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Abstract: Computational Fluid Dynamics (CFD) deals with computing the equations of fluid flows using numerical 
methods. The Discrete-Event System specification (DEVS) theory has been used to approximate the contin-
uous systems by applying a quantized state system approach. In this research, we employ Cellular DEVS 
theory (Cell-DEVS) – originally proposed for modeling and simulation of spatial environments – to create a 
uniform set of rules for CFD. This harmonized set of state changes can effectively render the fluid dynam-
ics, by applying the accurate rule that represents the behavior of the fluid. The combination of the simplicity 
and the mathematical backbone allows for constructing models computable on an average computer or an 
array of cluster computers. 

1 INTRODUCTION  

Computational Fluid Dynamics (CFD) solving is re-
ferred to the research on numerical methods and al-
gorithms to solve and analyze the movement and in-
teractions of fluid flows (Anderson, 2009).. In gen-
eral, no analytical solution exists for non-linear fluid 
models; hence, the numerical approximation methods 
also called “computational models” come to play. 
CFD Solvers are required to process a large number 
of computations, which makes the use of computer-
based approaches inevitable. In a computerized pro-
cessing of CFD, a boundary for the problem is de-
fined and the environment is divided into cellular 
spaces, each of them representing a physical volume. 
The laws of motion are defined based on equations of 
motion, enthalpy, radiation, and species conserva-
tion. The behavior of the fluid at the boundaries is al-
so defined, which is called boundary conditions. 
These specifications construct a model of the fluid, 
which can be simulated on a computing device. Fi-
nally, visualization and analysis of the results can 
render a meaningful and sensible outcome of the 
computations. Different cellular methods have been 
proposed to solve these problems. In particular, Cel-
lular automata (CA) theory (Ilachinski, 2001) is a 
branch of discrete dynamic systems, in which space 
is represented by a cellular grid, with each cell being 
a state machine. In CA the time advances in a dis-
crete manner, triggering state changes in the cells, 

based on the value of their neighbor cells. CA have 
been used in physics, complexity science, theoretical 
biology, microstructure modeling, etc.  
 The Cell-DEVS formalism (Wainer, 2009) is an 
improved derivative of CA, which solves the prob-
lem of unnecessary processing burden in cells and al-
lows efficient asynchronous execution, using a con-
tinuous time-base, and without losing accuracy. In 
this methodology, each cell is represented as DEVS 
atomic models (Zeigler and Praeofer Kim, 2000) that 
changes states in an event-driven fashion. In this re-
search, we propose using Cell-DEVS to implement 
CFD equations to simulate fluid dynamics. The rule-
based nature of cellular model behavior definition 
provides a platform for area-wise behavior definition, 
leading to easier and faster experimentation of CFD 
solvers. The other advantage of this method is its fast 
computing apparatus working asynchronously on the 
cellular grid, increasing the execution speed. The 
continuous time-advance nature of Cell-DEVS can 
contribute to the seamless simulation of CFD, in 
comparison with the discrete timing in CA that lacks 
the smoothness of fluid flow. The model can be able 
to provide realistic results with reasonable speed. Fi-
nally, the formal I/O port definitions in the formalism 
permits producing output signals based on specific 
condition satisfaction in the cell lattice, allowing for 
data transfer between different spatial components.  
 The CD++ tool (Wainer, 2009) provides a devel-
opment environment to create and navigate through 
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the process of Modeling and Simulation (M&S) of a 
Cell-DEVS model. CD++ is an open-source frame-
work that has been used to model environmental, 
biological, physical and chemical models as well as 
many other real-life simulations. The toolkit includes 
a high-level scripting language keyed to Cell-DEVS, 
a simulation engine, a testing interface and 2D and 
3D graphical interfaces.  
 The solver proposed here provided results that are 
realistic and achieve the goals stated. We will discuss 
how the framework can be used and how to export 
the generated data to graphical environments. 

2 RELATED WORK  

Fluid dynamic solvers are used for a wide variety of 
purposes. Their goal is to create a realistic represen-
tation of a naturally occurring fluid system such as 
smoke rising or dust blowing. The flow of fluids can 
be viewed as solid particles interacting with velocity 
fields or as densities. There are different methods to 
solve some CFD; Lattice-Gas method (Chen and 
Doolen, 1998), Navier-Stokes Equations (Stam, 
2003) and Rieman Solvers (Currie, 1974).  
 Over the years there have many of the methods 
used for solving fluid dynamics have been imple-
mented using CA. In general, CFD methods are cate-
gorized into two groups; a) Discretization methods 
and b) Turbulence models. Discretization methods 
are a subset of divide and conquer method in solving 
difficult computational problems, in which the com-
putational domain is discretized and “each term with-
in the partial differential equation describing the flow 
is written in such a manner that the computer can be 
programmed to calculate” (Frisch et al., 1986). In 
Turbulence models, the focus is in computing the in-
terest factors in the Fluid dynamics. A range of 
length and time scales of the fluid movement are 
modeled, in which, the more scales that are resolved, 
the better the granularity. 
 Navier-Stokes equations were the first physical 
description of fluid motion by applying Newton’s 
second law of motion “with the assumption that the 
stress in the fluid is the sum of a diffusing viscous 
term (proportional to the gradient of velocity) and a 
pressure term” (Sukop, 2006). The first comprehen-
sive simulation of the d-dimensional Navier Stokes 
equations appeared in (Frisch et al., 1986). In (Su-
kop, 2006), the author provides a method for creating 
a basic model of 2D fluid flow, by mapping the pos-
sible collisions that can occur and the outcomes that 
are determined by a set procedure. The randomness 
generated by these procedures that is essential to its 

ability to simulate flows. This procedure does pro-
vide results; however, with the standard of ever real-
ism increasing, its ability to provide a realistic model 
is substantially limited. 
 A similar model was made to model the effect of 
polymer chains on fluid flow in (Koelman, 1992) 
where a lattice-gas automata was used to provide a 2- 
dimensional model. It was noted that further work 
must be done to develop a method of using the lat-
tice-gas method to provide a 3-dimensional model 
that was able to provide realistic results with a rea-
sonable computational effort. In (Koelman and 
Nepveu, 1992) the authors demonstrate how it is pos-
sible to use a CA to model flow through a porous 
material. They were able to model a one-phase Darcy 
automaton based on a Navier-Stokes automaton, 
however when they implemented a two-phase Darcy 
automaton they had to implement much simpler local 
transition rules. In a research presented in (Stamp, 
2003), the Navier-Stokes equations are used to model 
the fluid dynamics. While the algorithms implement-
ed do not meet the formalism of CA, they do share 
several key characteristics. A cell lattice is spanned 
over the simulation window with each cell holding 
unique information regarding that particular area. 
The first difference is that each cell space stores a 
density value and the horizontal and vertical velocity 
components (the z component for a 3-dimensional 
model). The cell spaces are updated simultaneously 
at discrete time intervals. While in a true CA, each 
cell can be updated independent of other cells, and 
the algorithms must solve multiple steps for all the 
cells before the final value is obtained. Nevertheless, 
the algorithm provided very realistic results with a 
limited computational effort by utilizing a rather 
basic set of rules, and has potential to be adapted as 
for Cell-DEVS. 
 In this paper, we will use the algorithms present-
ed by (Stam, 2003) to create a CFD solver that falls 
within the Cell-DEVS formalism and will be imple-
mented using the CD++ toolkit. This method was 
chosen because the technique used was already simi-
lar to that of a Cell-DEVS model and therefore 
would most likely be the easiest to implement. Be-
sides, the results generated by the algorithms seemed 
to generate the best/most realistic results. The most 
significant hurdle that will have to be overcome is 
changing the updating of the cells from synchronous 
to an asynchronous process.  

3 MODEL DEFINITION 

The model in (Stam, 2003) was based on the Navier- 
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Stokes equations for solving simple fluid flow. Equa-
tion 1 is the Navier-Stokes equations for velocity and 
density moving through a velocity field.  

Equation 1 
ݑ∆
ݐ∆

ൌ 	െሺݑ. ݑሻ  ݑ	ଶݒ  ݂	 

∆
ݐ∆

ൌ 	െሺݑ. ሻ  ଶ݇  ݂ 

The model treats the fluid space as a 2D grid space. 
The fluid is projected as a movement of densities in-
stead of particles and therefore each cell contains the 
density for the given cell area. In Cell-DEVS, each 
cell must contain all the additional information as 
well as the set of rules that are used to determine the 
cell values in the future. The model solves the densi-
ty in a 3 step process as seen in Figure 1. The diffu-
sion of the densities is first calculated using Equation 
1. Then the densities are “moved” by examining the 
forces from the vector field and determining their 
new locations.  
 To do this correctly and realistically, the “forc-
es” or the velocity fields must be evolving as well. 
The model must create realistic eddies and swirls in 
the appropriate places. The process of implementing 
this is even more complicated.  
 The change in the velocity vectors are due to 
three main reasons; the addition of forces over time, 
the diffusion of the forces and the self-propelling na-
ture of the forces. The diffusion of the forces is cal-
culated similar to the densities, as well as the advec-
tion/movement stage. The new stage is the called the 
projection. The projection stage allows for the veloci-
ties to be mass conserving. Additionally, this step 
improves the realism of the model by creating eddies 
that provide realistic swirling flows.  

 

Figure 1: Velocity Solver steps.  

 While the framework and execution of the model 
may vary from its predecessor, the results are ideally 
the same. At the end of every cycle, the densities 

have been diffused and moved and the velocity fields 
have been updated. The external forces and densities 
are added and ready to begin with the next frame.   

4 RULES IN Cell-DEVS 

A Cell-DEVS model is a lattice of cells holding state 
variables and a computing apparatus, which is in 
charge of updating the cell states according to a local 
rule. This is done using the current cell state and 
those of a finite set of nearby cells (called its neigh-
borhood). Cell-DEVS improves execution perfor-
mance of cellular models by using a discrete-event 
approach. It also enhances the cell’s timing definition 
by making it more expressive. Each cell is defined as 
a DEVS atomic model, and it can be later integrated 
into a coupled model representing the cell space.  

Table 1: Cell Space Layers and Range of Values. 

Name Function Values Used 

Temp
u 

Handles the advection of 
"u" component of the ve-
locity vector. 

Range: (-2, 2) 
Positive = Left 
Negative = 
Right 

Temp
v 

Handles the advection of 
"v" component. of the ve-
locity vector. 

Range: (-2, 2) 
Positive = Up 
Negative = 
Down 

U 

Handles the final projec-
tion step & stores the fi-
nal values for "u" of the 
velocity vectors. 

Range: (-2, 2) 
Positive = Left 
Negative = 
Right 

V 

Handles the final projec-
tion step; stores the final 
values for the "v" of the 
velocity vectors. 

Range: (-2, 2) 
Positive = Up 
Negative = 
Down 

Div 
Handles the initial projec-
tion step defined as div in 
the algorithms  

N/A 

P 
Handles the second pro-
jection step, defined as p 
in the algorithms 

N/A 

Diff' 

Handles the diffusion of 
the densities 

Range: (0, 1) 
values in gradi-
ent, 1 = solid & 
<1 is a density 

Source 
Stores densities during 
the density calculations 

Range: (0, 1) 
as above 

Final 

Handles advection of the 
densities and represents 
the solution to the density 
solver 

Range: (0, 1) 
as above 

 Cell-DEVS models in CD++ are built following 
the formal specifications of Cell-DEVS and using a 
built-in language is provided to describe the behavior 
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of each cell. The model specification includes the 
definition of the size and dimension of the cell space, 
the shape of the neighborhood and borders. The 
cell’s local computing function is defined using a set 
of rules with the form POSTCONDITION   DELAY 
{PRE-CONDITION}. These indicate that when the 
PRECONDITION is satisfied, the state of the cell 
will change to the designated POSTCONDITION, 
whose computed values will be transmitted to other 
components after consuming the DELAY. If the pre-
condition is false, the next rule in the list is evaluated 
until a rule is satisfied or there are no more rules. 
 Since the cell states are calculated asynchronous-
ly, each cell must contain the following information: 
the density of the fluid for that cell space, the veloci-
ty vectors u and v as well as all the intermediate cal-
culations. The cell space will be layered with each 
layer holding a different piece of information for its 
corresponding cell as shown in Table 1.  
 Each distinct part of the algorithm, which is de-
fined later, will make use of one or more layers, and 
therefore it is very important that the layer infor-
mation be exact.  

4.1 Diffusion 

The diffusion can be calculated by taking the initial 
density value of the cell and adding the scaled sum of 
the densities that could enter that cell from the sur-
rounding cells and then calculating the average. The 
result is a flow of density from higher to lower con-
centration. By looping this function, we are able to 
extend the diffusion to cells outside the neighbor-
hood; however, with a low value for a cell, these val-
ues are negligible at n+/-2 from the cell. The diffu-
sion step is defined with the following equation 
(Stam, 2003): 
 

Equation 2 Density Formula 
,ሺ݅ݔ ݆ሻ 	ൌ 

ሾݔሺ݅, ݆ሻᇱ  	ሺ	ݔሺ݅ െ 1, ݆ሻ  ሺ݅ݔ	  1, ݆ሻ  ,ሺ݅ݔ	 ݆  1ሻ  ,ሺ݅ݔ	 ݆ െ 1ሻ	ሻሿ

	1  4ܽ
 

The implementation of this step is relatively easy. 
The values of x are stored in the Source layer and the 
values of x' are stored in the Final layer. For each 
step the function is run for 20 cycles and on the 20th 
cycle the value is stored and the cycle is reset. The 
“if” statement in CD++ operates as expected, how-
ever by looking at the timing information we were 
able to change its behavior to that of a loop, where 
n=20 and after each cycle it restarts at zero. The re-
sulting code looks like the following: 
 
rule:{ if(remainder(time,20)=0,    
(0,0,2),(((0,0,2)+0.1*  

      ((1,0,1)+(0,1,1)+(0,1,1)+   
         (1,0,1)) ))/1.4 ) } 1 { t } 
 

 As it can be seen, every time the time variable 
reaches a multiple of 20 (i.e. 20 cycles passed)¸ it is 
reset. Otherwise, the new density is recalculated 
based of the current density, and the weighted aver-
age of the surrounding cells. The amount the average 
is weighted is by the variable 'a' which in this situa-
tion is 0.1. 

4.2 Advection 

The advection step is responsible for the movement 
of densities and velocity fields. The most obvious 
method of determining where a density will end up is 
to trace it forward based on the velocity field. How-
ever, the method described by (Stam, 2003) suggests 
starting in the center of the cell space and trace 
backwards to find the origins, based on the velocity 
field. Then, at this point take the weighted average of 
the four closest cells to determine the source density. 
This is done because the source will most likely not 
fall directly in the middle of the cell and therefore the 
surrounding densities would affect the new densities. 
The advection step as it appears in the original algo-
rithm is as follows: 
 
void advect ( int N, int b, float * 
d, float * d0, float * u, float * 
v, float dt )  { 
 int i, j, i0, j0, i1, j1; 
 float x, y, s0, t0, s1, t1, dt0; 

 
dt0 = dt*N; 
for ( i=1 ; i<=N ; i++ ) { 
 for ( j=1 ; j<=N ; j++ ) { 
 x = i-dt0*u[IX(i,j)];  
  y = j- dt0*v[IX(i,j)]; 
 if (x<0.5) x=0.5;  
 if (x>N+0.5) x=N+0.5;  
 i0=(int)x; i1=i0+1; 
 if (y<0.5) y=0.5;  
 if (y>N+0.5) y=N+ 0.5;  
 j0=(int)y; j1=j0+1; 
 s1 = x-i0;  s0 = 1-s1;  
 t1 = y-j0;  t0 = 1-t1; 
 d[IX(i,j)] = s0*(t0*d0[IX     
    (i0,j0)]+t1*d0[IX(i0,j1)]) 
    + s1*(t0*d0[IX(i1,j0)] +       
t1*d0[IX(i1,j1)]); 
 } 
} 
set_bnd ( N, b, d ); 

} 
 This step is used to trace the origins of the current 
density by looking at the vector field. Since the 
origin is not likely to be at a cell center a weighted 
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average of the surrounding four cells is taken, with 
their weight dependent on their proximity to the 
origin location. 
 In order to model the advection step is in Cell-
DEVS we are required to include any of the cells 
where the density can originate, in the neighborhood. 
The first and most important part is ensuring that the 
possible source cells are included within the neigh-
borhood. The neighborhood of the advection step is 
defined 6 by 6 cells therefore; the maximum distance 
a particle can travel is 2 cells from the center. Hence, 
the velocity vectors cannot exceed the range of (-
2,2). This can be done by scaling the time step to en-
sure that the velocities remain within the acceptable 
limits. For example, if the velocity is 4, it can be 
scaled down to 2 and the new time step would be half 
of the original. The values of the cells are truncated 
to discrete values therefore, there are 5 potential val-
ues: -2,-1,0,1 and 2, for u and v and therefore 25 dif-
ferent combinations of the two. For each combina-
tion, the ratio of the four source cells is calculated. 
The following is a portion of the code that deter-
mines the value if the truncated values of the u and v 
velocities are 1 and1, respectively. 

if( trunc((0,0,-6)) = 1, 
if( trunc((0,0,-5)) = 1,  
 (((1-remainder(abs((0,0,-6)),1)) 
 *((1-remainder(abs((0,0,-5)),1))  
 *(-1,- 1,-2)+ remainder( 
 abs((0,0,-5)),1)*(-1,0,-2))+   
 remainder(abs((0,0,-6)),1)*  ((1-
remainder(abs((0,0,-5)),1))  *(0,-1,-
2)+remainder( 
 abs((0,0,5)),1)*(0,0,-2) )  
 ) 
) * this is 1 of 24 possibilities 

 In this code, it is checking to see if the u and v 
vectors fall within the range of 1.0 to 1.999. If this is 
the case than by the weighted averages are calculated 
and summed.  
 The code contains 25 iterations of the above code 
segment to cover the possible outcomes. This func-
tion is used 3 times in each cycle; the advection of 
the density, the advection of u and the advection of v. 
However, since the offsets of the required planes are 
the same for both u and v (the offset is 0), the func-
tion can be recycled to solve for both. The advection 
of the density step, however, requires access to a dif-
ferent plane with a different offset (2) and therefore 
must be rewritten with its corresponding neighbor 
values. 

4.3 Projection  

The  projection  step  can  be  broken  into  three  sub 

sections: solving for div, p, u, and v. The original al-
gorithm is implemented using the following code: 
 
void project ( int N, float *u, 
float *v, float *p, float *div) { 

int i, j, k;  float h; 
h = 1.0/N; 

 for ( i=1 ; i<=N ; i++ ) { 
for ( j=1 ; j<=N ; j++ ) { 
 div[IX(i,j)] = -0.5*h*  
     (u[IX(i+1,j)]- u[IX(i-1,j)]+ 
   v[IX(i,j+1)]-v[IX(i,j-1)]); 
  p[IX(i,j)] = 0;    } 

  } 
 set_bnd(N,0,div); set_bnd(N,0,p); 
 for ( k=0 ; k<20 ; k++ ) { 
  for ( i=1 ; i<=N ; i++ ) { 

for ( j=1 ; j<=N ; j++ ) { 
 p[IX(i,j)] = (div[IX(i,j)]+  
  p[IX(i-1,j)]+p[IX(i+1,j)]+ 
   p[IX(i,j-1)]+p[IX(i,j+1)])/4;} 
 } 
 set_bnd ( N, 0, p ); 
} 

  for ( i=1 ; i<=N ; i++ ) { 
for ( j=1 ; j<=N ; j++ ) { 
 u[IX(i,j)] -= 0.5*(p[IX 
     (i+1,j)]-p[IX(i-1,j)])/h; 
 v[IX(i,j)] -= 0.5*(p[IX(i, 
      j+1)]- p[IX(i,j-1)])/h; } 

    } 
set_bnd(N,1,u); set_bnd ( N, 2, v ); 
}  // (Stam 2003) 

 The implementation of Div is straightforward. It 
takes the two u and two v values from their respec-
tive temp layers and is implemented with the follow-
ing code snippet in CD++ Model file:  
 
rule : { if( remainder( time, 20 ) = 0, 

-0.05*((1,0,-4)-(-1,0,-4)+(0,1,-3)      
 - (0,-1,-3) ), (0,0,0) ) } 1 {t} 

 As can be seen, the “if” function will work as a 
loop that is reset after each iteration. The calculations 
are essentially the same with the only difference on 
where and how the information is accessed. The -4 at 
the end of each neighbor cell means those values are 
taken from the temporary layer for the u vectors 
while the cells with -3 are taken from the temporary v 
vectors. 
 To solve for p, we use the same method as solv-
ing for the diffusion. The code segment is exactly the 
same as mentioned before, however the values of a 
are adjusted to reflect the viscosity instead of the dif-
fusion coefficient. 
 The final step for the projection is the separating 
of the vector fields into component form. The sepa-
rating of the horizontal and vertical components in 
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our model is performed as it in the algorithm, pre-
sented below:  
 
[u] 
rule : { if( remainder(time,20)=0 , 

if( time=0, (0,0,-2),(0,0,-2)- 
    0.05*((-1,0,-6)-(1,0,-6))), 
    (0,0,0)  ) } 0 { t } 

[v] 
rule : { if(remainder(time,20) = 0, 

  if( time = 0, (0,0,-2), 
   (0,0,-2)-0.05*((0,-1,-7)- 
      (0,1,-7))),(0,0,0)  ) } 0 
{t} 

 During the projection stage, we had added the ve-
locity vectors together to make a single velocity 
field. However, for the rest of the algorithm we like 
to have the velocities in separate fields. These steps 
will be used twice for each cycle of the model. 

5 SIMULATION RESULTS 

To test the model, we have executed several simula-
tions scenarios. The first simulation was initialized as 
single foci of density with the velocity vectors being 
randomly generated to have an approximate value of 
1, i.e. a velocity in the upwards diagonal to the left. 
The diffusion coefficient and the viscosity coefficient 
were both set to a low value in the range of (0.1). The 
expected result is that the density foci will spread to 
more of a cloud with the highest densities being on 
the leading edge of the cloud as it proceeds to the top 
left corner. 
 Figure 2 shows the results of simulation scenario 
using a cell space of 21 by 21 cells. The coefficient 
of diffusion (a) was set to be 0.1. The density field 
was exposed to a velocity field whose u and v values 
were randomly set to a range of 0.9 to 1. The vis-
cosiy was set as 1. The results illustrated in Figure 2 
are what we would expect to see in a real situation. 
The density cloud traveled up and left at an angle of 
approximately 45 degrees, which corresponds to the 
field applied to it. Additionally, the limited disper-
sion of the cloud reflects the low diffusive coefficient 
used. The slight teardrop shape that the cloud took 
which occurs when the density cloud is moving can 
be noticed. The concentration will be slightly higher 
on the leading edge and taper out at the end. 
 Figure 3 demonstrates how over time the velocity 
fields become more regular. Since the initial value 
assignment was random the field would not be stable. 
As the values did not vary too much (max<10%) the 
field soon become more evenly distributed and set-
tled between the range of   0.94 to 0.96. This is expec 

 

Figure 2: Progression of Diffusion. Coefficient a= 0.1. 

ted since it was a uniform distribution between 0.9 
and 1 and with a relatively larger viscosity, the fields 
would settle quickly. 

 

Figure 3: Demonstrating the evolving velocity field. 

6 CONCLUSIONS  

Fluid dynamic solvers are used in a wide variety of 
application ranging from video games and entertain-
ment to modeling of environmental events. In this re-
search, a CFD solver is proposed that reuses the pa-
rameters of a CA in Cell-DEVS. The asynchronous 
and more efficient computing grid of Cell-DEVS 
with the continuous time-base allowed for more real-
istic simulation of the fluid dynamics. We showed 
how CD++ toolkit was used to implement the Cell-
DEVS model of the Navier-Stokes equations for 
CFD. we were able to create a fluid dynamic solver 
that met the requirements of a Cellular Automata, 
demonstrating that it is possible to create models of 
vary complex phenomenon using a relatively simple 
technique. While the model required significantly 
longer time to generate results, it provided a more de-
tailed description of what is happening at every stage 
of the simulation and stored massive amounts of de-
tail. As an initial implementation, this may not be a 
desired characteristic; however such a high level of 
detail would allow the model to be integrated easily 
to generate a more complex visualization of the fluid 
movement. 
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