A Layered Architecture based on Previsional Mechanisms

Francesco Fiamberti, Daniela Micucci, Marco Mobilio and Francesco Tisato

Department of Informatics, Systems and Communication
University of Milano-Bicocca, Viale Sarca 336, 20126, Milano, Italy

Keywords:

Abstract:

Data Fusion, Software Architecture, Architectural Patterns.

The paper presents a layered architecture that improves software modularity and reduces computational and

communication overhead for systems requiring data from sensors in order to perform domain-related elabora-
tions (e.g., tracking and surveillance systems). Each layer manages hypotheses that are abductions related to
objects modeling the "real world” at a specific abstraction level, from raw data up to domain concepts. Each
layer, by analyzing hypotheses coming from the lower layer, abduces new hypotheses regarding objects at a
higher level of abstraction (e.g., from image blobs to identified people) and formulates timed previsions about
objects. The failure of a prevision causes a hypothesis to flow up-stream. In turn, previsions can flow down-
stream, so that their verification is delegated to the lower layers. The proposed architectural patterns have been
reified in a Java framework, which is being exploited in an experimental multi-camera tracking system.

1 INTRODUCTION

Nowadays, sensors are used in several application
domains including surveillance, machines, medicine,
and robotics. Usually such application domains rely
on solutions that strongly depend on both the sensing
devices and the application domain of the problem.
Moreover, they usually adopt data-driven policies: a
bottom-up process abstracts domain entities from raw
data and the whole processing chain is traversed every
time new information is available.

This results in huge and monolithic software sys-
tems presenting several drawbacks: lack of modu-
larization and stratification (reuse is difficult or even
impossible); complex configuration of the field in-
stallations (mostly implying some intervention on
the software); difficult coexistence of different algo-
rithms; computational overhead (e.g. in a surveillance
system, image processing algorithms are performed
from scratch for every acquired image); communi-
cation overhead (the whole chain is traversed each
time); lack of timeliness (“reasoning” is performed
only after something happened) and missing reac-
tions (sometimes anomalous situations should be rec-
ognized when nothing is perceived).

To overcome such issues, this work addresses the
problem from an architectural perspective, proposing
ALARM (A Layered Architecture based on pRevi-
sional Mechanisms), a layered architecture that is in-

354 Fiamberti F,, Micucci D., Mobilio M. and Tisato F..
A Layered Architecture based on Previsional Mechanisms.
DOI: 10.5220/0004592503540359

dependent of the specific application domain and of
the sensors’ characteristics. This makes the architec-
ture modular, scalable and open.

ALARM is based on the following basic concepts:

The system is structured in layers. Each layer in-
cludes objects that model the “real world” at a
specific abstraction level, from raw data up to do-
main concepts; objects are located in spatial and
temporal reference systems. Each layer performs
subsequent abstractions through abductive infer-
ence; the number and kind of layers is a domain-
related issue.

Hypotheses are timestamped abductive inferences
based on objects;

The “intelligence” of each layer relies on the
formulation of previsions about objects and on
their verification against hypotheses coming from
lower layers;

Previsions have a time-dependent validity, there-
fore their verification is time-driven;

Failure of the verification process generates an
exception that is notified to the upper layer
(upstream flow). This is the only mechanism
allowing information to flow to higher levels
(exception-driven approach);

A line of thought is a series of semantically linked
previsions about the evolution of an object. Many

In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 354-359

ISBN: 978-989-8565-68-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

lines of thought related to the same object may be
formulated,

The verification of a prevision may be delegated
to a lower abstraction level (downstream flow).

Since ALARM focuses on information transfor-
mation, it falls in the scope of data fusion, especially
if applied in a heterogeneously instrumented environ-
ment.

Data fusion made its first appearance in the 1960s
in the form of mathematical models aimed at data ma-
nipulation. In the subsequent years, it has been ap-
plied in various fields. Many generic models are de-
scribed in the literature accommodating the specific
applications at hand, but in each attempt the main mo-
tivation seems to to be the partitioning of the process
into sub-tasks.

The model that obtained the highest accolade in
the literature is the JDL Data Fusion Model (White,
1991) in its revised form made in (Steinberg et al.,
1999), which has been chosen as the starting point for
many data fusion applications in a wide range of do-
mains (see for example (Bruckner et al., 2012; Jot-
shi et al., 2009; Hall et al., 2008)). Other widely
used models are the Boyd Loop (Boyd, 1987), the
Intelligence Cycle (Shulsky and Schmitt, 2002), the
Behavioral Knowledge based Model (Pau, 1988) and
the Waterfall Model (Harris et al., 1998), which is
an approach close to the layering used here. More
precisely, ALARM?’s layers, in a configuration as pre-
sented in the proposed case study, are addressable by
the low levels of data fusion in the waterfall model.
The JDL revised model, considering the further sub-
division of the first level proposed in (Hall and Lli-
nas, 1997) also finds a fine correspondence with the
ALARM layering, which can then be freely used
while maintaining consistence with the literature.

The paper is organized as follows. Section 2 de-
scribes the patterns at the basis of the conceptual
model underlying the ALARM architecture. Sec-
tion 3 discusses the results of preliminary tests of the
proposed approach performed on a prototype imple-
mentation. Finally, in Section 4 some comments and
possible future developments are presented.

2 CONCEPTUAL MODEL

This section introduces the conceptual patterns
ALARM relies on.

2.1 The Abduction Pattern

Charles Sanders Peirce (Peirce, 1935) firstly intro-
duced the term abduction as follows:

A Layered Architecture based on Previsional Mechanisms

“Abduction is the process of forming an explana-
tor hypothesis. It is the only logical operation which
introduces any new idea.”

Using Peirce words “while deduction proves that
something must be and induction shows that some-
thing actually is operative, abduction merely suggest
that something may be”. This can be read as: deduc-
tion links premises with conclusions, induction con-
structs general propositions derived from specific ex-
amples, and abduction goes from data description to
a hypothesis that tries to explain relevant evidence.

According to Pierce’s definition, in ALARM hy-
potheses represent predicates about “real objects” at
a specific level of abstraction. The abduction process
translates hypotheses from a lower abstraction level
to a higher one.

Such a behavior is at the basis of a bottom-up or
data-driven model. It is exploited by most systems,
but has several drawbacks:

The high-level analysis of hypotheses may be
computationally intensive and is performed at the
last step of the abductive chain. This delays high-
level decisions like the recognition of abnormal
situations;

An abnormal situation can derive from the ab-
sence of base-level hypotheses and data-driven
models usually lack the capability of recognizing
such an absence;

The entire processing pipe is traversed each time
a base-level hypothesis is perceived. This leads to
both computational and communication overhead.

2.2 The Verification Pattern

Given the layered structure that performs abductions,
the core idea in ALARM is to exploit hypotheses
to produce previsions. A prevision is a predicate
about one or more hypotheses that are expected to
be valid in the future; in other words, previsions rep-
resent the expected evolution of an observed situa-
tion. While hypotheses are related to the past (they
are produced when something happens), previsions
are future-related facts.

The verification pattern is composed of two main
activities: forecasting and verification. The former
observes hypotheses and formulates previsions as an
estimate about future behaviors; the latter is aimed at
verifying the correctness of such previsions by com-
paring them against hypotheses.

The output of a verification process can be one of
the following:

Match: there exist a hypothesis and a prevision
representing the same information;

355

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

Hypothesis without Prevision: a hypothesis ex-
ists without a matching prevision;

Prevision without Hypothesis: there is a previ-
sion without a corresponding hypothesis;

Hypothesis / Prevision Incongruence: there are
both a prevision and a hypothesis, but they are in
conflict with each other.

The key concept in handling these cases is that
the hypothesis course is driven by exceptions, which
means that hypotheses at a certain level | flow up to
the level | + 1 only if the verification at | produces a
mismatch.

Mismatches are notified to the upper level as new
hypotheses, thus maintaining coherence with the as-
sumption that only hypotheses flow upward. A match
does not produce any output; the case of a hypothesis
without a prevision lets the same hypothesis flow up-
ward and finally a prevision without a hypothesis pro-
duces a new hypothesis stating that the correspond-
ing expected real object was not observed. As for the
fourth possibility, it is not necessary to deal with it as
an independent possibility, since it is actually a com-
bination of the other two mismatch cases.

2.3 The Delegation Pattern

The verification pattern reduces the computational
and communication overhead but still suffers from
an architectural issue. In fact, in order to be able to
formulate meaningful previsions, the low-level activ-
ities should embed domain-related knowledge. This
would strongly affect system modularity and software
re-use: in a well-structured architecture, low-level ac-
tivities should not be aware of high-level issues, mak-
ing it hard, or even impossible, to formulate helpful
previsions at lower levels; rather, previsions at lower
levels should come from higher levels, according to
domain issues.

If the generation of previsions is restricted to
higher levels only, the information flow between al-
most all the levels will increase, thus reducing one of
the advantages offered by the approach. In order to
solve this issue, one additional pattern is introduced:
the delegation pattern.

The delegation pattern consists of delegating the
verification of previsions to a lower level than the
one at which they have been generated. It is com-
posed of two different activities: delegation and de-
duction. The former selects the previsions to be del-
egated, while the latter is in charge of actually trans-
lating them to the corresponding lower-level versions;
thus, this activity represents the inverse of the transla-
tion performed by abduction (which in logic is known

356

as deduction). If the obtained lower-level previsions
match lower-level hypotheses, the latter will undergo
the filtering performed by verification and will not
flow up. To avoid a false mismatch at the higher level
(due to the lack of matching hypotheses if delegated
previsions have been matched at a lower level), dele-
gated previsions must be considered as matched until
one has proof of the contrary. In other terms, a level
can delegate to the lower level the falsification of pre-
visions. The lower level can in turn delegate such pre-
visions according to the same pattern.

On one side, the approach dramatically reduces
the computation and communication overhead at the
topmost levels, thus supporting the development of
cost-effective distributed systems. On the other side,
it preserves the proper layering, thus encouraging
software re-use.

Figure 1 synthesizes the ALARM concepts in a
three-layer configuration. Black lines describe hy-
pothesis flows, whereas the grey ones prevision flows.
Verification, forecasting and delegation are intra-layer
activities. On the contrary, abduction and deduction
are inter-layer activities.

3 PRELIMINARY VALIDATION

To study the correctness of the ALARM approach,
some basic tests have been performed. Since the ver-
ification activity is time-driven and both hypotheses
and previsions have a relation with time, we exploited
TAM (Time Aware Machine), a Java framework that
simplifies the development of time aware systems (Fi-
amberti et al., 2012).

In order to guarantee the repeatability of tests, ac-
tual sensors have been simulated by generating pre-
defined observations at predefined time instants and
using deterministic implementations of abducers and
forecasters.

The simulated environment is the corridor of a
building instrumented with 12 video cameras. The
test application is able to identify and track people
walking in the corridor.

Three abstraction layers have been identified:

Ground Layer, that reasons on objects represented
by boxes with specific height and width, along
with a coordinate location and a mean color of the
box;

Entity Layer, where boxes observed at different
times are correlated (basing on position and color)
in order to compute speed and direction of move-
ment, thereby identifying persistent entities;

Domain Layer, where the identified entities are

Strategy

A Layered Architecture based on Previsional Mechanisms

N+1 Verification Forecasting Delegation
—————— Abduction - - - - - - - - - - ———— ——. Deduction — - ——--
N — Verification Forecasting Delegation

by y

—————— Abduction - — - — - — — —

t

N-1 Verification

f

™ ——> Verification

Forecasting

S—

—————— Abduction - — — — — — — —

Figure 1: A three-layer ALARM configuration.

recognized as people characterized by a name and
an abstract location.

On top of the layer stack, a strategy is found, which is
notified when exceptions occur.

The goal of the tests is to measure the number of
notifications received by the strategy and the number
of data elaborations. The following scenarios have
been considered:

a a person is identified; a sequence of previsions
about the person’s future movements is generated,
one for each camera; all such previsions are con-
firmed by hypotheses.

b at first, the behavior is the same as in the previous
scenario. However, after the sixth incoming hy-
pothesis, no more hypotheses are received by the
Ground Layer abducer, as if the person stopped in
a blind spot.

The two described scenarios will be analyzed without
delegation at first. Afterwards, for both of them del-
egation will be introduced, in order to highlight the
corresponding benefits. Figure 2 sketches the system
layering in both the situations: with and without dele-
gation. It is possible to notice that not all the activities
are present in each layer. Indeed, ALARM does not
constraint the presence of each activity in each layer.

3.1 Scenario a without Delegation

Every time a hypothesis is received by the ground
layer, it flows up to the domain layer, since in the
absence of delegation no previsions are available for
verification at the two lower layers. Thus, every in-
coming hypothesis undergoes three abductions. At

the domain layer, the first hypothesis generates an ex-
ception, since no previsions have been formulated yet.
Using the information of the first hypothesis, the fore-
caster is able to formulate several previsions about
what hypotheses will be received in the future. As
the time passes, the hypotheses are all matched by the
previsions, therefore no more exceptions are gener-
ated.

3.2 Scenario b without Delegation

Everything goes on as in the previous case until the
time when the seventh hypothesis is expected. The
mismatch caused by the missing hypothesis generates
a second exception at the domain layer. The fore-
caster then retracts the remaining, already generated
previsions in order to avoid future uninteresting ex-
ceptions.

3.3 Scenario a with Delegation

In this case, delegators are present at the entity and
domain layers, together with the associated deducers.
Therefore, the verification of previsions generated by
the domain-layer forecaster is delegated to the ground
layer. Again, a single exception is generated, due to
the first incoming hypothesis. The difference with re-
spect to the case without delegation is that now the
hypotheses after the first one do not traverse the com-
plete abduction chain, since they are matched against
previsions already at the ground layer.

357

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

Strategy

Domain Verification

b

—————— Abduction — — - — - — - — - ——— Bt

t

Entity Verification Entity

t

—————— Abduction — — - — - — - — - ——— Bt

t

Ground Verification Ground

t

—————— Abduction — - - — - — - —— ——— Bt

t

9w — Verification

Forecasting Domain

Strategy

Verification Forecasting Delegation
b

Abduction - — - — - — - — = — — —— —— Deduction
f

Verification Delegation
f

Abduction - — - - — - — — - — — ———— Deduction
f

Verification
f

Abduction - — - —=- - - - ——
f

9 —— Verification

Figure 2: On the left, the configuration without delegation pattern, on the right the one with delegation pattern.

3.4 Scenario b with Delegation

The verification of previsions generated by the do-
main layer is delegated to the ground layer in this
case too. When the seventh expected hypothesis is
not received, a mismatch is produced and sent up-
wards. This is the only additional hypothesis that tra-
verses the complete abduction chain. Once the mis-
match is received at the domain layer, an exception is
generated, exactly as in the case without delegation.
Moreover, the forecaster retracts the remaining pre-
visions and the delegator propagates the retractions
downwards to the ground layer.

3.5 Discussion

Table 1 summarizes the results. In the table, for ev-
ery test case the total number of exceptions, abduc-
tions and previsions is shown. The corresponding re-
sults for a standard (i.e., non ALARM-based) appli-
cation structured according to the same layering (so
that incoming data traverse the same sequence of ab-
ductions) are also shown for comparison.

As the table shows, the number of generated ex-
ceptions for a given scenario is typically sensibly re-
duced with respect to non ALARM-based applica-
tions.

As for the benefits of delegation, the number of
exceptions is not modified when delegation is intro-
duced. However, delegation does introduce an im-
provement in the form of reduction of computational
overhead. In fact, the complexity of the abduction
process can be expected to increase going upwards in
the layer stack, so that stopping the upward hypoth-

358

esis flow at the lowest possible layer should greatly
reduce the amount of computations required for every
incoming hypothesis.

The table does not show the number of deductions
for the cases where delegation is present. It is easy to
see that the sum of the numbers of delegations and ab-
ductions is always equal to the number of abductions
in the absence of delegation. This can be considered
as an additional advantage of the delegation pattern,
as it is reasonable to assume that, from a computa-
tional point of view, a deduction is likely to be far
easier than the corresponding abduction.

The performed tests are, of course, in no way a
complete experimentation: they were simply aimed
at producing a preliminary quantitative analysis of the
benefits of the ALARM approach and at allowing for
a first estimate of how much the actual filtering is and
where it occurs. However, these simple experimen-
tations show that using delegation leads to a sensible
improvement as far as reduction of inter-layer com-
munication and of computational overhead are con-
cerned, as expected.

4 CONCLUSIONS

In this work, the ALARM architecture has been pro-
posed as a means to overcome the typical drawbacks
of the traditional, monolithic approaches to data-
driven applications, namely computational and com-
munication overhead, and the lack of timeliness and
of the capability to recognize situations characterized
by missing data.

The proposed solution is based on a layered

A Layered Architecture based on Previsional Mechanisms

Table 1: Results of the preliminary tests.

Test case Exceptions Abductions Previsions
Scenario a, without delegation 1 36 11
Scenario b, without delegation 2 18 11
Scenario a, with delegation 1 14 11
Scenario b, with delegation 2 10 11
Scenario a, standard application 12 36 -
Scenario b, standard application 6 18 -

structure, where the number of layers is domain-
dependant. The internal structure of each layer is the
same and reifies the patterns of abduction, verifica-
tion and possibly delegation. This allows for the re-
duction of information flows and computational over-
head thanks to an exception-based mechanisms which
allows information to flow upwards in the layer stack
only when something unexpected happens.

In order to validate the proposed approach, a sim-
ple implementation of the general structure has been
created and used to build a three-layer test application
modeling a virtual instrumented environment. The
behavior of the test application has been observed
in several simple situations in order to obtain a first,
quantitative estimate of the benefits of this approach.
The results show how the ALARM approach actu-
ally helps in reducing computational overhead with
respect to a traditional data-driven implementation.
Its stratification and modularization make it easy to
reuse components and adapt the architecture behavior
to fit different specific needs. The hypothesis verifica-
tion pattern improves responsiveness, while the dele-
gation pattern improves the decentralization of heavy
computations.

In order to give a more thorough evaluation of the
computational and informational gain introduced by
ALARM, a series of more accurate and extended tests
are needed. In particular, implementing real life cases
will be the only way to establish the actual level of
improvement.

Several open issues will be the subject of future
developments. First of all, the association of a con-
fidence level to both hypotheses and previsions must
be thoroughly examined, given the unavoidable un-
certainties in both the abductive and the forecasting
processes. Moreover, the concept of delegation can
be raised at a meta-level: in many cases, the down-
stream flow might consist of rules for defining pre-
visions, rather than of already formulated previsions.
Finally, matching hypotheses against previsions is a
complicated issue: both are timed predicates about
objects. Predicates include operators like “similar to”,
“close to”, “simultaneous”, which can be hardly de-
fined once for all. Such operators are expected to be
overloaded by specific classes of objects exploiting

domain-specific algorithms.

REFERENCES

Boyd, J. (1987). A discourse of winning and losing. Un-
published collection of lecture slides available via In-
terlibrary Loan from such sources as the Marine Corps
University Library.

Bruckner, D., Zeilinger, H., and Dietrich, D. (2012). Cog-
nitive automation - survey of novel artificial general
intelligence methods for the automation of human
technical environments. Industrial Informatics, IEEE
Transactions on, 8(2):206-215.

Fiamberti, F., Micucci, D., and Tisato, F. (2012). An object-
oriented application framework for the development
of real-time systems. In Furia, C. and Nanz, S., edi-
tors, Objects, Models, Components, Patterns, volume
7304 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg.

Hall, C., McMullen, S., Hall, D., McMullen, M., and
Pursel, B. (2008). Perspectives on visualization and
virtual world technologies for multi-sensor data fu-
sion. In Information Fusion, 2008 11th International
Conference on.

Hall, D. and Llinas, J. (1997). An introduction to multisen-
sor data fusion. Proceedings of the IEEE, 85(1).
Harris, C., Bailey, A., and Dodd, T. (1998). Multi-sensor
data fusion in defence and aerospace. The Aeronauti-

cal Journal, 102(1015).

Jotshi, A., Gong, Q., and Batta, R. (2009). Dispatching and
routing of emergency vehicles in disaster mitigation
using data fusion. Socio-Economic Planning Sciences,
43(2).

Pau, L. F. (1988). Sensor data fusion. Journal of Intelligent
& Robotic Systems, 1(2).

Peirce, C. S. (1935). Collected papers of Charles Sanders
Peirce. Belknap Press.

Shulsky, A. and Schmitt, G. (2002). Silent warfare: un-
derstanding the world of intelligence. Potomac Books
Inc.

Steinberg, A., Bowman, C., and White, F. (1999). Revisions
to the JDL Data Fusion Model. In Society of Photo-
Optical instrumentation Engineers (SPIE) Conference
Series, volume 3719.

White, F. (1991). Data fusion lexicon. http://oai.
dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html
&identifier=ADA529661.

359

