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Abstract: A surface EMG signal is one of the most widely used signals as input signals for wearable robots. However, 
EMG signals are not always available to all users. On the other hand, an EEG signal has drawn attention as 
input signals for those robots in recent years. However, the EEG signal does not have straightforward 
relationships with the corresponding brain part. Therefore, it is more difficult to find the required signals for 
the control of the robot in accordance with the user’s motion intention using the EEG signals compared with 
that using the EMG signals. In this paper, both the EMG and EEG signals are used to estimate the user’s 
motion intention. The EMG signals are used as main input signals because the EMG signals have higher 
relative to the motion of a user. The EEG signals are used as sub signals in order to cover the estimation of 
the user’s motion intention when all required EMG signals cannot be measured. The effectiveness of the 
proposed method has been evaluated by performing experiments. 

1 INTRODUCTION 

In advanced countries, aging of the society with low 
birthrates is a serious problem. It is very important 
to assist the daily living of physical weak persons in 
order to make them live the independent lives. To 
assist daily life motions of the physically weak 
persons such as elderly, injured, or disabled persons, 
many kinds of power-assist robots and robotic 
artificial limbs have been developed (Yang et al., 
2008); (Escudero et al., 2002). Those robots are 
required to generate the proper motion according to 
a user’s motion intention because the robots need to 
prevent a user from uncomfortableness. To activate 
the robots according to a user’s motion intention, the 
biological signals are often used as input signals for 
those robots. 

In the biological signals, a surface 
electromyogram (EMG) signal is one of the most 
widely used signals as input signals for wearable 
robots. An EMG signal is an electric signal which is 
generated when a muscle is activated. Therefore, the 
robots can estimate a user’s motion intention and 
assist the estimated motion in real-time by 
measuring multiple EMG signals. However, EMG 
signals that are needed to estimate the motions of a 
human upper-limb are not always available to every 

user. For example, persons who lost their limb due 
to an accident or a sickness are not able to prepare 
EMG signals because they lost some necessary 
muscles. Furthermore, paralyzed patients are also 
not able to prepare EMG signals. In addition, the 
correct locations of the electrodes are difficult to 
find for some surface EMG signals. If all required 
EMG signals for the control of the robots cannot be 
measured, other input signals must be prepared 
instead of EMG signals. 

On the other hand, electroencephalogram (EEG) 
signals are used as input signals for various robots in 
recent years. An EEG signal is an electric signal that 
can be measured along a scalp. Therefore, the EEG 
signals can be measured even with amputees and 
paralyzed patients who are not able to generate some 
(or all) EMG signals. An EEG signal is one of the 
strong candidates for the additional input signals for 
wearable robots, and it will be able to allow more 
users to use those wearable robots. The interface 
between a robot and EEG signals is called as Brain 
Computer Interface (BCI). Until EEG signals were 
used for the control of the robots, the researches on 
offline analysis of EEG signals were mainly carried 
out. To detect event-related potential, evoked 
potential, and so on, the averaging method, 
frequency analysis and principal component analysis 
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are widely used in offline analysis. However, many 
of those analyses require a certain length of time-
series data of EEG signals. Therefore, in general, 
those analyses are not suitable for the real-time 
control of the robots. On the other hand, some 
classification methods that are used to control the 
robotic systems in real-time were proposed (Novi et 
al., 2007), (Fabiani et al., 2004). In addition, the 
hand velocity is estimated from EEG signals in 
recent years in the limited condition (Lv et al., 2010), 
(Bradberry et al., 2010). 

In the case of a surface EMG signal, although an 
electrode is located on the skin, the measured EMG 
signal has almost straightforward relationships with 
the corresponding muscle as long as the electrode is 
located correctly. On the other hand, in the brain, 
various electric signals are generated at multiple 
locations and are conveyed to the scalp. The sum of 
those conveyed electrical signals on the scalp is 
recorded as the EEG signal. Therefore, in the case of 
an EEG signal, the measured EEG signal does not 
have straightforward relationships with the 
corresponding brain part. It is more difficult to find 
the required signals for the control of the robot in 
accordance with the user’s motion intention using 
the EEG signals compared with that using the EMG 
signals. 

In this paper, both the EMG and EEG signals are 
used as input signals for wearable robots, and 
estimated the user’s motion intention of the upper-
limb based on the measured EMG and EEG signals. 
In the proposed method, the EMG signals are used 
as main input signals because the EMG signals have 
higher relative to the motion of a user in comparison 
with the EEG signals. The EEG signals are used as 
sub signals in order to cover the estimation of the 
user’s motion intention when all required EMG 
signals cannot be measured. The effectiveness the 
proposed method has been evaluated by performing 
experiments. 

2 MEASUREMENT OF EMG 
AND EEG SIGNALS 

In this study, to estimate a user’s upper-limb motion, 
EMG and EEG signals are used. A human’s upper-
limb basically has 7 degrees of freedom (shoulder 
vertical and horizontal fle./ext. motion, shoulder 
int./ext. rotation motion, elbow fle./ext. motion, 
forearm supination/pronation motion, wrist fle./ext. 
motion and wrist radial/ulnar deviation motion).  

In the case of EMG signals, 16 EMG signals are 
used  to estimate 7 DOFs’ motion of a user’s  upper- 

Table 1: Muscle for each EMG channel. 

Ch. Name of muscle Related major motion 

ch. 1 Deltoid-anterior 
Shoulder vertical fle. 

Shoulder horizontal fle. 
Shoulder int. rotation 

ch .2 Deltoid-posterior 
Shoulder vertical ext. 

Shoulder horizontal ext. 
Shoulder ext. rotation 

ch. 3 Pectoralis major-clavicular 
Shoulder vertical fle. 

Shoulder horizontal fle. 

ch. 4 Teres major 
Shoulder int. rotation 
Shoulder vertical ext. 

ch. 5 Infraspinatus Shoulder ext. rotation 

ch. 6 Teres minor Shoulder ext. rotation 

ch. 7 Biceps-short head 
Elbow fle. 

Forearm supination 

ch. 8 Biceps-long head 
Elbow fle. 

Forearm supination 

ch .9 Triceps-long head Elbow ext. 

ch. 10 Triceps-lateral head Elbow ext. 

ch. 11 Pronator teres 
Elbow ext. 

Forearm pronation 

ch. 12 Supinator Forearm supination 

ch. 13 Extensor carpi radialis brevis 
Wrist ext. 

Wrist radial deviation 

ch. 14 Extensor carpi ulnaris 
Wrist ext. 

Wrist ulnar deviation 

ch. 15 Flexor carpi radialis 
Wrist fle. 

Wrist radial deviation 

ch. 16 Flexor carpi ulnaris 
Wrist fle. 

Wrist ulnar deviation 

 

Figure 1: Net Station System. 

limb (Kiguchi et al., 2012). Table 1 shows the 
muscles in which 16 EMG signals are measured. At 
least two muscles are related to each upper-limb 
motion. EMG signals are measured by using 
electrodes (NE-101A, Nihon Koden Co.). The EEG 
signals are measured by Net Station System 
(Geodesic Sensor Nets, Electrical Geodesics, Inc.) as 
shown in Figure 1. This sensor system can measure 
EEG signals of 256 channels. EMG and EEG signals 
are measured with the sampling frequency of 1 kHz. 
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3 MOTION ESTIMATION 

3.1 Motion Estimation by using EMG 
Signals 

The raw EMG signals are not suitable for input 
signals for the robots. Therefore, a feature extraction 
from raw EMG signals is necessary. There are some 
methods to extract the features of raw EMG signals. 
Root mean square (RMS) is one of those methods. 
The RMS values of each EMG signal are calculated 
as follows. 
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where vi,j is the raw EMG signal of ith channel at jth 
sampling, Chi is the RMS value of ith channel, and 
Ns is the number of segments. Each joint torque is 
calculated by the linear sum of the RMS values of 
the muscles that relate to moving the joint. For 
example, in the case of shoulder joint, each torque is 
calculated as follows. 
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where τv, τh, and τr are the shoulder vertical fle./ext., 
horizontal fle./ext., and int./ext. rotation torques, 
respectively. wsvi, wshi, and wsri are the weight values 
of  the RMS value of ith channel. Similarly, elbow 
joint torque (τe), forearm torque (τf), and wrist 
torques (τwf, τwd) are calculated based on the RMS 
values of ch. 7-ch. 10, ch. 11-ch. 12, and ch. 13-ch. 
16, respectively. The EMG signals are changed 
according to the upper-limb posture. Therefore, the 
weight values are adjusted by using the neuro-fuzzy 
modifiers trained for each user (Kiguchi et al., 2012). 
The neuro-fuzzy modifier for the shoulder joint is 
shown in Figure 2 as an example. As shown in 
Figure 2, the inputs are some joint angles. In 
fuzzifier layer, two sigmoid functions and a gaussian 
function are used. CWsvi, CWshi, CWsri which are the 
outputs of neuro-fuzzy modifier are the gains for 
each initial weight value. The weight values in eq. 
(2) are calculated by multiplying the gains with the 
initial weight values. In the neuro-fuzzy modifiers, 
the weight value is learned for each user before 
operation using the error back propagation learning 
algorithm. 
 
 

3.2 Motion Estimation by using EEG 
Signals 

 

Figure 2: Neuro-fuzzy modifier for shoulder joint. 

The raw EEG signals are also not suitable as input 
signals of the wearable robots such as power-assist 
robots. Hence, some features must be extracted from 
the raw EEG signals in order to use the EEG signals 
as input signals for those robots. There are many 
kinds of methods to extract the features of EEG 
signals. For example, the averaging method and the 
fast Fourier transformation (FFT) are basic methods 
to treat EEG signals on offline analysis. Because 
those methods require a lot data of EEG signals, in 
general, those methods are not suitable for the real-
time control method. In this paper, to extract the 
feature of the raw EEG signals, band pass filter 
(BPF) is used at first. Since relatively-low frequency 
in EEG signals contains the important feature of the 
motion and they are used instead of alpha wave or 
beta wave in order to estimate the hand velocity in 
some methods (Lv et al., 2010), (Bradberry et al., 
2010), the frequency between 0.3 and 4 Hz is used 
in the method. The hand velocity is estimated from 
the EEG signals after the BPF with 0.3-4Hz. In 
general, electrodes are located based on International 
10-20 system. On the other hand, in this study, we 
can measure 256 EEG signals. However, the EEG 
signals of 256 channels are too many, and all of 
them are not required as input signals for the 
controller. Therefore, 40 important EEG channels 
are selected from 256 channels. In 256 channels, 61 
electrodes are located on the cheeks and bottom of 
the head. Since those electrodes might detect other 
signals such as EMG signals except EEG signals, 
they are excluded from the channel selection 
preliminarily. To select the channels of EEG signals, 
at first, we measure EEG signals as the pre-
experiment. In the pre-experiment, the subjects 
perform the various motions of upper-limb. After 
BPF processing, an angle between two EEG signal 
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vectors is calculated based on inner product as 
follows. 
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where Vi = [vi0 vi1 ··· viN]T represents the vector 
which consist of EEG signals of ith channel (N is the 
time count), θij is the angle between vector Vi and 
vector Vj, and <·> represents inner product. If vector 
Vi is perpendicular to vector Vj, inner product and 
cosθij between Vi and Vj become zero. On the other 
hand, if Vi is nearly parallel to Vj, inner product 
between Vi and Vj has a certain value that is not 
equal to zero, and absolute value of cosθij becomes 
almost one. The sum of cosθij becomes smaller if Vi 
is becoming perpendicular to the other vectors. 
Therefore, the evaluation E1i function is defined as 
follows. 
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The first channel in which E1i becomes a minimum 
value is selected. After that, channels are selected 
based on the evaluation E2i function as follows. 
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where n[k] is the array which consists of the selected 
channels. Ns is the number of selected channels. The 
channel which E2i becomes a minimum value among 
non-selected channels is selected. Then the selected 
channel number is added to array n[k] and Ns is 
increased until Ns becomes 40. The channels which 
are becoming near perpendicular to the already 
selected channels are selected by using eq. (5). The 
examples of the selected electrode’s locations are 
shown in Figure 3. In Figure 3, red circles represent 
the selected channels based on eqs. (4) and (5). Note 
that the selected channels are different between each 
subject as shown in Figure 3. After the selection of 
the EEG channels, the average values of EEG 
signals are calculated as follows in order to extract 
the feature. 
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where vit represents the EEG signals of ith channel 
after filtering at tth sampling, and Na is the sampling 
number (Na=200). vavg,it represents the EEG signals 
of ith channel after calculation at tth sampling. A 
neural  network  is  used  to  estimate  a  user’s  hand 

 

Figure 3: Example of selected channels. 

motion from EEG signals. The neural network 
which estimates a user’s hand velocity consists of 
three layers (input layer, hidden layer, and output 
layer). There are 40 neurons in the input layer, 100 
neurons in the hidden layer and 6 neurons in the 
output layer. vavg,it is used as input signals to estimate 
the user’s hand velocity. The error back propagation 
learning algorithm has been applied to train the 
neural network. A nonlinear sigmoid function is 
used as the activation function for the neurons in the 
hidden layer. 

3.3 Motion Estimation by using EMG 
and EEG Signals 

The EMG signals that are needed to estimate the 
motions of a human upper-limb are not always able 
to measure from all users. Therefore, The EMG and 
EEG signals are used to estimate the upper-limb’s 
motion of a user. In this study, the EMG signals are 
used as main input signals because the EMG signal 
has straightforward relationships with the 
corresponding muscle. In addition, the EEG signals 
are used as sub signals to cover the estimation of the 
user’s motion intention. 

In the case that a user can measure the all EMG 
signals which are needed to control the upper-limb 
power-assist robot, the hand force vector which 
represents the user motion intention is calculated as 
follows. 

τJF Thand  (7)

where τ is the joint torque vector, J is the Jacobian 
matrix, and Fhand is the hand force vector. On the 
other hand, if the EMG signals which are needed to 
control the robot cannot be measured, a part of joint 
torques of upper-limb is not able to calculate by 
using eq. (2). In this case, the hand force vector is 
expressed as follows. 
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Figure 4: Experimental condition. 

rppremghand FτJFFF  T  (8)

where Femg is the part of the hand force vector which 
can be calculated by the EMG signals,  τp is the joint 
torque vector in which each joint torque can be 
estimated by the measured EMG signals, Jp is the 
Jacobian matrix for τp. Fr is the part of the hand 
force vector which cannot be calculated by the EMG 
signals. Then, the hand velocity is calculated based 
on Fhand. 

 remghandhand FFMFMa   11  (9)
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where ahand and vhand are the hand acceleration and 
velocity vectors, respectively. M is the mass matrix. 
In eq. (10), vemg is estimated based on EMG signals. 
In the case of the estimation of vr by using the EMG 
and EEG signals, the part of the direction of the 
hand velocity is estimated based on the neural 
network as the same way in section 3-B. In the case 
of section 3-B, the input layer of the neural network 
has 40 neurons (the number of selected EEG 
channels). In contrast, in the case of estimation 
based on EMG and EEG signals, the number of 
neurons of input layer is equal to the number of 
selected EEG channels (40) and the number of joint 
torques which can be estimated by the EMG signals. 
After the estimation of the direction of hand velocity, 
vr in eq. (10) is defined so that the resultant torque of 
the absolute values of each joint torque which 
cannot be estimated by the EMG signals becomes 
minimum value. 

4 EXPERIMENT 

To verify the effectiveness of estimation method, the 

experiments were carried out. In the experiments, 
the subjects wore the 7-DOF upper-limb power-
assist robot Kiguchi et al., 2012) and performed 
some combined motions of upper-limb. The power-
assist robot has encoders and potentiometers in order 
to measure each joint angle. Therefore, we can 
calculate the position and orientation of the subjects’ 
hand based on each joint angle. In the experiments, 
the robot just followed the subject’s motion and did 
not perform the power-assist. The EMG and EEG 
signals of the subject were measured during the 
upper-limb motions. The subjects were healthy 
young men who can measure all EMG signals (16 
channels). The experimental condition is shown in 
Figure 4. In the estimations, we assume that some 
EMG signals of the subjects could not be measured, 
and estimate the hand motion intention by using the 
EEG and the remaining EMG signals. 

In the first case, we assume that EMG signals of 
ch.11 and ch.12 cannot be measured. Those two 
channels are difficult to find the correct locations of 
electrodes. In this case, although the robot can 
estimate the torques of 6 joints, the robot cannot 
estimate the torque of the subject’s forearm if the 
input signals are only EMG signals. Therefore, the 
EMG and EEG signals are used for the estimation. 
The example of estimation results is shown in Figure 
5. Figure 5 shows the hand velocities. The black line 
is the result which is estimated based on 16 EMG 
signals (Only EMG case), the red line is the result 
which is estimated based on 14 EMG signals and 
EEG signals (EMG and EMG case). In the case of 
Figure 5, the subject moved the elbow joint and the 
forearm mainly. The origin of the coordinate frame 
in Figure 5 is shoulder joint. x axis is the 
dorsoventral axis, y axis is dorsoventral axis, and z 
axis is the craniocaudal axis. From Figure 5, the 
estimation results by the EMG and EEG signals 
represent the subject’s motion. 

In the second case, we assume that EMG signals 
from ch.11 to ch.16 cannot be measured. This 
assumption means that a user is above elbow 
amputee. In this case, forearm and wrist motions 
cannot be estimated based on only EMG signals. 
Figure 6 shows the estimation results. The subjects 
performed the motion to carry a cup to mouth to 
drink water. Compared with Figures 5 and 6, the 
case of Figure 6 is worse than the case of Figure 5 
because less EEG signals are able to be measured in 
the case of Figure 6. From Figure 6, although there 
are some difference between the estimation result 
and the subject’s motion, the subject’s motion is 
described on some level by estimating based on 
EMG and EEG signals. 
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Figure 5: Experimental results (first case). 

 
Figure 6: Experimental results (second case). 

5 CONCLUSIONS 

A surface EMG signal is one of the most widely 
used signals as input signals for wearable robots. 
However, EMG signals that are needed to estimate 
the motions of a human upper-limb are not always 
available to every user. On the other hand, in the 
case of an EEG signal, the measured EEG signal 
does not have straightforward relationships with the 
corresponding brain part. Therefore, it is more 
difficult to find the necessary signals for the control 
of the robot compared with the EMG signals. In this 
paper, we use the EMG and EEG signals as input 
signals for wearable robots, and estimated the user’s 
motion intention of the upper-limb based on the 
measured EMG and EEG signals. The EMG signals 
are used as main input signals because the EMG 
signals have higher relative to the motion of a user 
in comparison with the EEG signals. The EEG 
signals are used as sub signals in order to cover the 
estimation of the user’s motion intention when all 
required EMG signals cannot be measured. The 
experimental results show the effectiveness of the 
estimation method. 
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