing. They invoke numerical subroutines 
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written by users for numerical computing on a single 
patch. A particle application program can be 
assembled by using these components. The software 
complexity has been significantly reduced.  

The organization of the paper is the following. 
We first briefly describe the software architecture 
and data structure of JASMIN infrastructure. Then, 
we detail the design and implementation of typical 
parallel integration components. We especially focus 
on the numerical integration component involving 
data communication and numerical computing. In 
section 4, a molecular dynamics parallel program 
has been developed by assembling these components. 
The program achieves a parallel efficiency above 
60% on 36000 processor cores.  

2 OVERVIEW OF JASMIN  

2.1 Software Architecture 

Figure 1 depicts the three layers architecture of 
JASMIN. The bottom layer mainly consists of 
modules for high performance computing for SAMR 
meshes. These modules encapsulate memory 
management, restart, data structures, data 
communication and load balancing strategies. The 
middle layer of JASMIN contains the modules for 
the numerical algorithms shared by many 
applications including computational geometry, fast 
solvers, mathematical operations on matrix and 
vectors, time integration schemes, toolkits, and so on. 
The top layer is a virtual layer consisting of C++ 
interfaces for parallel programming. On the top of 
this layer, users can write serial numerical 
subroutines for physical models, parameters, discrete 
stencils, special algorithms, and so on; these 
subroutines constitute the application program.  

 
Figure 1: Software architecture of JASMIN. 

2.2 Patch-based Data Structures 

Figure 2 depicts a typical patch-based data structure 
(Mo and Zhang, 2009). Figure 2(a) shows a two-
dimensional structured mesh consisting of 20x20 
cells on one patch level. It is decomposed into seven 
patches and each patch is defined on a logical index 
region named “Box”. In each patch level, patches 
are distributed among processors according to their 
computation loads. In Figure 2(b), these patches are 
ordered and distributed between two processors. The 
left four patches belong to one processor and the 
right three green patches belong to the other 
processor. In Figure 2(c), the sixth patch is shown to 
illustrate the neighbour relationships. It is the 
neighbourhood of the other four patches and it 
shares contact with the physical boundaries. 

 
Figure 2: A mesh includes seven patches.  

In JASMIN, patch is a fundamental container for all 
physical variables living on a logically rectangular 
mesh region and that all such data is accessible via 
the patch. A patch level is used to manage the 
structured mesh. For the patch level, a user can 
freely define the physical variables. On each patch, 
physical variables exist in the form of an array of 
patch-data. Patch-data is defined on the region with 
a ghost box. To store the data transferred from 
neighbour patches, each patch extends its box to a 
ghost box within a specific width. When memory 
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allocation is requested, the memory of each patch of 
data for all related variables is allocated on each 
patch. 

3 PARALLEL INTEGRATOR 
COMPONENTS  

3.1 Design Idea 

On the patch-based data structure, the parallel 
algorithm designed on BSP model is organized as a 
series of parallel computing patterns involving data 
communication and/or numerical computations on 
patches. These typical patterns cover various data 
dependencies which occur in different phases of a 
numerical simulation such as variable initialization, 
time stepping, numerical computing, memory 
management, patch-data copy, parallel sweeping, 
particle motion, etc. 

A parallel integrator component (PIC) was 
designed to encapsulate each parallel computing 
pattern. The component encapsulates the details of 
parallel data distribution and data communication 
among MPI processors. Furthermore, it organizes 
concurrent numerical computing among MPI 
processors or OpenMP threads. The component 
invokes user function to perform problem-specific 
numerical computing. 

3.2 Implementation 

The Strategy pattern is the primary object-oriented 
design tool employed in JASMIN to encapsulate a 
family of PIC components by making their 
constituent parts interchangeable through common 
interfaces. It was used to implement a family of PIC 
components. The StandardComponentPatchStrategy 
abstract base class defines an interface between the 
PIC components and problem-specific integrator 
object. 

For example, the NumericalPIC component 
encapsulates a parallel computing pattern involving 
data communication phase and numerical computing 
phase. In data communication phase, it transfers data 
among processors for exchanging boundary data 
among patches. In numerical computing phase, it 
performs numerical computing on each processor for 
updating numerical solution on each patch. For the 
NumericalPIC, two abstract interfaces were defined 
in the abstract base class. 
 registerPatchData() for registering physical 

variables needed to fill ghost cells before 
numerical computing.   

 computingOnPatch() for implementing serial and 
numerical subroutine on one patch.  

The NumericalPIC component possesses two 
private functions for data communication. Function 
createScheduleOnLevel() constructs schedule on 
new patch level for physical variables registered by 
user. This schedule includes memory copy in the 
same processor or message passing across 
processors. When a patch level was created or 
changed, the function was automatically called. 
Function fillDataAmongPatches() manages data 
transfer guided by the communication schedule for 
exchanging boundary data among patches.  

The NumericalPIC component supplies a public 
function computingOnLevel(), which  performs 
following two steps. 

 In data communication phase, function 
fillDataAmongPatches() is automatically invoked 
for exchanging boundary data among patches.   
 In numerical computing phase， each processor 

loops over all local patches and performs 
numerical computing on each patch by calling user 
function computingOnPatch(). For OpenMP 
threads parallelization, each thread deals with one 
or several patches. 

3.3 Typical Components 

Table 1 lists seven PIC components in JASMIN for 
typical parallel computing patterns covering various 
data dependencies in single level application(Mo, 
2009). The name of PIC components was listed in 
the first column. The second column shows these 
functions involving parallel data distribution and 
data communication without user intervention. 
These numerical computing functions are shown in 
the third column.  

For the four components involving numerical 
computing, user interfaces are defined in the 
StandardComponentPatchStrategy base class 
described as following: 

 initializePatchData() for InitializePIC. 
 computingOnPatch() for NumericalPIC. 
 getPatchDt() for DtPIC. 
 getLoadOnPatch() for DlbPIC. 

In the user interface, parameter patch is very 
important for containing all physical variables. All 
data of physical variables are accessible via the 
patch. All dependent data coming from neighbour 
patches have been filled in ghost cells of patch after 
data communication. Therefore, user can write serial 
function to deal with physical variables on one patch. 
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Table 1: Seven typical parallel integrator components. 

name Parallel operations 
Numerical 
computing 

Initialize 
Allocate memory;  

initialize from 
restart files 

set initial value of 
physical variables 

Numerical Fill ghost cells 
Update value of 

physical variables 

Dt 
reduce min value of 

dt 
Compute dt 

Particle-
Comm 

Migrate or fill 
particles 

None 

Copy 
Copy physical 

variables 
None 

Memory 
Allocate or 

deallocate memory 
None 

Dlb 
Dynamics load 

balance 
Compute load of 

cells 

4 REAL APPLICATION 

Particle simulations are typical applications 
supported by JASMIN infrastructure. Two particle 
application programs have been developed, which 
include classical molecular dynamics (MD) program, 
laser plasma intersection program and so on. Take 
MD program as an example of how we apply these 
PIC components for parallel programming in section 
4.1-4.3. In section 4.4, laser plasma intersection 
program is briefly introduced.   

4.1 Parallel Algorithm 

The MD application calculates the time dependent 
behavior of a molecular system. The new position 
and the velocity of each particle are computed by 
numerical integration of Newton's laws of motion 
equations. every time step. The forces between 
particles are obtained by the summation of 
interactions between two particles at the cut-off 
radius. The interaction between two particles is 
obtained  by  potential  function.  Here   we   use  the 
 

 

EAM (Embedded Atom Method) potential function 
(Brown et al., 2011). Parallel MD method based 
domain decomposition is described in algorithm 1 
involving 7 steps. It mainly computes the forces and 
the positions of each particle while it transfers data 
for filling ghost cells and migrating particles. 

4.2 Component-based Programming 

For parallel programming on JASMIN, some PIC 
components have been assembled for implementing 
the corresponding step in algorithm 1. 
 

 

In step 1 and 7, a DlbPIC component named d_dlb 
was used for assigning initial load and performing 
dynamic load balancing. In step 1, it assigns evenly 
patches across processors. In step 7, it migrate 
patches across processors. The DlbPIC component 
includes many load balancing methods such as the 
space filling curves coupled with the multilevel 
average weights methods, greedy methods, 
geometrical bisection methods, etc. It invokes user 
function loadOnPatch() for defining the loads of 
each cell in a patch. Using this information, the 
DlbPIC can automatically distribute and adjust loads 
across processors.  Figure 3 and Figure 4 depicts the 
load distribution and adjustment on 8 processors. 
Figure 3 shows the initial distribution of patches 
with non-uniform distribution of particles.  Figure 4 
depicts the redistribution of patches after the motion 
of particles.  Patches with the same color are 
assigned the same processor. The patch with over-
weight load is divided into several small patches. 

In step 2, a InitializePIC named d_init was used 
for performing initial distribution of particles based 
on physical model. It calls user function 
initializeOnPatch() for setting the initial positions of 
particles  and all attributes such as velocity, mass etc 
on a patch at time zero. These particles can 
distribute across the cells of a uniform rectangular 
mesh based on metal crystal structure. 

In step 3 and step 6, a ParticleCommPIC named 
d_pcomm  is  used  for  halo-swapping   and  particle 

Algorithm 2: assemble components 
1) d_dlb->assign() //Dlb  
2) d_init->initialize()//Initialize 
for all time steps do 

3) d_pcomm->fill() //ParticleComm   
4) d_force->computing() //Numerical 
5) d_position->computing//Numerical 
6) d_pcomm->migrate()//ParticleComm 
7) d_dlb->adjust()  //Dlb 
end do 

Algorithm 1: parallel MD method   
1) initial load balancing 
2) set particles in each cell 
  for all time steps do 
3)  fill particles in ghost cells  
4)  compute forces of particles 
5)  update positions of particles 
6)  migrate particles among cells 
7)  dynamic load balancing 
end do; 
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Figure 3: Assign initial load with non-uniform distribution 
of particles on 8 processors. 

 

Figure 4: Dynamic load balancing after the motion of 
particles on 8 processors.  

migration. Before computing forces of particles, the 
information about particles in cells at patch 
boundaries needs to be communicated. The 
component uses its own public function fill() for 
exchanging boundary particles among patches. After 
updating positions of particles, some particles might 
move from one cell to another. The component uses 
its own public function migrate() for migrating 
particles across processors. The two functions are 
performed without user intervention. 

In step 4, a NumericalPIC named d_force is used 
for computing forces of particles. In step 5, a 
NumericalPIC named d_position is used for 
updating positions of particles. The two components 
both call user function computingOnPatch(). In the 
function, users implement two numerical 
subroutines written with F77 language. One is 
computingForce() , the other is updatingPosition(). 
In the first subroutine, the forces are computed 
between particles in the same or neighbour cells. In 
the second subroutine, the positions of particles are 
computed by integrating Newton’s equation of 
motion. The two functions loop through all cells in 
one patch. 

4.3 Peta-scale Simulations of MD 

We developed a MD code with EAM potential on 
JASMIN infrastructure, which is named with 
md3d_EAM. A dynamics response of metal with 

nano-metre hole model has been simulated on 36000 
cores of TianHe-1A supercomputer (Yang et al., 
2011). The total number of particles in the 
simulation is 5.12×108 with a void density of 0.5%. 
Table 2 shows the parallel performance of strong 
scalability experiment with fixed the number of 
particles in 10 time steps. It has achieved parallel 
efficiency above 60% on 36000 cores.  

This real whole simulation costs about 4 hours 
for 30000 steps. In figure 5, we can see from the 
simulation that voids collapsed by the emission of 
dislocation loops and hot spot initiated through the 
collapse of voids.  

Table 2: Parallel performance with fixed problem size. 

Cores Time(s) Efficiency 
6000 15.92 100.0% 
12000 9.32 85.4% 
18000 5.88 90.2% 
24000 5.35 74.3% 
36000 4.37 60.7% 

 

Figure 5: The shock structure and dynamic response of 
copper with hundreds of nano-metre hole. 

4.4 Parallel Program of Laser Plasma 
Intersection 

LARED-P is a three-dimensional program for the 
simulation of laser plasma intersections using the 
method of Particle-In-Cell. Electrons and ions are 
distributed in the cells of a uniform rectangular mesh. 
The Maxwell electromagnetic equations coupled 
with particle movement equations are solved. 
Particles intersect with the electromagnetic fields. 

The LARED-P program has been developed by 
assembling these components described in Table 1. 
The program achieves a parallel efficiency above 
45% for a typical real model using 20 billion 
particles on 36000 processor cores. For this 
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simulation, the efficient load balancing strategies 
are essential for successful executions.  

Figure 6 shows the distribution of particles in a 
snapshot and the related volume rendering of laser 
intensity. The distribution of the particles is showed 
with yellow colour. Laser energy is mainly 
distributed in the internal cavity of cone target. It 
demonstrated clearly the existence of plasma 
significantly affects the light propagation and the 
generation of relativistic electrons.  

 

Figure 6: Focusing transport of laser in plasma taper. 

5 CONCLUSIONS 

Component-based software engineering is very 
useful to address the requirements of large scale 
applications in scientific computing. Components 
are logical means of encapsulating parallel details 
from computer science domain for use by those in 
real application domain. Parallel integrator 
components in JASMIN infrastructure are presented 
to shield the details of parallel data distribution, data 
communication and dynamic load balancing. It has 
been proved that particle application programs can 
be easily implemented by assembling these 
components. Users mainly write application-specific 
numerical subroutines invoked by these components.  

The complexity of parallel programming 
continues to increase as multi-model, multi-physics, 
multi-disciplinary simulations are becoming 
widespread. These challenges make it clear that high 
performance scientific computing community needs 
advanced software engineering techniques which 
facilitate managing such complexity while 
maintaining scalability and parallel performance.  
Parallel software infrastructures along with these 
advanced techniques will allow domain 
programmers to “think parallel, write sequential”. 
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