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Abstract: In this paper we introduce an intermediate language for translation ofF#, a functional language polymorphi-
cally typed relying on the .Net platform, to different scripting languages, such as Python and JavaScript. This
intermediate language (IL for short) is an imperative language, with constructs that make possible to move a
code fragment outside its definition environment, during the translation. Definition of names (variables and
functions) are done in blocks, like in Python (and JavaScript) and do not have to statically precede their use.
We present a translation of a coreF# (including mutable variables) intoIL.

1 INTRODUCTION

Implementing an application in JavaScript (or any
other dynamically typed language) can cause prob-
lems due to the absence of type checking. Such prob-
lems can lead to unexpected application behaviour
followed by onerous debugging. Although dynamic
type checking and automatic type casting shorten the
programming time, they introduce serious difficulties
in the maintenance of medium to large applications.
This is the reason why dynamically typed languages
are used mostly for prototyping and quick scripting.

We propose to deal with these problems using dy-
namically typed languages as “assembly languages”
to which we translate the source code fromF# which
is statically typed. In this way, we take advantage of
theF# type checker and type inference system, as well
as otherF# constructs and paradigms such as pattern
matching, classes, discriminated unions, namespaces,
etc., and we may use the safe imperative features in-
troduced viaF# mutable variables. There are also the
advantages of using an IDE such as Microsoft Vi-
sual Studio (code organization, debugging tools, In-
telliSense, etc.).

To provide translation to different target languages
we introduce an intermediate language,IL for short.
This is useful, for instance, for translating to Python
that does not have complete support for functions as
first class concept, or for translating to JavaScript, us-
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ing or not libraries such as jQuery.
Our aim is to prove the correctness of the com-

pilers produced. To do that we formalizeIL, and the
translation from the source language toIL. The lan-
guageIL is imperative, and has some of the character-
istics of the scripting languages that makes them flex-
ible, but difficult to check, such as blocks in which
definition and use of variables may be interleaved,
and in which use of a variable may precede its def-
inition. (IL is partly inspired by IntegerPython, see
(Ranson et al., 2008).) Therefore, the proof of cor-
rectness of the translation from the source language
F# to IL already covers most of the gap fromF# to the
target scripting languages. InIL we also have some
construct that may be used to manipulate safely frag-
ments of open code.

The paper is organized as follows. In Section 2,
we introduce the challenges of the translation fromF#
to Python and JavaScript via some examples, that led
us to introduce our intermediate language. We also
outline the translation fromIL to both JavaScript and
Python. In Section 3 we define the fragment ofF#
used as source language, and in Section 4 we formal-
ize IL. The formal translation fromF# to IL is de-
fined in Section 5, where it is stated to preserve the
dynamic semantics ofF#. In Section 6 we compare
our work with the work of others, and finally in Sec-
tion 7 we summarize our work, discussing briefly the
implementation issues and highlighting our plans for
future work.
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2 TRANSLATION BY
EXAMPLES: DESIGN CHOICES

In the fragment ofF# we consider as source of our
translation we have the typical functional language
constructs: function definition and application, inte-
gers, booleans, addition and the conditional expres-
sion, and an imperative fragment including mutable
variables, assignment, and sequences of expressions.
On the left-hand-side of an assignment there must be
a variable that was introduced with themutable mod-
ifier.

2.1 Sequences of Expressions

Many F# constructs can be directly mapped to
JavaScript (or Python), but when this is not the case
we obtain a semantically equivalent behaviour by us-
ing the primitives offered by the target language. E.g.,
in F# a sequence of expressions is itself an expression,
while in JavaScript and Python it is a statement. Sup-
pose we want to translate a piece of code that calcu-
lates a fibonacci number, binds the result to a name
and also stores the information if the result is even or
odd. In Fig. 1 we have one possibleF# implementa-
tion.

let z=7
let mutable even = false
let x =

let rec fib x =
if x < 3 then 1
else fib(x - 1) + fib(x - 2)

let temp = fib z
even <- (temp % 2 = 0)
temp

x

Figure 1:F# program containing sequence of expressions.

As we can see, on the right-hand-side of “let x=”
we have a sequence of expressions: the definition of
the functionfib followed by the definition oftemp,
etc. This sequence is, inF#, an expression. If we
directly map this code into JavaScript we obtain the
syntactically incorrect code of Fig. 2. This program
is syntactially wrong, since on the right-hand-side of
an assignment we must have an expression, while a
sequence of expressions is, in JavaScript, a statement.
To transform a sequence of statements in an expres-
sion, in JavaScript, we wrap the sequence into a func-
tion, and to execute it we call the function, i.e., we use
a JavaScript closure and application. Also, the whole
program is wrapped into an entry point function. In
this way, the code of Fig. 3 is correct. Unfortunately,
the same cannot be done in Python as its support for

var z = 7;
var even = false;
var x =

var fib = function (x) {
if (x < 3) return 1;
else return fib(x-1)+fib(x-2)};

var temp = fib(z);
even = (temp % 2) == 0;
temp;

return x;

Figure 2: Naive translation into JavaScript of sequence of
expressions.

(function() {
var z = 7;
var even = false;
var x = (function () {

var fib = function (x) {
if (x < 3) return 1;
else return fib(x-1)+fib(x-2)};

var temp = fib(z);
even = (temp % 2) == 0;
return temp })();

return x })();

Figure 3: Correct JavaScript translation.

closures is partial. So we have to define a temporary
function, saytemp1, in the global scope and to exe-
cute it we have to calltemp1 in the place where the
original sequence should be. However, variables such
as even will be out of the scope of their definition,
and this would make the translation wrong. To ob-
tain a behaviour semantically equivalent, we have to
pass totemp1 the variableeven, by reference, since it
may be modified in the body oftemp. Note that, this
problem is not present in JavaScript where the closure
is defined and called in the scope ofeven. Another
problem in Python is related to lambdas, whose body
must be an expression (not a sequence). So we de-
fine the functiontemp2 whose body contains the state-
ments that should be placed where an expression is
expected. In Fig. 4 we can see the translation of the
F# code into Python. The classByRef is used to wrap
the mutable variableeven to obtain a parameter called
by reference. The Python code generator inserts the
needed wrapping and unwrapping before and after the
call of temp1, and in the body oftemp1.

The problem we illustrated above occurs when-
ever in the target language we get a statement where
an expression is expected. Since the target languages
handle the situation differently, we abstract from this
specific problem, and consider the more general prob-
lem of moving “open code” from its context, replac-
ing it with an expression having the same behaviour.
Taking inspiration from work on dynamic binding,
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def temp1(w, z):
def temp2(w, fib, x):

if (x < 3): return 1
else: return fib(x-1)+fib(x-2)

fib = lambda x: temp2(w, fib, x)
temp = fib(z)
w.value = ((temp % 2) == 0)
return temp

def __main__():
z = 7
even = False
wrapper1 = ByRef(even)
x = temp1(wrapper1, z)
even = wrapper1.value
return x

__main__();

Figure 4: Correct Python translation.

see (Nanevski, 2003) and recent work by the authors,
see (Ancona et al., 2013), we define a pair of box-
ing/unboxing contructs, that we call:stm2exp, and
exc. The constructstm2exp wraps “open code” (in
this case a sequence of expressions) providing the in-
formation on the environment needed for its execu-
tion, that is the mutable and immutable variables oc-
curring in it. This construct defines a value, similar
to a function closure. The constructexc is used to
execute the code contained instm2exp. To do this it
must provide values for the immutable variables, in
our example the variablez, and bindings for the mu-
table variables to variables in the current environment,
since when executing the code we have to modify the
variableeven.

With these constructs, theF# code of Fig. 1 would
be translated into the IL code in Fig. 5. All thelet
constructs are translated to variable definitions. The
sequence of statements on the right-hand-side of “let
x=” is packed into astm2exp expression. Its first
component is the translation of the sequence of state-
ments, the secondw->EV says that in the execution en-

def y = stm2exp(
def fib =

fun x ->
if x < 3 then 1
else (fib (x-1) + fib (x-2));

def temp = fib u;
w <- temp % 2 = 0;
temp,
w->EV, u);

def z = 7;
def even = false;
def x = exc(y, EV->even, z);
x

Figure 5: Translation ofF# sequence of expressions in the
intermediate language.

vironment there should be a rebinding of the global
nameEV to a variable. Such variable may (in this case
will) be modified by the execution of the code through
assignment to the local variablew. The third compo-
nent says that a value foru must be provided. The
variableu is not modified by the execution of the code.
We choose to use global names to unbind/rebind mu-
table variables,w in our example, so that the local vari-
ables can be consistently renamed without affecting
the semantics of the construct as formal parameters
of functions. Instead names such asEV are global to
the whole program.

To obtain the result that we would have by evaluat-
ing the sequence of statements in the current environ-
ment, to the variablex it is assigned theexc expres-
sion applied toy, which is bound tostm2exp(· · ·). The
nameEV is bound to the (mutable) variableeven and
the variableu will be assigned the value of the vari-
ablez. Regarding the different treatment of mutable
and immutable variables, notice that, even though our
intermediate language is imperative, we know, since
we are translatingF# code that some variables are im-
mutable, so we have to provide just an initial value.

The constructsstm2exp andexc have a different
translation into the target languages JavaScript and
Python, in particular for JavaScript we can take ad-
vantage from the fact that the closure wrapping the
code can be inlined in the position where we haveexc,
so we can substitute both the mutable and immutable
variables, instead the translation to Python treats the
two kind of variables differently.

2.2 Dynamic Type Checking

JavaScript, and many dynamically typed languages,
lack a rigorous type system. On the contrary, inF# if
we write a function that adds two integers, say:

let add x y = x + y

we get

val add : int -> int -> int

because, even though we do not specify type infor-
mation, the interpreter infers the type shown after the
function definition. Therefore, there is no way of call-
ing add with arguments that are not of type integer.
However, if our translation in the intermediate code
would produce a function whose body was simply
x+y, which in turn could be translated in the corre-
sponding expression in both JavaScript and Python,
the target JavaScript function could be called, e.g.,
add("foo")(1) and obtain the string"foo1" which is
not what we wanted. In Python the situation would
be better, in the sense that we cannot calladd on a
string and an integer, however, due to overloading we
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can call it on two floating points obtaining a floating
point. To prevent this, the translation in the interme-
diate language, which follows, insert dynamic checks
on parameters of functions.

def add = fun x ->
def x1 = check(int, x);
fun y ->

def y1= check(int, y);
x1 + y1;

These checks are translated into dynamic type check-
ing in JavaScript and Python. In JavaScript we use
the functioncheckInt (that we defined) that returns
its argument if it is an integer, and fails, raising an
exception, if the parameter is not an integer:

var add = function (x) {
var x1 = checkInt(x);
return function(y) {

var y1 = checkInt(y);
return x1 + y1 } }

Similarly for Python:

def temp__1(y, x):
y1 = checkInt(y)
return (x + y1)

def temp__2(x):
x1 = checkInt(x)
return lambda y: temp__1(y, x1)

add = lambda x: temp__2(x)

3 CORE F#

The syntax for the coreF# language is presented in
Fig.6. We sacrificed minimality to clarity, includ-
ing constructs, such aslet, let mutable, and let
rec that are used in the practice of programming and
that raise challenges in the translation to dynamic lan-
guages. We also did not introduce imperative features
through reference types, but through mutable vari-
ables, since this is closer to the imperative style of
programming. Moreover, we present a typed version
of F# without type inference, since this is performed
by theF# compiler. In the type system we omit type
variables, as they do not add complexity to the trans-
lation.

e :: = x | n | tr | fls | e+e | if ethen eelse e
| fun x:T->e | let [mutable] x=ein e
| e e| let rec x:T=v in e | x<-e | e,e

T :: = int | bool | T → T
v :: = n | tr | fls | fun x:T->e

Figure 6: Syntax ofF#.

In the grammar for expressions, in Fig.6, the
square brackets “[. . .]” delimit an optional part of the
syntax, we usex, y, z for variable names, and the over-
bar sequence notation is used according to (Igarashi
et al., 2001). For instance: “x:T=v” stands for
“x1:T1=v1 · · ·xn:Tn=vn”. The empty sequence is de-
noted by “/0”. For anF# expressionse the free vari-
ables ofe, FV(e) are defined in the standard way. An
expressione is closedif FV(e) = /0.

Thelet rec construct introduces mutually recur-
sive variables. Variable names, in this constructs are
meant to be bound to functions (as seen forfib in
the example of Fig. 1). Thelet construct (fol-
lowed by an optionalmutable modifier) binds the
variablex to the value resulting from the evaluation
of the expression on the right-hand-side of= in the
evaluation of the body of the construct. As usual
the notationlet f x=e1 in e2 is a short hand for
let f=fun x:T->e1 in e2 whereT is the type ofe1.
Similarly for let rec. In the (concrete syntax) of the
examples, as inF#, “,” and in are substituted by a re-
turn without indentation.

When thelet construct is followed bymutable the
variable introduced is mutable. Only mutable vari-
ables may be used on the left-hand-side of an assign-
ment. This restriction is enforced by the type system
of the language. The type system enforces also the
restriction that the body of a function cannot contain
free mutable variables, even though it may contain
bound mutable variables. So, the functionf in Fig.
7 is not correct, whereas the definition ofg that fol-
lows is correct. A type environmentΓ is defined by:

let mutable z = 0

let f x =
if (x > 0) then z <- x
else z <- -x
z

let g x =
let mutable w = 0
if (x > 0) then w <- x
else w <- -x
w

z

Figure 7: Typing functions inF#.

Γ ::= x:T,Γ | x:T!,Γ | /0

that isΓ associates variables with types, possibly fol-
lowed by ! . If the type is followed by ! this means that
the variable was introduced with themutable modi-
fier. Let † denote either ! or the empty string, and
let dom(Γ) = {x | x:T†∈ Γ}. We assume that for any
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variablex, in Γ there is at most an associated type. We
say that theexpression e has type T in the environment
Γ if the judgement

Γ ⊢ e : T

is derivable from the rules of Fig. 8. In the rules of
Fig. 8, with Γ[Γ′] we denote the type environment
such thatdom(Γ[Γ′]) = dom(Γ)∪dom(Γ′) and:

• if x:T†∈ Γ′ thenx:T†∈ Γ[Γ′], and

• if x:T†∈ Γ andx 6∈ dom(Γ′), thenx:T†∈ Γ[Γ′].

In the following we describe the most interesting
rules.
Consider rule(TYABS): to type the body of a function
we need assumptions on its free variables and for-
mal parameter. From the definition ofΓ[Γ′] we have
that the assumptions on its free variables must coin-
cide with the one present in the environment of the
definition of the function. Moreover, none of them
may have been declared as mutable. However, in the
environment in which the function is defined,Γ[Γ′],
there can be mutable variables, as long as they are not
needed to type the body of the function. In the ex-
ample of Fig. 7, if the definition of the functionf
were typable, it should have been typed from the en-
vironmentΓ[Γ′] = z:int!, therefore, to type its body
we would have used the environmentz:int!,x:int,
i.e., Γ′ = z:int!. However, this is not possible. In-
stead, the definition ofg, which is again typed in
Γ[Γ′] = z:int!, not havingz free in its body, can be
typed fromx:int, by definingΓ′ = /0.
The rules(TYL ET) and(TYL ETMUT) bind a variable,x, to
the expressione1 in the expressione2. So the expres-
sion e2 is typed in a type environment in whichx is
associated with the type ofe1.
In the rule(TYL ETMUT) the type is followed by ! so that
insidee2 the variablex may be used on the left-hand-
side of an assignment, see rule(TYASSIGN).

Our coreF# language has imperative features, so
for the definition of the operational semantics we use
a store. Theruntime configurationsare pairs “expres-
sion, store”,e | ρ, where astoreρ is a mapping be-
tween locations and values:

l1 7→ v1, . . . ln 7→ vn

In Fig. 9 we define:

• runtime expressions, which are expressions in-
cluding locations (generated by the evaluation of
mutable variables definitions);

• evaluation contextsdefining, in conjunction with
rule (CTX -F), the reduction strategy of the lan-
guage, which is call-by-value, with evaluation
left-to-right, and

• therules for the evaluation relation,−→.

In the rules, withe[x := e′] we denote the result of
substituting x with e′ in e with renaming if needed.
Moreover,ρ[x 7→ v] is defined by:ρ[x 7→ v](x) = v,
andρ[x 7→ v](y) = ρ(y), whenx 6= y.

The evaluation of the sum expression assumes that
the operand be integers, and returnsn, which is the
numeral corresponding to the sum of the values ofn1
andn2. For the conditional statements we have two
rules corresponding to the (boolean) value of the con-
dition. Both the evaluations of the application, rule
(APP-F), andlet, rule (L ET-F), substitutex with its the
value in the body of the construct. This is in accord
with the fact thatx is immutable. Instead, for a vari-
able definedmutable, rule (L ETM UT-F) , a new location
l is generated, added to the store with the initial value
v, and the variablex is substituted withl. Therefore,
during evaluation, expressions may contain locations.
Indeed, since variables on the left-hand-side of as-
signments where always introduced bylet mutable,
when an assignment is evaluated, rule(ASSIGN-F), we
have a configuration:l<-v | ρ which is evaluated by
changing the value of the locationl to bev. The eval-
uation oflet rec, rule (L ET-F), produces the bodye in
which each variablexi is substituted with alet rec
expression with bodyvi , so that ifxi is evaluated all
the variablesx will be substituted with their defini-
tions v. Evaluation of a location, rule(L OC-F), pro-
duces the value associated in the store. Finally in rule
(CTX -F) the contextE selects the first sub-expression
to be evaluated. We can show thatevaluation is deter-
ministic.

The typing rules in Fig.8 are for the (source) ex-
pression language, so they do not include a rule for
locations. To type run-time expressions we need a
store environmentΣ assigning types to locations. The
type judgement should therefore be:

Γ | Σ ⊢ e : T

and the typing rule for locations
Γ | Σ ⊢ l : Σ(l) (TYL OCF)

All the other rules are obtained by puttingΓ | Σ on the
left-hand-side of⊢ in the typing rules of Fig.8.
Definition 1. A storeρ is well-typedwith respect to a
type environmentΓ, and a store environmentΣ, writ-
tenΓ | Σ ⊢ ρ, if dom(ρ) = dom(Σ), and for all l∈ ρ,
we have thatΓ | Σ ⊢ ρ(l) : Σ(l).

Types are preserved by reduction, and progress
holds, as the following two theorems state.
Theorem 2(Preservation). LetΓ | Σ ⊢ e : T, andρ be
such thatΓ | Σ ⊢ ρ. If e | ρ −→ e′ | ρ′, thenΓ | Σ′ ⊢ e′ :
T, for someΣ′ ⊇ Σ such thatΓ | Σ′ ⊢ ρ′.
Theorem 3(Progress). Let /0 | Σ ⊢ e : T, then either e
is a value or for any storeρ such that/0 | Σ ⊢ ρ there
are, e′, andρ′ such that e| ρ −→ e′ | ρ′.
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Γ ⊢ n : int (TYNUM) Γ ⊢ tr,fls : bool (TYBOOL)

Γ ⊢ e1 : int Γ ⊢e e2 : int
(TYSUM)

Γ ⊢ e1+e2 : int

Γ ⊢ e : bool Γ ⊢ e1 : T Γ ⊢ e2 : T
(TY IF)

Γ ⊢ if ethen e1 else e2 : T

Γ′[x:T] ⊢ e : T′ ∀y,T′′ y:T′′! 6∈ Γ′

(TYABS)
Γ[Γ′] ⊢ fun x:T->e : T → T′

Γ ⊢ e1 : T → T′ Γ ⊢ e2 : T
(TYAPP)

Γ ⊢ e1 e2 : T

x:T†∈ Γ
(TYVAR)

Γ ⊢ x : T

Γ ⊢ e1 : T Γ[x:T] ⊢ e : T′

(TYLET)
Γ ⊢ let x=e1 in e2 : T′

Γ[x:T] ⊢ vi : Ti (1≤ i ≤ n)
Γ[x:T] ⊢ e : T (TYREC)

Γ ⊢ let rec x:T=v in e : T

Γ ⊢ e1 : T Γ[x:T!] ⊢ e : T′

(TYLETMUT)
Γ ⊢ let mutable x=e1 in e2 : T′

Γ ⊢ e : T x:T! ∈ Γ
(TYASSIGN)

Γ ⊢ x<-e : T

Γ ⊢ e1 : T Γ ⊢ e2 : T′

(TYSEQ)
Γ ⊢ e1,e2 : T′

Figure 8: Typing rules of coreF#.

e :: = · · · | l runtime expression
E :: = [] | E+e | n+E | if E then eelse e | E e | v E | let [mutable] x=E in e evaluation contexts

| u<-E | E ,e

n1+n2 | ρ −→ n | ρ if ñ= ñ1+
int ñ2 (SUM-F)

if tr then e1 else e2 | ρ −→ e1 | ρ (IFTRUE-F)

if fls then e1 else e2 | ρ −→ e2 | ρ (IFFALSE-F)

(fun x:T->e) v | ρ −→ e[x := v] | ρ (APP-F)

let x=v in e | ρ −→ e[x := v] | ρ (LET-F)

let rec x:T=v in e | ρ −→
e[xi := (let rec x:T=v in vi) | 1≤ i ≤ n] | ρ (REC-F)

let mutable x=v in e | ρ −→ e[x := l] | ρ[l 7→ v] l 6∈ dom(ρ) new (LETMUT-F)

l<-v | ρ −→ v | ρ[l 7→ v] l ∈ dom(ρ) (ASSIGN-F)

v,e | ρ −→ e | ρ (SEQ-F)

l | ρ −→ v | ρ if ρ(l) = v (VAR-F)

e | ρ −→ e′ | ρ′
E 6= []

(CTX-F)
E [e] | ρ −→ E [e′] | ρ′

Figure 9: Operational semantics of coreF#.

4 INTERMEDIATE LANGUAGE

The intermediate language,IL, is an imperative lan-
guage with three syntactic categories: expressions,
statements and blocks. We introduce the construct
that wraps code that need to be moved from its def-
inition environment, and the one that executes such
code in the runtime environment.

The syntax ofIL is presented in Fig.10.
There are three syntactic categories:blocks, state-

ments, andexpressions. We introduce the distinction
between expressions and statements as many target
languages do. This facilitates the translation process

and prevents some errors while building the interme-
diate abstract syntax tree, see (Appel, 1998) for a sim-
ilar choice. Blocks are sequences of statements or
expressions ended by an expression. In our transla-
tion we flatten the nested structure oflet constructs
so we need blocks in which definitions and expres-
sions/statements may be intermixed. Moreover, since
we do not have a specificlet rec construct use of a
variable may precede its definition, e.g., when defin-
ing mutually recursive (or simply recursive) func-
tions. Statements may be either assignments or vari-
able definitions. Our compiler handles many more
statements, but these are enough to show the ideas
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bl :: = st;bl | e;bl | e
st :: = x<-e | def x=e
e :: = x | n | tr | fls | e+e | fun x->{bl} | e e

| if ethen {bl} else {bl} | check(Tp,e)
| stm2exp({bl},y 7→ Y,x)
| exc(e,Y 7→ y,e)

Tp :: = int | bool
v :: = n | tr | fls | fun x:T->{bl}

| stm2exp({bl},y 7→ Y,x)

Figure 10: Syntax ofIL.

behind the design ofIL. Our intermediate language
is inspired (especially for the block structure) to In-
tegerPython, see (Ranson et al., 2008). Variables are
statically scoped, in the sense that, if there is a defi-
nition of the variablex in a block, all the free occur-
rences ofx in the block refer to this definition. How-
ever, we can have occurrences ofx preceding its defi-
nition. E.g.,

def f = fun y -> { x };
def x = 5;
f 2

correctly returns 5, whereas the following code would
produce a run-time error:

def x =7;
if (x > 3) then {

def f = fun y -> { x };
f 2
def x = 5;
3 }

else { 4 }

since whenf is called the variablex, defined in the
inner block, has not yet been assigned a value. In-
stead, ifx was not defined in the inner block, like in
the following

def x =7;
if (x > 3) then {

def f = fun y -> { x };
f 2 }

else { 4 }

the block would return 7, sincex is bound in the en-
closing block. This is also the behaviour in JavaScript
and Python.

The constructstm2exp is used to move a block,
bl, outside its definition context. To produce a closed
term, themutable variablesfree inbl, y, are unbound
by associating them toglobal namesY not subject
to renaming. The variablesx, instead, areimmutable
variablesfree inbl, i.e., they are not modified by the
execution ofbl. The metavariables,X, Y, Z are used
to denote names.

The operational semantics ofIL, see Fig. 11, is
given, by defining a reduction relation for blocks. So

our configurations will be pairs: “block, store”. In
order to specify the order of reduction we define eval-
uation contexts for blocks, containing evaluation con-
texts for expressions. As forF# we have to add to
the syntax of expressions locations,l, as they are gen-
erated during the evaluation of blocks. Moreover,
we add two constructs wrapping blocks:{bl} and
eval(bl). The first will be used to do the initial al-
location of variables needed to reproduce the previ-
ously described semantics, and the second to execute
a block in a position where an expression would be re-
quired. Note that these expressions are not inIL but
are just introduced to describe its semantics.

As for F#, the evaluation contexts of Fig. 11 spec-
ify a call-by-value, left-to-right reduction strategy.

The first rule is used before the evaluation of a
block to allocate the variables defined in a block. The
functionde f mapping a block to the set of variables
defined in it is defined by:

• def(e) = /0,

• def(e;bl) = def(x<-e;bl) = def(bl), and

• def(def x=e;bl) = {x}∪def(bl).

The initial value of the locations is set to undefined, ?,
so if an access to a variable is done before the evalu-
ation of an assignment or a definition for this variable
undErr is returned. Note that,this will never hap-
pen forIL programs which are translation ofF# pro-
grams. After this initial allocation a block will not
contain free variables (but locations).
Rules(ASSIGN) and(DEF) continue the execution of the
expressions/statements in a block in a store in which
the value of locationl is v. So after this the value ofl is
not undefined. Rule(EXP) throws away the value of an
expression and continues the execution of the block.
The rules for+, andif are trivial. Rule(APP) allo-
cates a location in the memory, assigning the value
of the actual parameter to it, then the location is sub-
stituted for the formal parameter in the body of the
function. Note that, being in an imperative language,
the formal parameter could be modified in the body
of the function, however, this change would not be
visible in the calling environment, since the location
is new. After this allocation the execution continues
with the evaluation of the body{bl}, i.e., applying
rule (ALLOC). The rules(TYPEYES), and(TYPENO) check
whether a value is of the right primitive type. The
function typeof from values to types is defined by:
typeof(tr) = typeof(fls) = bool, typeof(n) = int,
and undefined for the other values. The evaluation of
theexc construct, rule(STTOEXP), expects the first ar-
gument to be astm2exp, such that the names of its un-
bindings are a subset of the one of the rebindings pro-
vided byexc. If this is the case, it allocates new loca-
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e :: = · · · | l | {bl} | eval(bl) runtime expression
S :: = l<-E ;bl | def l=E ;bl | E ;bl | E block evaluation context
E :: = [] | E+e | n+E | E e | v E | if E then {bl} else {bl} | check(Tp,E) expression evaluation context

| exc(E ,Z 7→ l,e) | exc(v,Z 7→ l,vE e) | eval(S)

{bl} | ρ −→ bl[x := l] | ρ[l 7→ ?] if x= def(bl) (ALLOC)

l 6∈ dom(ρ) new
l<-v;bl | ρ −→ bl | ρ[l 7→ v] (ASSIGN)

def l=v;bl | ρ −→ bl | ρ[l 7→ v] (DEF)

v;bl | ρ −→ bl | ρ (EXP)

n1+n2 | ρ −→ n | ρ if ñ= ñ1+
int ñ2 (SUM)

(fun x->{bl}) v | ρ −→ {bl[x := l]} | ρ[l 7→ v] l 6∈ dom(ρ) new (APP)

if tr then bl1 else bl2 | ρ −→ {bl1} | ρ (IFTRUE)

if fls then bl1 else bl2 | ρ −→ {bl2} | ρ (IFFALSE)

check(Tp,v) | ρ −→ v | ρ if typeof(v) = Tp (TYPEYES)

check(Tp,v) | ρ −→ typeErr if typeof(v) 6= Tp (TYPENO)

exc(stm2exp({bl},y 7→ Y,x),Z 7→ l
′
,v) | ρ −→ if Y⊆ Z (STTOEXP)

eval({(bl[x := l])[yi := l′j | Yi = Z j 1≤ i ≤ n]}) | ρ[l 7→ v] l 6∈ dom(ρ) new
eval(v) | ρ −→ v | ρ (EVAL )

l | ρ −→ v | ρ if ρ(l) = v (LOCDEF)

l | ρ −→ undErr | ρ if ρ(l) =? (LOCUND)

e | ρ −→ e′ | ρ′
S 6= []

(CTX)
S [e] | ρ −→ S [e′] | ρ′

e | ρ −→ err err = typeErr∨undErr S 6= []
(CTXERROR)

S [e] | ρ −→ err

Figure 11: Runtime expressions, evaluation contexts and operational semantics rule forIL.

tions for the immutable variablesx (as in rule(APP) for
the formal parameter), instead, for the unbound vari-
ablesy it substitutes the associated locations (via the
correspondence of the names inY andZ). So through
assignment to the (local) variables iny the execution
environment may be modified. The resulting block is
wrapped in theeval construct. Rule(EVAL ) returns its
value. (Evaluation insideeval is done by the(CTX )

rule.) Finally, access to a location may returnundErr
if the location has not been initialized with an assign-
ment of or a definition statement. Rule(CTX ) evalu-
ates the first sub-expression selected by the evaluation
context. In case the evaluation produces and error rule
(CTXERROR) returns the error at the top level. Note that,
given a blockbl if there isS andesuch thatbl = S [e],
thenS is unique. So evaluation is deterministic.

An IL program is a closed block,bl. The initial
configurationfor a program is{bl} | [ ].

Let us look at an example of evaluation. Consider
the program of Fig. 5. Applying rule(ALLOC) to the
block enclosed in brackets we get the configuration
bl | ρ wherebl is

def lc1 = stm2exp(...);
def lc2 = 7;
def lc3 = fls;
def lc4 = exc(lc1, EV->lc3, lc2);
lc4

andρ = [lc1 7→?,lc2 7→?,lc3 7→?,lc4 7→?].

Applying (DEF) three times we getbl1 | ρ1 where
bl1 = def lc4 = exc(lc1,EV→ lc3,lc2);lc4 and
ρ1 = [lc1 7→ stm2exp(...),lc2 7→ 7,lc3 7→ fls,lc4 7→?].
From rule (CTX ) where S is def lc4 = E ;lc4
and E is exc([ ],EV→ lc3,lc2);lc4, apply-
ing rule (L OCDEF) we get bl2 | ρ1 where bl2 is
def lc4 = exc(stm2exp(...),EV→ lc3,lc2);lc4.
From rule (CTX ) where S1 is def lc4 = E1;lc4
and E1 is exc(stm2exp(...),EV→ lc3, [ ]);lc4, ap-
plying rule (L OCDEF) we get bl3 | ρ1 where bl3 is
def lc4 = exc(stm2exp(...),EV→ lc3,7);lc4.
Again by rule (CTX ) whereS2 is def lc4 = E2;lc4
and E2 = [], and applying rule(STTOEXP), we get
def lc4 = eval({bl4});lc4 | ρ1, wherebl4 is

def fib =
fun x ->

if x < 3 then 1
else (fib (x-1) + fib (x-2));

def temp = fib 7;
lc3 <- temp % 2 = 0;
temp

The evaluation proceeds inside theeval construct,
with rule (CTX ) where S3 is def lc4 = E3;lc4 and
E3 is eval([ ]) , applying rule(ALLOC), and produc-
ing the configurationbl5 | ρ2 where ρ2 = [lc1 7→

stm2exp(...),lc2 7→ 7,lc3 7→ fls,lc4 7→?,lc5 7→

?,lc6 7→?], and bl5 is def lc4 = eval({bl6});lc4
wherebl6 is
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def lc5 =
fun x ->

if x < 3 then 1
else (lc5 (x-1) + lc5 (x-2));

def lc6 = lc5 7;
lc3 <- lc6 % 2 = 0;
lc6

We can see how recursion is handled and how the as-
signment tolc3 when evaluated modifies the location
of the initial variableeven.

5 TRANSLATION OF CORE F#
INTO IL

In our translation we flatten thelet constructs trans-
forming them into definitions of the corresponding
variables followed by the translation of the expression
in their body. Therefore, we have to take into account
the fact that in anIL block we may have forward bind-
ing. E.g., if

let y = 3 in
if ( y = 3) then (

let f = (fun x -> y)
let y = 5
(f 0) )

else 4

is translated into

def y = 3;
if ( y = 3) then (

def f = (fun x -> { y });
def y = 5;
(f 0) )

else 4

The translation is incorrect, since in theIL code the
occurrence ofy in the body off is bound to the defi-
nition of y that follows. Therefore theF# expression
evaluates to 3 whereas its translation inIL evaluates
to 5. In the translation we use renaming to resolve this
problem.

As explained in the Section 2 sequences of ex-
pressions will be mapped to sequences of statements,
and we use thestm2exp andexc constructs to simu-
late the behaviour of the sequence of statements with
an expression. So we define two translations ofF#
expressions. The first toIL expressions,[[·]]I ,Mex , and
the second toIL blocks,[[·]]I ,Mbl . The translations are
parametrized by the sets of the immutable variables,I ,
and mutable variables,M, of the context of theF# ex-
pression that is translated. The translations produce,
in addition to anIL expression/block also a sequence
of top level variable definition of variables bound to
stm2exp expressions. In the following we present the

translations for function definitions, sequence of ex-
pressions, and thelet construct, which exemplify the
technique used.

In the formal definition of the translationδ is
a metavariable denoting a declaration of a variable
“def x=e” and δ a sequence of declarations separated
by “;” (semicolon).

The translations ofF# function definitions toIL
blocks or expressions:

[[fun x:T->e]]I ,Mbl [[fun x:T->e]]I ,Mex

are both equal to:

(fun x->{def y=check(T,x);bl[x := y]},δ )

where [[e]]I∪{x},M
bl = (bl,δ). So the translation of a

function produces a function whose body is the trans-
lation of the body (to a block) of the original func-
tion. In the translation of the body of the function the
variablex is added to the set of free immutable vari-
ablesI . The formal parameter is replaced with a new
variable resulting from the type checking of the origi-
nal parameter. See the discussion about dynamic type
checking in Section 2.

In the following, we introduce the definition of the
wrapping needed to extrude a block from its definition
environment and how the constructexc rebinds it in
the run-time environment.
Definition 4. Given an IL block, and the dis-
joint sets of variablesI = {x} and M = {y}, let
blockToExp(bl, I ,M) be

(exc(z,Y 7→ y,x),δ)
where:

• δ is def z:T′′=stm2exp(bl,y 7→ Y,x)

• z is a new variable andY are new names.

Let blockToExp(bl, I ,M) = (e,δ), we can prove that:
for all storesρ we have:{δ;e} | ρ −→⋆ v | ρ′ if and only
if {bl} | ρ −→⋆ v | ρ′′. So the evaluation of the defini-
tion δ followed by the generated expression produces
the same result as the evaluation of the original block.
The difference in the content of the final stores is due
to the fact that the evaluation of the definitionδ allo-
cates a location and assigns it thestm2exp expression,
to subsequently substitute this value for the location
in the exc expression. However, since the variablez
is new it does not interfere with the evaluation of the
original block/expression.

To give the translation of both sequences of ex-
pressions and of thelet constructs, we introduce the
formal definition of the top level variable definition of
F# expressions, then we define the renaming needed
to avoid the capture of forward definitions described
at the beginning of this section.

Definition 5. 1. Lete be anF# expression, the func-
tion de f#(e) returning the set of variables defined
at the top level ofe is defined as follows:
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• def#(let [mutable] x=e1 in e2) = {x}∪def#(e2),

• def#(let rec x:T=v in e) = {x}∪def#(e),
• def#(e1,e2) = def#(e1)∪def#(e2), and

• def#(e) = /0 for all other expresssions e.

2. Let e be anF# expression, andx a set of vari-
ables,rn(e,x), renames the top level definitions of
the variablesx in e as follows:

• if e is let [mutable] x=e1 in e2, thenrn(e,x) is
let [mutable] x=e1 in rn(e2,x) if x 6∈ x
let [mutable] z=e1 in rn(e2{x 7→ z},x) if x ∈ x
andz is new

• if e is let rec y:T=v in e, thenrn(e,x) is
let rec y:T=v in rn(e,x) if y∩x= /0
let rec z:T=(v{y 7→ z}) in rn(e{y 7→ z},x) if y∩
x= /0 andz are new

• if e is e1,e2 thenrn(e,x) is rn(e1,x), rn(e2,x)

• rn(e,x) is e for all other expresssions e.

Thetranslations of anF# sequence of expressions
to aIL block is:

[[e1,e2]]
I ,M
bl = (bl1;bl2,δ;δ

′
)

where:

• [[e1]]
Γ
bl = (bl1,δ )

• [[rn(e2,z)]]Γbl = (bl2,δ
′
) andz= def#(e2)∩FV(e1).

The translation of the sequence is the sequence of
blocks which are the translations of the two expres-
sions to blocks. However, before translating the sec-
ond expression,e2, we rename all the variables de-
fined in it that are free ine1, since ine1 these vari-
ables are bound to their definitions in the enclosing
environment. In this way we preserve the semantics
of the source languageF#.

Thetranslations of anF# sequence of expressions
to anIL expressionis:

[[e1,e2]]
I ,M
ex = (e,δ;δ)

where:

• [[e1,e2]]
I ,M
bl = (bl,δ) and

• blockToExp(bl, I ,M) = (e,δ).

That is we first translate the sequence to a block, and
then return anexc expression, and the definition of
a new variable bound to anstm2exp expression, see
Definition 4. Note that the sets of mutable and im-
mutable variable of the environment are needed to
generate the correct matching for the expressionsexc
andstm2exp.

Thetranslation of the let construct to anIL block

[[let x=e1 in e2]]
I ,M
bl = (def x=e′1;bl,δ;δ′ )

where

• [[e1]]
I ,M
ex = (e′1,δ) and

• [[rn(e2,z)]]
I∪{x},M
bl = (bl,δ′ ) with z = def#(e2) ∩

FV(e1).

That is we translatee1 into anIL expression and the
body of the lete2 into a block. For the translation of
e2 the variablex is added to the immutable variables
of the context. Before translatinge2 we rename all
the variables defined ine2 that are free ine1 (as for
the translation of sequences of expressions).
The translation oflet mutable differs only in the fact
that in translattion ofe2, the variablex, being mutable,
is added toM.
Note that, this translation produces a block, the defi-
nition of x followed by a block. Moreover, the trans-
lation of the expression on the right-hand-side of the
definition of x, that ise1, must be anIL expression.
Looking at theF# code of Fig. 1 this means that the
following F# expression:

let rec fib x =
if x < 3 then 1
else fib(x - 1) + fib(x - 2)

let temp = fib z
even <- (temp % 2 = 0)
temp

which is a sequence of expressions, must be translated
to anIL expression.

The translation of a let expression to anIL
expression, is defined as the translation of a se-
quence of expressions to anIL expression in which
[[let x=e1 in e2]]

I ,M
bl substitutes[[e1,e2]]

I ,M
bl .

Properties of the Translation. The translation pre-
serves the dynamic semantics of theF# expressions,
that is lete be anF# program, and[[e]] /0, /0

bl = (bl,δ ).
Thene | [ ]−→⋆ v | ρ if and only if {δ;bl} | [ ]−→⋆ v |
ρ′ for someρ′. From this result and the fact thatF#
programs do not get stuck, we can derive that theIL
translation of anF# program does not evaluate to an
error or gets stuck.

6 COMPARISONS WITH OTHER
WORK

Similar projects exist and are based on similar trans-
lation techniques, although, as far as we know, we are
the first to introduce an intermediate language allow-
ing to translate to many target languages. Pit, see (Fa-
had, 2012), and FunScript, see (Bray, 2013), are open
sourceF# to JavaScript compilers. They support only
translation to JavaScript. FunScript ha support for in-
tegration with JavaScript code. Websharper, see (In-
tellifactory, 2012), is a professional web and mobile
development framework. As of version 2.4 an open
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source license is available. It is a very rich frame-
work offering extensions for ExtJs, jQuery, Google
Maps, WebGL and many more. Again it supports
only JavaScript. F# Web Tools is an open source
tool whose main objective is not the translation to
JavaScript, instead, it is trying to solve the difficulties
of web programming: “the heterogeneous nature of
execution, the discontinuity between client and server
parts of execution and the lack of type-checked ex-
ecution on the client side”, see (Petřı́ček and Syme,
2012). It does so by using meta-programming and
monadic syntax. One of it features is translation to
JavaScript. Finally, a translation between Ocaml byte
code and JavaScript is provided by Ocsigen, and de-
scribed in (Vouillon and Balat, 2011).

On the theoretical side, a framework integrat-
ing statically and dynamically typed (functional) lan-
guages is presented in (Matthews and Findler, 2009).
Support for dynamic languages is provided with ad
hoc constructs in Scala, see (Moors et al., 2012).
A construct similar tostm2exp, is studied in recent
work by one of the authors, see (Ancona et al., 2013),
where it is shown how to use it to realize dynamic
binding and meta-programming, an issue we are plan-
ning to address. The only work to our knowledge that
proves the correctness of a translation between a stat-
ically typed functional language, with imperative fea-
tures to a scripting language (namely JavaScript) is
(Fournet et al., 2013).

7 CONCLUSIONS
AND FUTURE WORK

In this paper we introducedIL an intermediate lan-
guage for the translation of a significant fragment
of F# to scripting languages such as Python and
JavaScript. The translation is shown to preserve
the dynamic semantics of the original language. A
preliminary version of this paper was presented at
ICTCS 2012, see (Giannini et al., 2012), which has
not published proceedings. We have a prototype im-
plementation of the compiler that can be found at
http://www.bluestormproject.org/. The compiler is
implemented inF# and is based on two metaprogram-
ming features offered by the .net platform:quotations
andreflection. Our future work will be on the practi-
cal side to use the intermediate language to integrate
F# code and JavaScript or Python native code. (Some
of the features ofIL, such as dynamic type check-
ing, were originally introduced for this purpose.) A
previous implementation of the translation supported
other features such as namespacing, classes, pattern
matching, discriminated unions, etc. We are in the

process of adding them at the current implementation,
since some of this features have poor or no support at
all in JavaScript or Python. On the theoretical side,
we are planning to complete the proofs of correctness
of the translations. We need to formalize our target
languages Python and JavaScript, and then prove the
correctness of the translation fromIL to them. (We
anticipate that these proofs will be easier than the one
from F# to IL.) Moreover, we want to formalize the
integration of native code, and more in general meta-
programming on the line of recent work by the au-
thors, see(Ancona et al., 2013) . We are also consid-
ering extending the type system for the intermediate
language with polymorphic types, which is, as shown
in (Ahmed et al., 2011), non trivial.
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