
R-Pref: Rapid Prototyping of Database Preference Queries in R

Patrick Roocks and Werner Kießling
Institute of Computer Science, Augsburg University, D-86159 Augsburg, Germany

Keywords: R, Preferences, Preference SQL, Text Mining.

Abstract: Preferences are a well-established framework for database queries with soft constraints. Such queries select
the best objects from large data sets according to a strict partial order induced by intuitive and semantically rich
preference constructors. Together with functionality like grouping and aggregation, adapted from well-known
database mechanisms, a very flexible preference framework has emerged in the last decade. In this paper
we present R-Pref, an implementation of the preference framework in the statistical computing language R.
R-Pref comprises less than 1000 lines of code and adheres to the formal foundations of preferences. It allows
rapid prototyping of new preferences and related concepts. Exemplarily we present a use case in which a
simple text mining example based on pattern matching is enriched by preferences. We argue that R-Pref paves
the way for rapidly exploring new fields of application for preferences. Especially new semantic constructs
for preference related operations together with equivalences of preference terms, being highly important for
optimization, can be quickly evaluated.

1 INTRODUCTION

Preference queries (Kießling, 2002; Chomicki, 2003)
are an established concept in the database community
and have been intensively studied in the last decade.
Preference are an effective method to reduce very
large datasets to a small set of highly interesting re-
sults and to overcome the empty result set and flood-
ing effect. In general, a preference query selects those
objects from the database that are not dominated by
any other object. Therefore, preferences have shifted
retrieval models from exact matching of attribute val-
ues to the notion of best matching database objects.

Preferences are strict partial orders and a set of
intuitive preference constructors allows for the for-
mulation of preference terms. According to (Ste-
fanidis et al., 2011) Preference SQL (Kießling et al.,
2011) is currently the only comprehensive approach
which implements a general preference query model
for databases.

In this paper we present R-Pref (sources and doc-
umentation at (Roocks, 2013)), an interpreter for pref-
erences which is implemented in the statistical com-
puting language R (R Core Team, 2012). We use
newest language concepts like reference classes al-
lowing for OOP style programming in R. The pref-
erence constructors are implemented sticking closely
to their formal definition.

In R-Pref, new preference constructors can be

very easily implemented and debugged. Because of
this we call R-Pref a rapid prototyping environment
for database preferences and related concepts.

A traditional example for a preference query is to
find optimal products according to a consumer pref-
erence. Assume we are looking for cheap hotels close
to the beach. A query searching for “minimal price
and minimal distance to the beach” returns only those
hotels which are not dominated in both criteria by any
other hotel.

To show that R-Pref allows us to explore quite dif-
ferent application fields, we present a use case where
preferences serve as a prefilter for a text mining appli-
cation. We think that the data mining process could
benefit from the introduction of intuitive semantics
by means of preference terms, in addition to estab-
lished data mining techniques. As preferences are not
in the traditional scope of application for such tasks,
we show the flexibility and expandability of our pref-
erence framework and its R implementation.

In our use case we will focus on text mining in
a dataset of e-mails which are an example for semi-
structured data. The mail content is unstructured, but
there is a structured mail header containing sender, re-
ceiver, date and subject. Our idea is to use preferences
primarily on the header columns to select the relevant
mails. Afterwards, we apply simple pattern matching
methods to extract the relevant information from the
content. Of course, it would be also imaginable to

104 Roocks P. and Kießling W..
R-Pref: Rapid Prototyping of Database Preference Queries in R.
DOI: 10.5220/0004590301040111
In Proceedings of the 2nd International Conference on Data Technologies and Applications (DATA-2013), pages 104-111
ISBN: 978-989-8565-67-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

combine more sophisticated data mining techniques
with preferences which is subject to future research.

We presume that the use of preferences as a pre-
filter leads to improved results as well as to a reduced
parsing expense. We illustrate the principal use of
preferences for searching in a mail dataset in the fol-
lowing example:

Example 1. Consider a dataset of university internal
e-mails from which we want to extract the topics a
scientist is working on by searching his e-mails. As-
sume that the scientist Dr. Leonard Hofstadter usually
sends a monthly report to his boss (Dr. Eric Gable-
hauser).

Therefore we primarily look out for all mails from
Leonard and to Gablehauser. Less important to this,
we pick out those which are entitled with “Monthly
Report”, as this is the usual subject for these reports.

To formulate this query, assume that the mail
dataset of the university is stored in the table mails
and has the columns subject, date, from, to, content.
Consider the following Preference SQL (Kießling
et al., 2011) query:
SELECT m, content FROM mails PREFERRING
(`from` IN 'hofstadter@caltech.edu'
AND `to` IN 'gablehauser@caltech.edu')
PRIOR TO
subject IN ('Monthly Report')

GROUPING
extract(month from date) AS m

By using AND we state that the preferences on the
columns from and to are equally important. Less im-
portant to this prefer mails with a predefined subject.
This wish is stated as the left hand side of PRIOR TO.
Using the GROUPING construct we execute this query
group-wise for every month. Thereby the aliasing
with AS in the grouping-part is a language feature of
Preference SQL (in contrast to standard SQL where
this would be done in the projection).

The query retrieves the following results: For ev-
ery month in which a mail with exactly these at-
tributes exist, only this mail is returned (exact match).
Assume that in one month Leonard sent nothing to
Gablehauser, but he sent his Report to Sheldon (an-
other scientist), and Sheldon sent it to Gablehauser,
both mails entitled with “Monthly Report”. Accord-
ing to the given preference these two mails are re-
turned as best matches. Even if such mails do not
exist, we retrieve all mails which are from Leonard
or to Gablehauser, as the preference on sender/re-
ceiver is stated as a Pareto-Preference (Mails fulfilling
one Pareto-condition dominate those fulfilling non of
these conditions). This result might give us finally
some helpful information what they are doing in this
month. In Figure 1 on page 5 this preference order
will be visualized.

The remainder of the paper is structured as fol-
lows: In section 2 we consider the related work re-
garding preferences as well as related R packages.
In section 3 we introduce the specification of prefer-
ences tightly together with the implementation of R-
Pref and present some examples. In section 4 we pro-
vide a use case based on information extraction from
mails concerning the organization of a scientific sym-
posium. In the final section we provide a summary
and outlook.

2 RELATED WORK

The theoretical foundation of preference queries is
the preference algebra which was introduced in
(Kießling, 2002). In R-Pref, query statements are de-
noted in a very similar fashion like terms in the pref-
erence algebra. In (Stefanidis et al., 2011) a compre-
hensive survey of representation, composition and ap-
plication of preferences is given.

The R package sqldf (Grothendieck, 2012) allows
a manipulation of dataframes with SQL statements.
Similarly to our approach established database tech-
niques are made available to the R community. Un-
like to our approach, we do not parse SQL statements
but assume that the “queries” are given as nested calls
of functions.

R-Pref makes use of the igraph-package (Csardi
and Nepusz, 2006) to visualize preference orders as
trees. In this package sophisticated algorithms for a
neat drawing of the graphs turned out to be useful for
the visualization of Better-Than-Graphs.

Additionally we use the RJDBC-package (Ur-
banek, 2012) which allows us to evaluate preference
queries in R-Pref directly on any database system sup-
porting JDBC. Due to the package RServe (Urbanek,
2013) R and therewith also R-Pref can be used by any
Java application.

Established text mining methods (cf. (Zhang
et al., 2011)) predominantly make use of statistical
scoring functions like TF-IDF or LSI. In contrast to
this we suggest to think about a non-numerical and
more semantical approach for selecting relevant doc-
uments. Note that we merely consider the text mining
approach as an idea how to combine semantics and
data mining. We do not strive to compete with es-
tablished data mining technologies solely with pref-
erences.

With the package tm (Feinerer et al., 2008) there is
a variety of text mining functions available within R.

R-Pref:�Rapid�Prototyping�of�Database�Preference�Queries�in�R

105

3 PREFERENCES AND THEIR
IMPLEMENTATION IN R

In this section we present the theoretical founda-
tions of preferences according to (Kießling, 2002;
Kießling, 2005) tightly together with their implemen-
tation R-Pref. Due to space restrictions we refer to the
documentation and fully available source code on the
web for further details about R-Pref (Roocks, 2013).
The following code samples are restricted to the es-
sential parts while some technical details are omitted.
The code examples show that the R implementation is
very near to the specification.
Definition 1 (Preference). A preference P=(A; <P),
where A is a set of attributes, is a strict partial order on
the domain of A. Thus <P is irreflexive and transitive.
Thereby x<P y is interpreted as “I like y more than x”.

In R-Pref a preference is an object of the reference
class preference having (amongst others) the fields
col (a character-vector representing A) and a compare
function cmp (representing <P).

The result of a preference is computed by the pref-
erence selection, also called winnow by (Chomicki,
2003).
Definition 2 (Preference Selection). The BMO-set of
a preference P = (A; <P) on an input database rela-
tion R contains all tuples that are not dominated w.r.t.
the preference. It is computed by the preference se-
lection operator s and finds all best matching tuples t
for P, where t:A is the projection to the attribute set A.

s[P](R) := ft 2 R j @t 0 2 R : t:A <P t 0:Ag
In the following the projection will be mostly

omitted, i.e., we write just t <P t 0 for t:A <P t 0:A.
In R-Pref this is performed by the sigma function.

For a preference pref and a dataset tbl the R code
implementing the BMO-set definition is essentially:
for(i in 1:nrow(tbl))

ind[i] = !any(pref$cmp(tbl , tbl[i,]))
res = tbl[ind ,]

Therein !any corresponds to @ and the call of cmp
represents <P. Of course, this is not an efficient al-
gorithm but shows that the implementation is a close
representation of its formal foundations.

3.1 Base Preference Constructors

To specify a preference, a variety of intuitive base
preference constructors together with some complex
preference constructors has been defined. Subse-
quently, we present some selected preference con-
structors. More preference constructors as well as
their formal definition can be found in (Kießling,
2002; Kießling, 2005; Kießling et al., 2011).

Definition 3 (SCOREd Preference). Assume a scoring
function f : dom(A)!R+

0 , and some d 2R+
0 . Then P

is called a SCOREd preference, iff for x;y 2 dom(A):

x <P y () fd(x)> fd(y)

where fd : dom(A)! R+
0 is defined as:

fd(v) :=

(
f (v) if d = 0l

f (v)
d

m
if d > 0

In R-Pref this is realized with the score(column,
scr_fnc, dval) function in a few code lines.

An important sub-constructor of SCOREd is the
BETWEENd(A; [low;up]) preference expressing the
wish for a value between a lower and an upper bound.
Its scoring function equals

f (v) = maxflow� v;0;v�upg

In R-Pref the implementation is essentially:
between = function(column , low, up, ...)
score(column , function(vals)
pmax(low-vals , 0, vals -up), ...)

Thereby “...” bypasses additional arguments like
the d-parameter to score. The R funtion pmax
is the parallel maximum, which returns a vector
of logicals, if val is a vector. Sub-constructors of
BETWEEN are, e.g., the AROUNDd(A;z)-preference
and the HIGHESTd(A)-preference. We just consider
their implementation as this is very close to the defi-
nition:
around = function(column , center , ...)
between(column , center , center , ...)

highest = function(column , ...)
around(column , suprema[[column]], ...)

Thereby suprema is a variable containing the max-
imal values of the given dataset for every numerical
column, determined initially in sigma. Next to the
numerical preferences there are also preferences on
categorical domains, e.g., the LAYERED-preference.

Definition 4 (LAYEREDm Preference). Let L =
(L1; :::;Lm) be an ordered list of m sets forming a par-
tition of dom(A) for an attribute A. The preference P
is a LAYEREDm(A;(L1; :::;Lm)) preference if its scor-
ing function equals

f (v) = i�1 () x 2 Li:

For convenience, one of the Li may be named
“OTHERS”, representing the set dom(A)n

S
j 6=i L j .

The essential part in the implementation of the
score-function for LAYERED is:
res = rep(Inf, length(vals))
for(i in 1:length(layers))

res[vals %in% layers[[i]]] = i-1

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

106

An important sub-constructor of LAYERED is the
POS(A;POS-set)-preference which is simply imple-
mented by:
pos = function(column , posset)
layered(column , list(posset , OTHERS))

This assigns to all values contained in posset the
score 0 and to all other values the score 1.

Quite similar to this, we implemented a
POS MATCHES(A;reg) preference analogous to
the POS-preference, searching for a regular expres-
sion reg that is contained in the domain values of
column A. Thereby we use the built-in R function
regexec to process the regular expression search.

3.2 Complex Preference Constructors

In order to combine several preferences into more
complex preferences, their relative importance has to
be determined. Intuitively, people speak of “this pref-
erence is more important to me than that one” or
“these preferences are all equally important to me”.
Equal importance is modeled by the so-called Pareto
preference while the Prioritization states that one
preference is more important than another preference.

To realize these complex preferences we need a
notion of equality w.r.t. a preference. Therefore the
SV-semantics for preferences (Kießling, 2005) have
been introduced. As we will only cope with sub-
constructors of score preferences in this paper, we
need an equivalence relation w.r.t. a preference P with
scoring function f . We state

x�=P y, f (x) = f (y)

which is also called regular SV-semantics.
Definition 5. For the Pareto preference P1
 P2
and the Prioritization preference P1 & P2, where
Pi = (Ai;<Pi), we define for all tuples x = (x1;x2),
y = (y1;y2) 2 dom(A1)�dom(A2):

(x1;x2)<P1
P2 (y1;y2) ()
(x1 <P1 y1 ^ (x2 <P2 y2 _ x2 �=P2 y2)) _
(x2 <P2 y2 ^ (x1 <P1 y1 _ x1 �=P1 y1))

(x1;x2)<P1 &P2 (y1;y2) ()
x1 <P1 y1 _ (x1 �=P1 y1 ^ x2 <P2 y2)

For the equivalence relation we state for ? 2 f&;
g:
(x1;x2)<P1 ?P2 (y1;y2) () x1 �=P1 y1 ^ x2 �=P2 y2

In the R implementation preferences are reference
classes and therefore we can overload their operators.
We defined '*.preference' for the pareto composi-
tion and '&.preference' for the prioritization. We
also overloaded the logical operators & and | for func-
tions allowing for a very compact representation of
the prioritization:

"&.preference" = function(p1, p2)
preference(col = union(p1$col, p2$col),

cmp = p1$cmp | p1$sv & p2$cmp,
sv = p1$sv & p2$sv)

This code directly corresponds to Definition 5.

Example 2. We show the R-Pref formulation for the
complex preference used in Example 1:
p=(pos('from', 'hofstadter@caltech.edu') *

pos('to', 'gablehauser@caltech.edu'))
& pos('subject', 'Monthly Report')

Note that the R object p is again a reference class of
the type “preference”.

3.3 Grouped Preferences

A preference P = (A; <P) can also be evaluated in
grouped mode. For a set of attributes G and a function
g with domain dom(G) we define

s[P grouping g(G)](R) :=
ft 2 R j :9t 0 2 R : t <P t 0 ^ g(t:G) = g(t 0:G)g

This means the BMO-set is calculated for each value
of g(dom(G)) separately and then the results are
merged. The function g may be the identity but can be
for example the extract(datepart from date) function
if dom(G) is a Time&Date domain.

In R-Pref there is a grouping(tbl, grp, pref,

...) function realizing this functionality. Its essen-
tial code is, where tbl is the dataset, grp is g(G) and
pref is the preference:
do.call("rbind", lapply(split(tbl, grp),
function(x) sigma(x, pref)))

In the actual implementation there is some technical
overhead (ca. 70 code lines) for preparing the data
structures; but the essential functionality is realized
with this smart composition of built-in R functions.

Example 3. Now we have everything together to en-
code the grouped preference selection from Exam-
ple 1, where p is defined in Example 2:
res = grouping(mails ,

list(m = extract('month', date)), p)

Note that it is sufficient to write “date” in the
grp-attribute (and not e.g., mails$date) because the
grouping function evaluates this attribute in the
scope induced by tbl via the built-in R functions
substitute and eval. Similar techniques are used
like in the R built-in function subset.

The final step is the projection to month and con-
tent. In R-Pref the function project(tbl, lst) real-
izes a projection on tbl where lst is a list of expres-
sions to be projected wherein the grouping attribute m

can also be referenced.

R-Pref:�Rapid�Prototyping�of�Database�Preference�Queries�in�R

107

Example 4. To get the same columns as in the Pref-
erence SQL query from Example 1 we finally apply
the projection to the result res from Example 3:
project(res, list(m, content))

Note that these nested calls of project,
grouping, etc. are quite near to preference relation
algebra as defined in (Kießling, 2002). To define the
preference p we formally write:

p = (POS(from, ’hof...’)
POS(to, ’gab...’))
& POS(subject, ’Monthly Report’)

Finally the grouped preference selection together with
the projection is performed by:

pcontent; extract(’month’, date)(

s[p grouping extract(’month’, date)](mails))

Despite of a different notation of the function argu-
ments the missing aliasing, this is the same as the R-
Pref commands in Examples 2–4.

Note that according to (Kießling, 2002)
P grouping A for an attribute A can also ex-
pressed as a preference itself. Let P1�P2 the logical
and-composition (also intersection preference, in
R-Pref the “|” operator) of P1 and P2. Assume that
idA is the identity on dom(A), then we have

P grouping A = idA�P :

Formally, idA is not a preference but in R-Pref we can
define an ident(col) function returning a “prefer-
ence” where the cmp field represents the identity. For
example, the search for the most recent mail grouped
by mail authors can be performed in R-Pref in the fol-
lowing ways:
grouping(mails , list(from), highest(date))
sigma(mails , ident(from) | highest(date))

Hence also such interesting interplays can be re-
produced in R-Pref.

3.4 Visualization

As R is especially designed for statistical computa-
tions and data visualizations we can use such func-
tionality to analyze characteristics of preferences.
The grouping function offers an additional parame-
ter proj_agg_lst where aggregating projections (sim-
ilar to GROUP BY in SQL) are possible. Due to this
fact it is possible to count the number of best match-
ing mails for every month. Via the R built-in func-
tion hist we get a histogram visualizing the relevant
mails per month. Such methods offer a quick way to
determine the selectivity of preferences on a dataset.
Example 5. Consider the following R code, where p

is from Example 2:

res2 = grouping(mails ,
list(m = extract('month', date)), p,
proj_agg_lst = list(n=length(m)))

hist(res2[,'n'])

This generates a histogram with an automatically de-
termined bucket size showing how often BMO-sets
with the same cardinality occur.

Another interesting visualization of a preference
is its Better-Than-Graph (BTG) which is a Hasse dia-
gram, i.e., the transitive reduction of the preference
order. We use R-Pref do determine the adjacency-
matrix of a given preference and we use the igraph-
package (Csardi and Nepusz, 2006) for R to plot the
graph. In Figure 1 we show an example for a partial
BTG (for some correspondences) based on Example
2 from the introduction, which was created by the vi-
sualization functionality of R-Pref.

Figure 1: BTG for preference p.

In the above figure h!g stands for mails from Hof-
stadter to Gablehauser, etc. (:) MR indicates if the
subject of the mail equals “Monthly Report” (or not).

3.5 Other Functions of R-Pref

Up to here we could only sketch a small part of the en-
tire R-Pref functionality; in the actual implementation
(Roocks, 2013) there are more preferences construc-
tors (e.g., EXPLICIT for used-defined orders), more
parameters for the preference selection (e.g., TOP-k
queries) and a plenty of SQL-like projection and ag-
gregation functionality (e.g., complex arithmetic ex-
pressions). Also preferences on spatial domains are
supported. Database joins are also readily available;
the R built-in function merge together with a self-
implemented aliasing mechanism solves this.

Due to the use of the package RJDBC (Urbanek,
2012), R-Pref comes with a direct database connec-
tion. Hence queries can not only processed on csv-
datasets (the “usual” way for importing data in R) but
also directly on any DBMS having a JDBC interface.

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

108

Currently, R-Pref implements the entire current Pref-
erence SQL specification, despite of algebraic opti-
mization techniques. They are work under progress as
we will describe further in the outlook in section 5.2.

4 TEXT MINING USE CASE

Assume you organize a symposium and therefore you
get many mails from the participants. Therein they
state their will to attend, or if they are accompanied;
and they announce the titles of their talks. The lat-
ter one is what we are interested in and it is easy to
extract: Mostly the participants will write something
like: “My talk is about: ’...’ ”. Hence we only have
to search for patterns like a colon followed by the title
or for strings in quotation marks.

We took real data from the organization of our in-
ternal chair seminar. Therein 9 of 10 participants used
either a Colon-[Title] or ’[Title]’ schema, hence we
had an easy play with simple pattern matching. But
of course this approach causes many false-positive
matches. In our example we got 9 false-positive
matches (where e.g., people just wrote some words
in quotation marks). It is the task of an appropriate
preference query to filter out the relevant mails.

As the real dataset contains confidential informa-
tion, we contrived a sample dataset with eight mails
from scientists to the conference organizer. Only four
mails turned out to be relevant, i.e., contain actual
talk titles. The typical problems therein are borrowed
from our real world use case. Because of lack of
space we cannot cite the entire mails here and refer
to (Roocks, 2013) where the dataset (also in a pdf-
version) and the R source files of this use case are
available.

4.1 Iterative Preference Construction

In the following steps we will iteratively construct ap-
propriate preferences:

Example 6 (First step of use case). Looking at the
matches for talk titles in use case we see – amongst
others – the following results:
wolowitz | A zero -gravity human -waste

disposal system for the ISS
wolowitz | Dr. Bernadette Rostenkowski

Obviously the first one is his topic while the latter
one is a false positive match. How did this occur?
Looking in the corresponding mail we read:
I forgot to say I will come together with:
Dr. Bernadette Rostenkowski

In contrast, the mail containing his talk started
with “My topic is: ...”. This leads us to a preference
for mails where “talk” or “topic” occurs in the con-
tent:
p1 = pos_matches('content', 'talk|topic')

But still some mails having ’talk’ or ’topic’ in the
content produce false positive matches.

Example 7 (Second step of use case). We also find in
the matches:
cooper | generally understandable
cooper | The Higgs Boson as a black hole

accelerating backwards through time

Of course the first one is not the topic of a talk –
in this mail Sheldon Cooper makes an sarcastic com-
ment on the organizer’s advice that all talks should
be “generally understandable”. Therefore he puts this
phrase in quotation marks. To filter out false matches
of this kind we stipulate that titles of academic talks
are usually quite long. Because of this we should pre-
fer mails having a string with more than 30 chars in
quotation marks. We put this in a prioritization chain
together with our first preference from Example 6.
p2 = p1 &
pos_matches('content','"[ˆ"]{30}[ˆ"]+"')

But what should we do if someone really sends us
two different topics – even if we know he holds only
one talk? Well, it may happen that someone changes
his topic. Consider the following example.

Example 8 (Third step of use case). We also find the
following two matches:
hofstadter | Experimental evidences for

the Higgs Boson as a black hole
hofstadter | Experimental observations on

Coopers theory on Higgs Bosons

How could this happen? The latter mail having a later
date starts with the sentence:
After some discussions with my colleagues
I have to change the title of my talk to:

This means Leonard Hofstadter changes the title
of his talk (because his colleague Sheldon Cooper
does not accept not to be mentioned, as he is the in-
ventor of the theory). How can we catch this? We put
a final preference in the prioritization chain: A prefer-
ence taking the newest mail, realized with a HIGHEST
preference on the Date-column:
p3 = p2 & highest('date')

This implies that within all mails being equally
good according to p2, the newest mail is preferred,
which allows the authors to revise their titles.

R-Pref:�Rapid�Prototyping�of�Database�Preference�Queries�in�R

109

4.2 Preference Evaluation

So we are nearly done, but we still have not evaluated
the preference. As every sender holds a talk we have
to search for the best matches in every sender-group,
i.e., we have to use a grouped preference where the
from column is the grouping attribute.
Example 9 (Final step of use case). The full prefer-
ence selection for the use case is:
res = grouping(mails , list(from), p3)

But note that preferences are just soft constraints. If a
mail like “I will not attend the symposium” is in the
mails dataset it will also occur in res. This is no prob-
lem for the final result as there is no title-pattern in
such a mail. As we aim to filter out as much as possi-
ble “senseless” information we can enrich the prefer-
ence by a hard selection, requiring that “talk j topic”
has to occur in the content.
subset(res,matches(content ,'talk|topic'))

Finally applying the pattern-matching extraction
methods to the remaining four mails of the dataset
gives us exactly four (correct) titles of the talks.
Hence we could construct an optimal prefilter for our
sample dataset, just by some base preferences, a prior-
itization chain and finally the grouping-construct for
preferences.

5 CONCLUSIONS

Having sketched the R-Pref system and the text min-
ing use case we will now sum up the achievements of
R-Pref and conclude with our ideas for future research
in prototyping preferences and related concepts.

5.1 Summary

For the presented use case we implemented new
preferences like POS MATCHES supporting pattern
matching in R. This was quite easy as we could build
on the R functionality for regular expressions and the
R-Pref framework. Together with a user-friendly R-
IDE (we used “RStudio”) R-Pref turns out to be a
comfortable rapid-prototyping environment allowing
to experiment with different preferences and related
approaches. New constructors can be implemented in
a few minutes and in few lines of code. The easily ap-
plicable internal visualization functionality of R (his-
tograms, bar plots, etc.) and external packages like
igraph can be used to visualize the results and charac-
teristics of preferences. Additionally preferences and
statistical approaches can be compared as R is espe-
cially designed for statistic calculations.

Even with R being originally designed for statis-
tical applications, nowadays its application scope is
much more widespread to due a plenty of packages
for e.g., databases or data mining. New developments
like reference classes together with operator overload-
ing offer the possibility for an extremely concise cod-
ing, which we use for the composition of preferences
in an algebraic style. Due to all these considerations,
it was the logical consequence to make our compre-
hensive preference framework available for R.

In analogy to the algebraic optimization rules of
Preference SQL like “Push preference over join” one
can see our text mining use case under the paradigm
“Push preference into code”. Therein “code” rep-
resents the common text mining techniques as e.g.,
clustering, summarizing or finding associations. For
future research, established concepts for exploring
semi-structured data can be combined with the
approach of preferences.

5.2 Outlook

The development of R-Pref just started in November
2012 and this project is still in the beginning. Al-
though we are supporting a comprehensive preference
framework, there is still a lot of work to do.

In one part of our project we are developing an
R-based automatic correctness test application for
the Preference SQL system (Kießling et al., 2011).
Therein datasets and queries are randomly generated
and executed on both systems, R-Pref and Preference
SQL. Afterwards the results are compared and differ-
ences are returned as potential errors. Of course, such
an approach just offers “probable correctness” but it is
highly improbable that both implementations have ex-
actly the same errors. The specification-near coding
style of R-Pref together with a sufficient large search
space (of queries and datasets) gives a strong hint for
correctness in general.

In (Hafenrichter and Kießling, 2005) sophisti-
cated optimization techniques like “Push preference
over join” are introduced. In the context of R these
can be considered as transformations on expressions.
Syntactically, due to expression([query]) R offers
a neat semantic layer to manipulate function calls be-
fore evaluating. Because R-Pref queries are near to
the relational algebraic representation it seams rea-
sonable to study different optimization techniques
based on transformations of R expressions. We are
working on an optimizer in a “formal style” just con-
sisting of a set of algebraic optimization rules and
their preconditions. Therein the optimization rules
should not be subjected to an error-prone application-

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

110

specific parsing process, but highly benefit from the
general semantic structure of expressions and refer-
ences classes in R.

Regarding the text mining use case, at the cur-
rent stage of development this project cannot com-
pete with established data mining techniques. But we
think that the data mining process will benefit from
the semantical structure of preferences and the best
matches only query model in many aspects. Most data
mining algorithms are based on many weighting fac-
tors, which have little intuitive meaning to the data
analyst. In contrast, preferences terms are quite intu-
itively understandable and therefore we think the field
of semantics in query languages is an interesting re-
search field for decision support, data mining, etc.;
a field where the statistical computing language R is
very popular. A close connection of preferences and
established algorithms in this area might lead to sub-
stantial new results.

In a nutshell, our vision is to use R-Pref as an
experimental incubator for rapidly exploring new re-
search ideas. Ideas found promising will then be
implemented efficiently in our main Preference SQL
system.

ACKNOWLEDGEMENTS

This work has been funded by the Bavarian Ministry
of Economic Affairs, Infrastructure, Transport and
Technology, grant no. IUK-1109-0003//IUK398/002.

REFERENCES

Chomicki, J. (2003). Preference Formulas in Relational
Queries. In TODS ’03: ACM Transactions on
Database Systems, volume 28, pages 427–466, New
York, NY, USA. ACM Press.

Csardi, G. and Nepusz, T. (2006). The igraph software
package for complex network research. InterJournal,
Complex Systems:1695.

Feinerer, I., Hornik, K., and Meyer, D. (2008). Text Mining
Infrastructure in R. Journal of Statistical Software,
25(5):1–54.

Grothendieck, G. (2012). sqldf: Perform SQL Selects on R
Data Frames. R package version 0.4-6.4.

Hafenrichter, B. and Kießling, W. (2005). Optimization
of Relational Preference Queries. In Proceedings of
the 16th Australasian database conference - Volume
39, ADC ’05, pages 175–184, Darlinghurst, Australia,
Australia. Australian Computer Society, Inc.

Kießling, W. (2002). Foundations of Preferences in
Database Systems. In VLDB ’02: Proceedings of
the 28th International Conference on Very Large Data
Bases, pages 311–322, Hong Kong, China. VLDB.

Kießling, W. (2005). Preference Queries with SV-
Semantics. In Haritsa, J. R. and Vijayaraman, T. M.,
editors, COMAD ’05: Advances in Data Management
2005, Proceedings of the 11th International Confer-
ence on Management of Data, pages 15–26, Goa, In-
dia. Computer Society of India.

Kießling, W., Endres, M., and Wenzel, F. (2011). The
Preference SQL System - An Overview. Bulletin of
the Technical Commitee on Data Engineering, IEEE
Computer Society, 34(2):11–18.

R Core Team (2012). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0.

Roocks, P. (2013). R-Pref Documentation, Sources and
use case http://ursaminor.informatik.uni-augsburg.de/
trac/wiki/R-Pref.

Stefanidis, K., Koutrika, G., and Pitoura, E. (2011). A Sur-
vey on Representation, Composition and Application
of Preferences in Database Systems. ACM Transac-
tion on Database Systems, 36(4).

Urbanek, S. (2012). RJDBC: Provides access to databases
through the JDBC interface. R package version 0.2-1.

Urbanek, S. (2013). Rserve: Binary R server. R package
version 0.6-8.1.

Zhang, W., Yoshida, T., and Tang, X. (2011). A com-
parative study of TF*IDF, LSI and multi-words for
text classification. Expert Systems with Applications,
38(3):2758 – 2765.

R-Pref:�Rapid�Prototyping�of�Database�Preference�Queries�in�R

111

