An Intermediate Language for Compilation to Scripting Languages

Paola Giannini and Albert Shaqjiri

Computer Science Institute, DiSIT, Universita del Piemonte Orientale
Via Teresa Michel 11, 15121 Alessandria, Italy

Keywords: Scripting Languages, Functional Languages, Intermediate Language, Translation.

Abstract: In this paper we introduce an intermediate language for translatié, @f functional language polymorphi-
cally typed relying on the .Net platform, to different scripting languages, such as Python and JavaScript. This
intermediate language I for short) is an imperative language, with constructs that make possible to move a
code fragment outside its definition environment, during the translation. Definition of names (variables and
functions) are done in blocks, like in Python (and JavaScript) and do not have to statically precede their use.
We present a translation of a cd# (including mutable variables) intd..

1 INTRODUCTION ing or not libraries such as jQuery.
Our aim is to prove the correctness of the com-

Implementing an application in JavaScript (or any Ppilers produced. To do that we formalize, and the
other dynamically typed language) can cause prob-translation from the source languagel ta The lan-
lems due to the absence of type checking. Such prob-guagé L is imperative, and has some of the character-
lems can lead to unexpected application behaviour istics of the scripting languages that makes them flex-
followed by onerous debugging. Although dynamic ible, but difficult to check, such as blocks in which
type checking and automatic type casting shorten thedefinition and use of variables may be interleaved,
programming time, they introduce serious difficulties and in which use of a variable may precede its def-
in the maintenance of medium to large applications. inition. (I L is partly inspired by IntegerPython, see
This is the reason why dynamically typed languages (Ranson et al., 2008).) Therefore, the proof of cor-
are used mostly for prototyping and quick scripting. rectness of the translation from the source language

We propose to deal with these problems using dy- F# to! L already covers most of the gap frditito the
namically typed languages as “assembly languages”target scripting languages. I we also have some
to which we translate the source code fréthwhich ~ construct that may be used to manipulate safely frag-
is statically typed. In this way, we take advantage of ments of open code.
theF# type checker and type inference system, aswell ~ The paper is organized as follows. In Section 2,
as otherF# constructs and paradigms such as pattern we introduce the challenges of the translation fifgm
matching, classes, discriminated unions, namespacesto Python and JavaScript via some examples, that led
etc., and we may use the safe imperative features in-us to introduce our intermediate language. We also
troduced vieF# mutable variables. There are also the outline the translation frorhL to both JavaScript and
advantages of using an IDE such as Microsoft Vi- Python. In Section 3 we define the fragmentréf
sual Studio (code organization, debugging tools, In- used as source language, and in Section 4 we formal-

telliSense, etc.). ize | L. The formal translation fronft# to I L is de-
To provide translation to different target languages fined in Section 5, where it is stated to preserve the
we introduce an intermediate languagk,for short. dynamic semantics d##. In Section 6 we compare

This is useful, for instance, for translating to Python our work with the work of others, and finally in Sec-
that does not have complete support for functions astion 7 we summarize our work, discussing briefly the

first class concept, or for translating to JavaScript, us- implementation issues and highlighting our plans for
- future work.
*This work has been partially supported by MIUR
CINA-Compositionality, Interaction, Negotiation, Auto-
nomicity for the future ICT society.

92 Giannini P. and Shagiri A..
An Intermediate Language for Compilation to Scripting Languages.
DOI: 10.5220/0004588600920103
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 92-103
ISBN: 978-989-8565-68-6
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

An Intermediate Language for Compilation to Scripting Languages

2 TRANSLATION BY —
EXAMPLES: DESIGN CHOICES ~ |var even = false;

var x =
var fib = function (x) {

In the fragment of# we consider as source of our it (x <3) return 1:

translation we have the typical functional language el se return fib(x-1)+ib(x-2)}:
constructs: function definition and application, inte- var tenp = fib(z);

gers, booleans, addition and the conditional expres- even = (tenp %2) == 0;

sion, and an imperative fragment including mutable tenp;

variables, assignment, and sequences of expressions|feturn x;
On the left-hand-side of an assignment there must be

a variable that was introduced with thn abl e mod- Figure 2: Naive translation into JavaScript of sequence of
ifier. expressions.

2.1 Sequences of Expressions (f ucgtri gn<_) 7{

var even = false;

Many F# constructs can be directly mapped to var x = (function () {

JavaScript (or Python), but when this is not the case var fib = function (x) {

we obtain a semantically equivalent behaviour by us- if (x <3) return 1;

ing the primitives offered by the target language. E.g., el se return fib(x-1)+fib(x-2)};
in F# a sequence of expressions is itself an expression, var tenp = fib(z);

while in JavaScript and Python it is a statement. Sup- even = (tenp %2) ==

pose we want to translate a piece of code that calcu- Lelupn P o

return x })();

lates a fibonacci number, binds the result to a name
and also stores the information if the result is even or
odd. In Fig. 1 we have one possili# implementa-

Figure 3: Correct JavaScript translation.

tion. closures is partial. So we have to define a temporary
let z=7 function, saytenp1, in the global scope and to exe-
let mitable even = fal se cute it we have to calienpl in the place where the
let x = original sequence should be. However, variables such
let rec fib x = aseven will be out of the scope of their definition,
if x <3 thenl and this would make the translation wrong. To ob-

else fib(x - 1) + fib(x - 2) tain a behaviour semantically equivalent, we have to
let temp = fib z

even < (temp %2 = 0) pass ta enpl _the v_ariableaven, by reference, since_ it
temp may be modified in the body oknmp. Note that, this
X problem is not present in JavaScript where the closure
is defined and called in the scopeakn. Another
Figure 1:F# program containing sequence of expressions. Problem in Python is related to lambdas, whose body
must be an expression (not a sequence). So we de-

As we can see, on the right-hand-side Iodt” x=" fine the function enp2 whose body contains the state-
we have a sequence of expressions: the definition ofments that should be placed where an expression is
the functionfib followed by the definition ot enp, expected. In Fig. 4 we can see the translation of the

etc. This sequence is, iF#, an expression. If we F# code into Python. The clasgRef is used to wrap
directly map this code into JavaScript we obtain the the mutable variableven to obtain a parameter called
syntactically incorrect code of Fig. 2. This program by reference. The Python code generator inserts the
is syntactially wrong, since on the right-hand-side of needed wrapping and unwrapping before and after the
an assignment we must have an expression, while acall oft enpl, and in the body ofenp1.

sequence of expressions is, in JavaScript, a statement. The problem we illustrated above occurs when-
To transform a sequence of statements in an expres-ever in the target language we get a statement where
sion, in JavaScript, we wrap the sequence into a func-an expression is expected. Since the target languages
tion, and to execute it we call the function, i.e., we use handle the situation differently, we abstract from this
a JavaScript closure and application. Also, the whole specific problem, and consider the more general prob-
program is wrapped into an entry point function. In lem of moving “open code” from its context, replac-
this way, the code of Fig. 3 is correct. Unfortunately, ing it with an expression having the same behaviour.
the same cannot be done in Python as its support forTaking inspiration from work on dynamic binding,

93

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

def templ(w, 2z):
def temp2(w, fib, x):
if (x <3): returnl
el se: return fib(x-1)+fib(x-2)
fib = lambda x: tenp2(w, fib, x)
tenmp = fib(z)
w.value = ((temp %2))
return tenp
def __main__():
z =17
even = Fal se
wr apper1 = ByRef (even)
X = tenpl(wrapperl, z)
even = wrapper 1. val ue
return x
__min__();

Figure 4: Correct Python translation.

see (Nanevski, 2003) and recent work by the authors,
see (Ancona et al., 2013), we define a pair of box-
ing/unboxing contructs, that we calkt n2exp, and
exc. The construcst nRexp wraps “open code” (in

this case a sequence of expressions) providing the in-

formation on the environment needed for its execu-
tion, that is the mutable and immutable variables oc-
curring in it. This construct defines a value, similar
to a function closure. The construetc is used to
execute the code containedsmexp. To do this it
must provide values for the immutable variables, in
our example the variable and bindings for the mu-
table variables to variables in the current environment,
since when executing the code we have to modify the
variableeven.

With these constructs, thé code of Fig. 1 would
be translated into the IL code in Fig. 5. All thet
constructs are translated to variable definitions. The
sequence of statements on the right-hand-sideeaf “
x="is packed into astm2exp expression. Its first

component is the translation of the sequence of state-

ments, the second >EV says that in the execution en-

def y = stnRexp(
def fib =
fun x ->
if x<3thenl
else (fib (x-1) + fib (x-2));
def tenmp = fib u;
w<-temp %2 = 0;
tenp,
u);

W >EV,
def z = 7;
def even = fal se;
def x = exc(y, EV->even, z);
X

Figure 5: Translation of# sequence of expressions in the
intermediate language.

94

vironment there should be a rebinding of the global
nameEev to a variable. Such variable may (in this case
will) be modified by the execution of the code through
assignment to the local variable The third compo-
nent says that a value formust be provided. The
variableu is not modified by the execution of the code.
We choose to use global names to unbind/rebind mu-
table variablesyin our example, so that the local vari-
ables can be consistently renamed without affecting
the semantics of the construct as formal parameters
of functions. Instead names suchi&sare global to
the whole program.

To obtain the result that we would have by evaluat-
ing the sequence of statements in the current environ-
ment, to the variable it is assigned thexc expres-
sion applied tg, which.is bound tat nRexp(---). The
nameEV is bound to the (mutable) variabdeen and
the variableu will be assigned the value of the vari-
ablez. Regarding the different treatment of mutable
and immutable variables, notice that, even though our
intermediate language is imperative, we know, since
we are translating# code that some variables are im-
mutable, so we have to provide just an initial value.

The constructst nRexp andexc have a different
translation into the target languages JavaScript and
Python, in particular for JavaScript we can take ad-
vantage from the fact that the closure wrapping the
code can be inlined in the position where we haug
so we can substitute both the mutable and immutable
variables, instead the translation to Python treats the
two kind of variables differently.

2.2 Dynamic Type Checking

JavaScript, and many dynamically typed languages,
lack a rigorous type system. On the contrary#nif
we write a function that adds two integers, say:

let add x y = x +y
we get

val add : int ->int ->int

because, even though we do not specify type infor-
mation, the interpreter infers the type shown after the
function definition. Therefore, there is no way of call-
ing add with arguments that are not of type integer.
However, if our translation in the intermediate code
would produce a function whose body was simply
x+y, which in turn could be translated in the corre-
sponding expression in both JavaScript and Python,
the target JavaScript function could be called, e.g.,
add("foo0") (1) and obtain the stringf oo1" which is

not what we wanted. In Python the situation would
be better, in the sense that we cannot eddl on a

string and an integer, however, due to overloading we

An Intermediate Language for Compilation to Scripting Languages

can call it on two floating points obtaining a floating
point. To prevent this, the translation in the interme-
diate language, which follows, insert dynamic checks
on parameters of functions.

def add = fun x ->
def x1 = check(int, Xx);

funy ->
def yl1= check(int, y);
x1 + yl;

These checks are translated into dynamic type check-

ing in JavaScript and Python. In JavaScript we use
the functioncheckl nt (that we defined) that returns
its argument if it is an integer, and fails, raising an
exception, if the parameter is not an integer:

var add = function (x) {
var x1 = checklnt(x);
return function(y) {
var y1 = checklnt(y);
return x1 + yl} }

Similarly for Python:

def ‘temp__1(y, X):
y1 = checklnt(y)
return (x + yl)

def tenp__2(x):
x1 = checkl nt (x)
return lanbda y: tenp_ 1(y, x1)

add = lanmbda x: tenmp__2(x)

3 COREF#

The syntax for the coré# language is presented in
Fig.6. We sacrificed minimality to clarity, includ-
ing constructs, such ast, let nutable, andl et

rec that are used in the practice of programming and
that raise challenges in the translation to dynamic lan-
guages. We also did not introduce imperative features
through reference types, but through mutable vari-
ables, since this is closer to the imperative style of
programming. Moreover, we present a typed version
of F# without type inference, since this is performed
by theF# compiler. In the type system we omit type
variables, as they do not add complexity to the trans-
lation.

e = Xx|n|tr|fls|ete|if etheneelsee
| fun X.T->e| let [mutable] X=€ine
|ee|let recXT=Vine|x<-e|ee

T == int|bool |[T—>T

v = nj|tr [fls|funxT->e

Figure 6: Syntax oF#.

In the grammar for expressions, in Fig.6, the
square bracketd"..]” delimit an optional part of the
syntax, we usg, y, zfor variable names, and the over-
bar sequence notation is used according to (Igarashi
et al.,, 2001). For instance: XT=V" stands for
“X1:T1=Vv1-- - Xn:Th=V". The empty sequence is de-
noted by ©”. For anF# expressiong the free vari-
ables ofe, FV(e) are defined in the standard way. An
expressiore s closedf FV(e) = 0.

Thel et rec construct introduces mutually recur-
sive variables. Variable names, in this constructs are
meant to be bound to functions (as seenffay in
the example of Fig. 1). Theéet construct (fol-
lowed by an optionahut abl e modifier) binds the
variablex to the value resulting from the evaluation
of the expression on the right-hand-side-efin the
evaluation of the body of the construct. As usual
the notationlet f x=e; in & is a short hand for
let f=fun x:T- >e; in & whereT is the type ofe;.
Similarly forl et rec. Inthe (concrete syntax) of the
examples, as iR#, “,” and i n are substituted by a re-
turn without indentation.

When thd et constructis followed byut abl e the
variable introduced is mutable. Only mutable vari-
ables may be used on the left-hand-side of an assign-
ment. This restriction is enforced by the type system
of the language. The type system enforces also the
restriction that the body of a function cannot contain
free mutable variables, even though it may contain
bound mutable variables. So, the functioin Fig.

7 is not correct, whereas the definitiongfthat fol-
lows is correct. A type environmehtis defined by:

let nutable z = 0

let f x
if (x>0) then z <- x
else z <- -x
z

let g x =

let nutable w=10

if (x >0) then w<- x

else w<- -x

w

Figure 7: Typing functions if#.

Ma=xT,I|xTLT|0

that isI” associates variables with types, possibly fol-
lowed by !. Ifthe type is followed by ! this means that
the variable was introduced with th@table modi-
fier. Let t denote either ! or the empty string, and
letdom") = {x| x Tt e'}. We assume that for any

95

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

variablex, inT there is at most an associated type. We In the rules, withe[x := €] we denote the result of

say that thexpression e has type T in the environment substituting x with ein e with renaming if needed.

I if the judgement Moreover,p[x — V] is defined by:p[x— V](x) =,
- andp[x— vi(y) = p(y), whenx#y.

The evaluation of the sum expression assumes that
is derivable from the rules of Fig. 8. In the rules of the operand be integers, and retumswvhich is the
Fig. 8, with'['] we denote the type environment numeral corresponding to the sum of the values;of
such thadom[[']) = domT) udom(I'") and: andny. For the conditional statements we have two

o if xTte " thenxTte], and (rjglgs cogeip(;]nding 'To th_e (bo?cler?n) vaIFe of the ccl)n-

. ition. Both the evaluations of the application, rule

o if xTtel andx ¢ domT”), thenx Tt e F[I”]. (apr-F), andl et , rule (Let-F), substitutex with its the
In the following we describe the most interesting value in the body of the construct. This is in accord
rules. with the fact thatx is immutable. Instead, for a vari-
Consider rulgTvAss): to type the body of a function able definedt abl e, rule (Letmut-F), a new location
we need assumptions on its free variables and for-| is generated, added to the store with the initial value
mal parameter. From the definition BfT'] we have v, and the variable is substituted with. Therefore,
that the assumptions on its free variables must coin- during evaluation, expressions may contain locations.
cide with the one present in the environment of the Indeed, since variables on the left-hand-side of as-
definition of the function. Moreover, none of them signments where always introduced iy nmutabl e,
may have been declared as mutable. However, in thewhen an assignment is evaluated, rilesicnF), we
environment in which the function is definefd|"’], have a configurationt<- v | p which is evaluated by
there can be mutable variables, as long as they are nothanging the value of the locatidmo bev. The eval-
needed to type the body of the function. In the ex- uation ofl et rec, rule(Ler-F), produces the bodgin
ample of Fig. 7, if the definition of the function which each variable; is substituted with aet rec
were typable, it should have been typed from the en- expression with body;, so that ifx; is evaluated all
vironmentl"[['] = zi nt !, therefore, to type its body the variablest will be substituted with their defini-
we would have used the environmezitnt I, x:i nt , tionsv. Evaluation of a location, rule.oc-F), pro-
i.e., " =zint!. However, this is not possible. In- duces the value associated in the store. Finally in rule
stead, the definition of, which is again typed in (crx-F) the contextE selects the first sub-expression
[r'] = zint!, not havingz free in its body, can be to be evaluated. We can show tlealuation is deter-

typed fromx:i nt , by definingl”’ = 0. ministic.

The rulegTyLer) and(TvLetmu) bind a variablex, to The typing rules in Fig.8 are for the (source) ex-
the expressioe, in the expressior,. So the expres- pression language, so they do not include a rule for
sione, is typed in a type environment in whiohis locations. To type run-time expressions we need a
associated with the type ef. store environmerE assigning types to locations. The
In the rule(tyLetmur) the type is followed by ! so that type judgement should therefore be:

insidee, the variablex may be used on the left-hand- M=re:T

side of an assignment, see rygieassicn).

Our coreF# language has imperative features, so
for the definition of the operational semantics we use CIZETE() (TvLock)
a store. Theuntime configurationare pairs “expres- All the other rules are obtained by puttifig = on the
sion, store”,e | p, where astorep is a mapping be- left-hand-side of- in the typing rules of Fig.8.
tween locations and values: Definition 1. A storep is well-typedwith respect to a
type environment, and a store environment, writ-
tenl | £+ p, if dom(p) = domZ), and for all | € p,

and the typing rule for locations

1= vy,...Ih—= vy

In Fig. 9 we define: we have thaf | 2+ p(l) : Z(1).
e runtime expressionswhich are expressions in- Types are preserved by reduction, and progress
cluding locations (generated by the evaluation of holds, as the following two theorems state.
mutable variables definitions); Theorem 2(Preservation)Letl" | =+ e: T, andp be

e evaluation contextdefining, in conjunction with ~ suchthaf” |ZFp. Ife|p — € |p/, thenl | X' € :
rule (crx-F), the reduction strategy of the lan- T, for some&’ D X suchthat™ |2’ Fp'.

guage, which is call-by-value, with evaluation Theorem 3(Progress)Let®|Ze: T, then either e
left-to-right, and is a value or for any stor@ such thatd | = - p there

e therules for the evaluation relation,—s. are, €, andp’ such thate p — € | p.

96

An Intermediate Language for Compilation to Scripting Languages

FEn:int (TyNum) M=tr,fls:bool (TvBoou)
Ml-e:int Thee:int M-e:bool Thke:T Mke: T
- (TySum) (TYIF)

M-e+ey:int if ethenejelseey: T

MxTlFe: T v,T'yT"1 €1’ M-e:T—=T Trte:T
(TYABS) (TYAPP)

Fr'Ffun xT->e:T— T Mee:T
xTtel MFe:T IxTjFe:T
— (TYVAR) (TYLET)
rex:T -1let x=e; ine: T’
FRT]Fvi:Ti(1<i<n) FThe:T TxTFe:T
[xTlkFe: T (TYREQ) - (TYLETMUT)
MletrecXT=vine:T [let mutable X=€ in€: T
NrN-e:T xT'el e :T MFe: T
————— (TYASSIGN) (TYSEQ)

FEx<-e:T FHeLe:T

Figure 8: Typing rules of corE#.

e = |l runtime expression
E- = []| E+e|n+E | if Ethen eelsee|E €|V E|let [mutable] X=F ine 'evaluation contexts
|u<-E| E,e

m+no | p—n|p if h=f+"fip, (Sum-F)

iftr thenejelsee |p—re1|p (IFTRUE-F)

ifflsthene elsee|p—e|p (IFFALSE-F)

(fun xT->e)v|p—€XxX:=V]|p (APPF)

letXx=vine|p—ex:=V]|p (LET-F)

let recXT=Vine|p —

e ;= (let rec XT=vinV)|1<i<n]|p (REC-F)

let mutable x=vine|p — e[x:=I]|p[l — V]| | ¢ dom(p) new (LETMUT-F)

I<-v|p—vVv]|p]l—V] | € dom(p) (ASSIGNF)

v,e|p—e|p (SEQ-F)

l|lp—vVvip if p(l)y=v (VAR-F)

elp—ée[p E#]]
(CTx-F)

Ele]|p — E[€] | ¢/

Figure 9: Operational semantics of céie

4 INTERMEDIATE LANGUAGE

and prevents some errors while building the interme-
diate abstract syntax tree, see (Appel, 1998) for a sim-
The intermediate languagkl,, is an imperative lan- ilar choice. Blocks are sequences of statements or
guage with three syntactic categories: expressions,expressions ended by an expression. In our transla-
statements and blocks. We introduce the constructtion we flatten the nested structurelet constructs
that wraps code that need to be moved from its def- so we need blocks in which definitions and expres-
inition environment, and the one that executes such sions/statements may be intermixed. Moreover, since
code in the runtime environment. we do not have a specifiet rec construct use of a
The syntax of L is presented in Fig.10. variable may precede its definition, e.g., when defin-
There are three syntactic categoriekicks state- ing mutually recursive (or simply recursive) func-
ments andexpressionsWe introduce the distinction tions. Statements may be either assignments or vari-
between expressions and statements as many targetble definitions. Our compiler handles many more
languages do. This facilitates the translation processstatements, but these are enough to show the ideas

97

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

bl = stbl|ebl|e
st = Xx<-e|def x=e
e = x|njtr|fls|ete|funx->{bl}|ee
| if ethen {bl} else {bl} | check(Tp,€)
| stm2exp({bl},y+— Y,X)
| exc(e,Y —Y,8)
Tp = int |bool
v = njtr |fls|funxT->{bl}
| stm2exp({bl},y+—Y,X)

Figure 10: Syntax of L.

behind the design dfL. Our intermediate language
is inspired (especially for the block structure) to In-

tegerPython, see (Ranson et al., 2008). Variables are

statically scoped, in the sense that, if there is a defi-
nition of the variablex in a block, all'the free occur-
rences ok in the block refer to this definition. How-
ever, we can have occurrencesgreceding its defi-
nition. E.g.,

def f =funy ->{ x};
def x = 5;
f 2

correctly returns 5, whereas the following code would
produce a run-time error:

def x =7,
if (x >3) then {
def f =funy ->{ x};
f 2
def x =5
3}
else { 4}

since wherf is called the variable, defined in the

inner block, has not yet been assigned a value. In-

stead, ifx was not defined in the inner block, like in
the following

def x =7;

if (x >3) then {

def f =funy ->{ x};

f 2}
else { 4}
the block would return 7, sinceis bound in the en-
closing block. This is also the behaviour in JavaScript
and Python.

The constructtm2exp is used to move a block,
bl, outside its definition context. To produce a closed
term, themutable variable$ree inbl, y, are unbound
by associating them tglobal namesY not subject
to renaming. The variablés instead, arémmutable
variablesfree inbl, i.e., they are not modified by the
execution ofbl. The metavariables, Y, Z are used
to denote names.

The operational semantics bk, see Fig. 11, is
given, by defining a reduction relation for blocks. So

98

our configurations will be pairs: “block, store”. In
order to specify the order of reduction we define eval-
uation contexts for blocks, containing evaluation con-
texts for expressions. As fd# we have to add to
the syntax of expressions locatiohsas they are gen-
erated during the evaluation of blocks. Moreover,
we add two constructs wrapping block$bl} and
eval(bl). The first will be used to do the initial al-
location of variables needed to reproduce the previ-
ously described semantics, and the second to execute
a block in a position where an expression would be re-
quired. Note that these expressions are nét.ifmut
are just introduced to describe its semantics.

As for F#, the evaluation contexts of Fig. 11 spec-
ify a call-by-value, left-to-right reduction strategy.
The first rule is used before the evaluation of a
block to allocate the variables defined in a block. The
functiondef mapping a block to the set of variables
defined in it is defined by:

o def(e) =0,
o def(e; bl) = def(x<- €; bl) = def(bl), and
o def(def x=e;bl) = {x} Udef(bl).

The initial value of the locations is set to undefined, ?,
so if an access to a variable is done before the evalu-
ation of an assignment or a definition for this variable
undErr is returned. Note thathis will never hap-
pen forl L programs which are translation &# pro-
grams After this initial allocation a block will not
contain free variables (but locations).

Rules(assien and(ber) continue the execution of the
expressions/statements in a block in a store in which
the value of locatiohis v. So after this the value bfs

not undefined. Ruleexr) throws away the value of an
expression and continues the execution of the block.
The rules for+, andif are trivial. Rule(arr) allo-
cates a location in the memory, assigning the value
of the actual parameter to it, then the location is sub-
stituted for the formal parameter in the body of the
function. Note that, being in an imperative language,
the formal parameter could be modified in the body
of the function, however, this change would not be
visible in the calling environment, since the location
is new. After this allocation the execution continues
with the evaluation of the bodybl}, i.e., applying
rule (ALLoc). The rules(Tyreyes), and(TyreNo) check
whether a value is of the right primitive type. The
function typeoffrom values to types is defined by:
typeof(tr) = typeof(f| s) = bool , typeof(n) =i nt,

and undefined for the other values. The evaluation of
theexc construct, rulgsrToExr), €xpects the first ar-
gumentto be atm2exp, such that the names of its un-
bindings are a subset of the one of the rebindings pro-
vided byexc. If this is the case, it allocates new loca-

An Intermediate Language for Compilation to Scripting Languages

e = |1 {bl}]|eval(bl) runtime expression
S = I<-E;bl|def |I=Z;bl| Z;bl | E block evaluation context
E == []|Ete|mtE|Ee|v E|if E then {bl} else {bl} | check(Tp,E) expression evaluation context
| exc(E,Z—1,8) | exc(v,Z+— ,VER®) | eval(S$)
{bl} |p— blx:=1] | p[l— 7 if x = def(bl) (ALLOC)
I ¢ dom(p) new
I<-v;bl|p—bl|p[l — V] (AssiGN)
def I=v;bl | p— bl | p[l — V] (DEF)
v;bl|p—bl|p _ (ExP)
n+m |p—ni|p if A=f+"h (Sum)
(fun x->{bl}) v| p — {bl[x:=11} | p[l = V]| | & dom(p) new (Aprp)
if tr then bly else blo | p— {bl1} | p (IFTRUE)
if fls then blj else bly | p— {bl2} | p (IFFALSE)
check(Tp,v) |[p— V| p if ~typeof(v) =Tp (TvpevEs)
check(Tp,V) | p — typeErr if typeof(v) # Tp (TvPeNo)
exc(stm2exp({bl},y— Y,X),Z — |_/7V) lp— if YCZ (STTOEXP)
eval({(blx:=I)lyi =1 |Yi=2j 1<i<n}) [p>¥] I dom(p) new
eval(v) |p—V|p (EvAL)
l|lp—vVv|p if p(l)=v (LocDER)
I|p — undErr|p if p(I) =2 (LocUND)
elp—é€lp S#£][] e|p—err err=typeErrvundErr S #|]
(CTx) (CTXERROR)
Slellp— Sl Slel|p—err

Figure 11: Runtime expressions, evaluation contexts apdatipnal semantics rule fot.

tions for the immutable variablegas in ruleiars) for Applying (Der) three times we gebl; | p1 where
the formal parameter), instead, for the unbound vari- bl; = def 1c4 = exc(lcl,EV — 1c3,1c2);1c4 and
ablesy it substitutes the associated locations (via the p; =[1c1+ stm2exp(...),1c2— 7,1c3 — fls,1cd —7].
correspondence of the namesvimndZ). So through From rule (ctx) where § is deflc4 = Z;lc4
assignment to the (local) variablesyinhe execution and £ is exc([],EV— 1c3,1c2);1c4, apply-
environment may be modified. The resulting block is ing rule (Locber) we get bl, | p1 where bl is
wrapped in theval construct. Rulgeva.) returns its def 1c4 = exc(stm2exp(...),EV — 1c3,1c2);1c4.

value. (Evaluation insideval is done by thgcrx) From rule (ctx) where $; iS def 1c4 = E;;lc4
rule.) Finally, access to a location may retumdErr and ‘£, iS exc(stm2exp(...),EV — 1c3,[]);1c4, ap-
if the location has not been initialized with an assign- plying rule (Locper) we getbls | p; where blz is

ment of or a definition statement. Rujerx) evalu- def 1c4 = exc(stm2exp(...),EV — 1c3,7);1c4.
ates the first sub-expression selected by the evaluatiorAgain by rule (ctx) where S is def 1c4 = E;;1c4
context. In case the evaluation produces and error ruleand %, = [], and applying rule(stToexr), We get

(CTXERROR) returns the error at the top level. Note that, def 1c4 = eval({bls});1c4 | p1, Wherebly is
given a bloclol if there is§ ande such thabl = S[e],

thens is unique. So evaluation is deterministic. def f L|nbx=_ N
An | L programis a closed blockbl. Theinitial if x <3then 1
configurationfor a program ig(bl} | []. else (fib (x-1) + fib (x-2));

Let us look at an example of evaluation. Consider def tenp = fib 7,
the program of Fig. 5. Applying ruleaLioc) to the lc3 < temp %2 = 0;
block enclosed in brackets we get the configuration tenp

bl | p wherebl is The evaluation proceeds inside theal construct,
def lcl = stnRexp(...); with rule (ctx) where Sz is def 1c4 = E3;1c4 and
def lc2 =7; E3 is eval([]) , applying rule(acioc), and produc-
def lc3 = fls; ing the configurationbls | p, where p; = [1cl

def Ic4 = exc(lcl, EV->Ic3, Ic2); stm2exp(...),1c2 > 7,1c3 — fls,lcd —?21c5 —

lca ?1c6 —7, andbls is def 1c4 = eval({blg});1c4

andp = [1lc1+—7?,1c2—7?,1c3 —?,1cd —7. whereblg is

99

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

def lc5 = translations for function definitions, sequence of ex-
fun x -> pressions, and tHeet construct, which exemplify the
if x <3then 1 technique used.

el Ee (! CS. (x-1) +1¢5 (x-2)); In the formal definition of the translation is
def 1c6 =1c5 7;

[c3 < 1c6 %2 = 0 a metavariable denoting a declaration of a variable
| c6 “def x=€" and o a sequence of declarations separated

L by “;” (semicolon).
We can see how recursion is handled and how the as- ~ The translations ofF# function definitions td L

signment td c3 when evaluated modifies the location blocks or expressions

of the initial variableeven. [fun xT- >¢];™ [fun xT->e]lM

are both equal to:

un x- >{def y=check(T,X):bl[x:=y]},5
5 TRANSLATION OF CORE F# e e

where [[e], = (bl,3). So the translation of a
INTO IL function produces a function whose body is the trans-
lation of the body (to a block) of the original func-
In our translation we flatten theet constructs trans- tion. In the translation of the body of the function the
forming them into definitions of the corresponding variablex is added to the set of free immutable vari-
variables followed by the translation of the expression ablesl. The formal parameter is replaced with a new
in their body. Therefore, we have to take into account variable resulting from the type checking of the origi-
the factthat in ahL block we may have forward bind- nal parameter. See the discussion about dynamic type
ing. E.g., if checking in Section 2.
| e Inthe following, we introduce the definition of the
et y=3in . . L
i 3) then (wrapping needed to extrude a block from its de_f|r_1|t|on
= (fun x ->y) environment and how the construsic rebinds it in
=5 the run-time environment.
) Definition 4. Given an|L block, and the dis-
4 joint sets of variablesl = {x} and M = {y}, let
blockToEx(bl,I,M) be

(exc(z,Y — ¥,%),d)

def y =3 where:
if (y=23) then (o _
def f = (fun x -> { y }); e Jisdef zT"=stm2exp(bl,y+ Y,X)
def y = 5; e zis a new variable an& are new names.
ol Séf 40)) Let blockToExhbl,1,M) = (e,8), we can prove that:

for all storep we have{d;e} |p —*v|p’ if and only

The translation is incorrect, since in the code the if {bl} |p —*v|p”. So the evaluation of the defini-
occurrence of in the body off is bound to the defi- tion & followed by the generated expression produces
nition of y that follows. Therefore thé# expression the same result as the evaluation of the original block.
evaluates to 3 whereas its translatiorl inevaluates ~ The difference in the content of the final stores is due
to 5. In the translation we use renaming to resolve this to the fact that the evaluation of the definitidmllo-
problem. cates a location and assigns it the2exp expression,

As explained in the Section 2 sequences of ex- to subsequently substitute this value for the location
pressions will be mapped to sequences of statementsin the exc expression. However, since the variable
and we use thet nRexp andexc constructs to simu- is new it does not interfere with the evaluation of the
late the behaviour of the sequence of statements withoriginal block/expression.
an expression. So we define two translationg#bf To give the translation of both sequences of ex-
expressions. The first toL expressions]-J:M, and pressions and of theet constructs, we introduce the

ex !

the second taL bIocks,[[-]]L;M. The translations are formal definition of the top level variable definition of

parametrized by the sets of the immutable variattles, F# expressions, then we define the renaming needed
and mutable variables), of the context of th&# ex- to avoid the capture of forward definitions described
pression that is translated. The translations produce,at the beginning of this section.

in addition to anrL expression/block also a sequence Definition 5. 1. Letebe anF# expression, the func-

of top level variable definition of variables bound to tion def?(e) returningthe set of variables defined

st nRexp expressions. In the following we present the at the top level ot is defined as follows:

100

An Intermediate Language for Compilation to Scripting Languages

o deff(let [mutable] x=€; in &) = {x} Udef*(ey), o [m(e,2”M = (b1,8) with z = deff(ex) N

o deff(let rec XxT=Vin e) = {X} Udef*(e), FV(ey).

o deff(e;, &) = def(e;) Udef?(e;), and That is we translate; into anl L expression and the
e def?(e) = 0 for all other expresssions e. body of the lete, into a block. For the translation of

& the variablex is added to the immutable variables
of the context. Before translating we rename all
the variables defined ig, that are free ire; (as for
the translation of sequences of expressions).

2. Lete be anF# expression, and a set of vari-
ables,m(e x), renames the top level definitions of
the variables in e as follows:

o ifeiSlet [mutable] x=e, in &, thenm(ex) is The translation ofet nut abl e differs only in the fact
let [mutable] x=e inrn(ez,x) if x¢x that in translattion o, the variable, being mutable,
let [mutable] z=6; inm(ex{x— z},X) if x € X is added taM.
andzis new Note that, this translation produces a block, the defi-

o if eislet rec y:T=vin e, thenrn(ex) is nition of x followed by a block. Moreover, the trans-
let rec y:T=Vinm(eX) if ynx=10 lation of the expression on the right-hand-side of the
let rec ZT=(Wy— 2}) in m(e{y— 2},%) if yn definition of x, that ise;, must be arl L expression.
x=0andzare new Looking at theF# code of Fig. 1 this means that the

o if eisey, e thenr(eX) is (e, X), (e, X) following F# expression:

e (e X) is efor all other expresssions e. let rec fib x =

if x <3thenl
else fib(x - 1) + fib(x - 2)
let tenp = fib z

Thetranslations of arF# sequence of expressions
to al L blockis:

lex, €2l = (bly;blp, ;3) even <- (tenp %2 = 0)
where: tenp
= which is a sequence of expressions, must be translated
o lenlf = (bly.3) 1o o L exnredd P
. pression. _
o [m(e, 2]} = (bly,d) andz= def*(e;) NFV(ey). The translation of a let expression to ahL

The translation of the sequence is the sequence ofeXPression is defined as the translation of a se-
blocks which are the translations of the two expres- 4U€Nce of exprleMssmns_to an expression in which
sions to blocks. However, before translating the sec- [1et X=e1 in €] substitutege;, e,
ond expressiong,, we rename all the variables de-
fined in it that are free irg, since ine these vari- Properties of the Translation. The translation pre-
ables are bound to their definitions in the enclosing serves the dynamic semantics of fHeexpressions,
environment. In this way we preserve the semantics that is lete be anF# program, anq[e]]g”b = (b|,3)-
of the source languag#. _ Thene|[] —* v| pifand only if {§;bl} | [] —* V|
© a-[]tr?_tg?)srgggﬁs?f ark# sequence of expressions y tqr somep’. From this result and the fact the#
' programs do not get stuck, we can derive thatlthe
[er, &M = (e35;5) translation of arF# program does not evaluate to an

where: error or gets stuck.

e [er, &)V = (bl,3) and

e blockToExbl,1,M) = (e,3). 6 COMPARISONS WITH OTHER

That is we first translate the sequence to a block, and WORK
then return arexc expression, and the definition of

a new variable bound to as nexp expression, see Similar projects exist and are based on similar trans-
Definition 4. Note that the sets of mutable and im- |ation techniques, although, as far as we know, we are
mutable variable of the environment are needed 10 the first to introduce an intermediate language allow-

generate the correct matching for the expresstans ing to translate to many target languages. Pit, see (Fa-

andst mexp. had, 2012), and FunScript, see (Bray, 2013), are open
Thetranslation of the let construct to dri. block sourceF# to JavaScript compilers. They support only
[let x=e; in &M = (det x:e/l;bI,S;S/) translation to JavaScript. FunScript ha support for in-
tegration with JavaScript code. Websharper, see (In-
where tellifactory, 2012), is a professional web and mobile
e [e])bM = (¢€},8) and development framework. As of version 2.4 an open

101

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

source license is available. It is a very rich frame-
work offering extensions for ExtJs, jQuery, Google
Maps, WebGL and many more. Again it supports
only JavaScript. F# Web Tools is an open source
tool whose main objective is not the translation to
JavaScript, instead, it is trying to solve the difficulties

process of adding them at the currentimplementation,
since some of this features have poor or no support at
all in JavaScript or Python. On the theoretical side,
we are planning to complete the proofs of correctness
of the translations. We need to formalize our target
languages Python and JavaScript, and then prove the

of web programming: “the heterogeneous nature of correctness of the translation fram to them. (We
execution, the discontinuity between client and server anticipate that these proofs will be easier than the one
parts of execution and the lack of type-checked ex- from F# to | L.) Moreover, we want to formalize the
ecution on the client side”, see (Petficek and Syme, integration of native code, and more in general meta-
2012). It does so by using meta-programming and programming on the line of recent work by the au-
monadic syntax. One of it features is translation to thors, see(Ancona et al., 2013) . We are also consid-
JavaScript. Finally, a translation between Ocaml byte ering extending the type system for the intermediate
code and JavaScript is provided by Ocsigen, and de-language with polymorphic types, which is, as shown
scribed in (Mouillon and Balat, 2011). in (Ahmed etal., 2011), non trivial.

On the theoretical side, a framework integrat-
ing statically and dynamically typed (functional) lan-
guages is presented in (Matthews and Findler, 2009)'ACKNOWLEDGEMENTS
Support for dynamic languages is provided with ad
hoc constructs in Scala, see (Moors et al., 2012).
A construct similar tostm2exp, is studied in recent
work by one of the authors, see (Ancona et al., 2013),
where it is shown how to use it to realize dynamic

We warmly thank Daniele Mantovani for his support
and involvement in the topic of the paper. We also
thank the anonymous referees of a previous version

binding and meta-programming, an issue we are Ian—Of the paper for pointing out some problems which
9 Prog 9, P'aN-1ead to a substantial review of the intermediate lan-

hing to address. The only work to our knoWiigdagdlat guage. Any misinterpretation of their suggestions is,
proves the correctness of a translation between a stat- S
! . o . of course, our responsibility.
ically typed functional language, with imperative fea-

tures to a scripting language (namely JavaScript) is

(Fournet et al., 2013).
REFERENCES

Ahmed, A., Findler, R. B., Siek, J. G., and Wadler, P.
(2011). Blame for all. IfProceedings of POPL 2011,
Austin, TX, USAACM, pages 201-214.

Ancona, D., Giannini, P., and Zucca, E. (2013). Recon-
ciling positional and nominal binding. ITRS 2012
EPTCS.

7 CONCLUSIONS
AND FUTURE WORK

In this paper we introducedL an intermediate lan-

guage for th_e _translatlon of a significant fragment Appel, A. W. (1998).Modern Compiler Implementation in
of F# to scripting languages such as Python and ML. Cambridge University Press.

JavaScript.. The tra}nslation is §h0wn to preserve Bray, Z. (2013). Funscript. http://tomasp.net/files/ftniyst/
the dynamic semantics of the original language. A tutorial.html.

preliminary version of this paper was presented at Fahad, M. S. (2012). Pit - F Sharp to JS compiler. http://
ICTCS 2012, see (Giannini et al., 2012), which has pitfw.org/.

not published proceedings. We have a prototype im- Foumet, C., Swamy, N., Chen, J., DagandEP.Strub, P.-
plementation of the compiler that can be found at Y., and Livshits, B. (2013). Fully abstract compilation
http://www.bluestormproject.org/. The compiler is to javascript. IlPOPL, pages 371-384. ACM.
implemented irF# and is based on two metaprogram- Giannini, P., Mantovani, D., and Shagjiri, A. (2012). Lever-
ming features offered by the .net platforquotations aging dynamic typing through static typintCTCS
andreflection Our future work will be on the practi- 2012 http:/ictcs.di.unimi.ipapers/papdrpdf.

cal side to use the intermediate language to integrate'9arashi, A., Pierce, B., and Wadler, P. (2001). Feather-
F# code and JavaScript or Python native code. (Some weight Java: A minimal core calculus for Java and

f the f fL h d . heck GJ. ACM TOPLAS23(3):396-450.
.0 the eatur_e.s 0 . such as ynamlc type check- Intellifactory (2012). Websharper 2010 platform. http://
ing, were originally introduced for this purpose.) A

websharper.com/.

previous implementation of the translation supported \aithews, J. and Findler, R. B. (2009). Operational seman-
other features such as namespacing, classes, pattern tics for multi-language programsACM Trans. Pro-

matching, discriminated unions, etc. We are in the gram. Lang. Syst31(3).

102

An Intermediate Language for Compilation to Scripting Languages

Moors, A., Rompf, T., Haller, P., and Odersky, M. (2012).
Scala-virtualized. In Kiselyov, O. and Thompson,
S., editorsProceedings of PEPM 2012, Philadelphia,
Pennsylvania, USAACM, pages 117-120.

Nanevski, A. (2003). From dynamic binding to state
via modal possibility. INnPPDP’03 pages 207-218.
ACM.

Petficek, T. and Syme, D. (2012). AFAX: Rich client/sarv
web applications irF#. http://www.scribd.com/doc/
54421045/Web-Apps-in-F-Sharp.

Ranson, J. F., Hamilton, H. J., and Fong, P. W. L. (2008).
A semantics of python in isabelle/hol. Technical
Report CS-2008-04, CS Department, University of
Regina,Saskatchewan.

Vouillon, J. and Balat, V. (2011). From bytecode
to javascript: the js of ocaml compiler. http://
Www.pps.univ-paris-diderot.fr/balat/publi.php.

103

