
A Comparison of Maintainability Metrics of Two A+ Interpreters

Péter Gál and́Akos Kiss
Department of Software Engineering, University of Szeged, Dugonics tér 13., 6720 Szeged, Hungary

Keywords: Maintainability, Metrics, A+, .NET.

Abstract: Reports on reimplementing or porting legacy code to modern platforms are numerous in the literature. How-
ever, they focus on technical problems, functional equivalence, and performance. In the current paper, our goal
is to pull maintainability into focus as well and we argue that it is (at least) of equal importance. We conducted
source code analysis on two implementations of the runtime environment of the A+ language and computed
maintainability-related metrics for both systems. In this paper, we present the results of their comparison.

1 INTRODUCTION

A+ is an array programming language (Morgan Stan-
ley, 2008) inspired by APL. It was created more than
20 years ago to suite the needs of real-life financial
computations. However, even nowadays, many criti-
cal applications are used in computationally-intensive
business environments. Unfortunately, the original
interpreter-based execution environment of A+ is im-
plemented in C/C++ and is officially supported on
Unix-like operating systems only.

In our previous work, we introduced the A+.NET
project (Gál and Kiss, 2012), a clean room implemen-
tation of the A+ runtime for the .NET environment1.
The goal of the .NET-based implementation was to
allow the interoperability between A+ and .NET pro-
grams (calling .NET methods from A+ scripts, or
executing A+ code from or even embedding – as a
domain-specific language – into .NET programs), and
the hosting of A+ processes on Windows systems.
This may extend the lifetime of the existing A+ appli-
cations, unlock the existing financial routines to .NET
developers, and make .NET class libraries available to
A+ developers.

Reports on reimplementing or porting old legacy
code bases are numerous in the literature (Wang
et al., 2006; Sneed, 2010). However, similarly to our
previous work, they usually focus on the technical
problems that occur during the porting, on reaching
functional equivalence, and on reporting performance
data. In the current paper, our goal is to pull maintain-
ability into focus as well. During the development of

1Project hosted at:
https://code.google.com/p/aplusdotnet/

A+.NET we felt that interoperability is not the only
benefit of the reimplementation but the resulting code
is somewhat cleaner, easier to comprehend, and more
maintainable. To justify our intuition, we conducted
source code metric measurements on the two imple-
mentations of the A+ runtime, i.e., on the reference
implementation and on the A+.NET engine. In this
paper, we present the results of their comparison.

The rest of the paper is organized as follows. To
make the paper self-contained, we give a glimpse of
A+ in Section 2, focusing on the specialities. How-
ever, for the exact details of the language, the reader
is refered to the Language Reference. In Section 3,
we introduce the two A+ runtime implementations,
show their differences, and suggest a method that still
allows their unbiased comparison. In Section 4, we
present the source code metric measurements of the
two systems and the result of their comparison. In
Section 5, we overview related work, and finally, in
Section 6, we conclude the paper and give directions
for future work.

2 THE A+ PROGRAMMING
LANGUAGE

A+ derives from one of the first array programming
languages, APL (Clayton et al., 2000). This legacy of
A+ is one of the most notable differences compared
to the more recent programming languages. While
the operations in modern widespread programing lan-
guages usually work with scalar values, the data ob-
jects in A+ are arrays. Even a number or a character

292 Gál P. and Kiss Á..
A Comparison of Maintainability Metrics of Two A+ Interpreters.
DOI: 10.5220/0004597702920297
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 292-297
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



(+/a) , ×/a ← 1 + ι 10

Listing 1: The computation of the sum and product of the
first 10 natural numbers in A+.

is itself an array, of the most elementary kind. This
approach allows the transparent generalization of op-
erations even to higher dimensional arrays.

The other striking speciality of A+ is the vast num-
ber of (more than 60) built-in functions, usually called
operators in other languages. These functions range
from simple arithmetic functions to some very com-
plex ones, like the matrix inverse or inner product cal-
culations. Furthermore, most functions have special,
non-ASCII symbols associated. This allows quasi-
mathematical notations in the program source code,
but may cause reading and writing A+ code to be a
challenge for the untrained mind.

Finally, although being a language of mathemati-
cal origin, A+ has an unusual rule: all functions have
equal precedence and every expression is evaluated
from right to left.

The above mentioned specialities are exemplified
in Listing 1, which shows how the computation of the
sum and product of the first 10 natural numbers can
be formalized in A+. The expressionι 10 (using the
symboliota) generates a 10-element array containing
values from 0 to 9, while1 + increments each ele-
ment by one, which is then assigned to the variablea.
The operator×/ computes the product of the vector,
while +/ computes the sum. The concatenation func-
tion is denoted by comma, which finally results the
two-element array55 3628800. Note the parentheses
around the sum, whithout which concatenation would
be applied to variablea and the product, and summa-
tion would be applied only afterwards because of the
right-to-left order of evaluation.

As the above code shows, quite complex computa-
tions can be easily expressed in a very compact form
in A+. The Language Reference gives further exam-
ples, mostly from financial applications, e.g., how to
compute present value at various interest rates in a
single line (Morgan Stanley, 2008, page 62).

3 TWO A+ EXECUTION
ENGINES

In this paper, our goal is to compare the two A+
execution engines: the reference interpreter and our
A+.NET system. However, there are several difficul-
ties we have to handle. First, although both imple-
mentations aim at doing the same thing, i.e., execut-
ing A+ scripts according to the language specifica-

.NET Base Class Library

DLR
Parser

Lexers

Helpers

Code Generator

Execution Engine

Figure 1: Architecture of the A+.NET runtime. (White
boxes denote components provided by the .NET framework,
shadowed boxes are modules of A+.NET).

tion, their architecture and their internal logic is com-
pletely different.

The modules of the .NET implementation, their
interrelation, and their behaviour are known and doc-
umented (Gál and Kiss, 2012). Figure 1 depicts the
main components of the system, and how they build
on each other, and on the BCL and DLR (Chiles and
Turner, 2009) libraries of the .NET framework. How-
ever, the reference implementation has no available
documentation other than the source code itself. The
only meaningfully deducible model for modules is the
directory layout of the source code files.

Other difficulties include the difference in the lan-
guages of implementation: the reference interpreter is
written in C/C++, while A+.NET in C#. And finally,
we admit that the .NET-based version is far from be-
ing as functionally rich as the reference implementa-
tion. These issues prevent matching lines, functions,
classes, or even files directly to each other in the two
code bases. Thus, we had to find a way to make our
analysis unbiased. We decided to determine the func-
tionally equivalent parts of the two implementations
and perform the comparison on those parts.

Determinig the functionally equivalent parts re-
quired a reasonably large and diverse A+ code base
to drive the engines and a way to track which parts of
the engines were exercised by the test inputs. Fortu-
nately, during the development of A+.NET, tests were
written for almost every implemented functionality.
At the time of writing this paper, this means 1778 test
cases, of which 1719 tests (consisting of about 2300
lines of A+ code) could be used as input to both A+
execution engines.

For the reference implementation, we used the in-
strumentation support of GCC. We recompiled the
interpreter and instructed GCC to instrument every
function at its entry point with a call to a routine
that determines (with the help of the libunwind li-
brary (Mosberger, 2013)) the name of the called func-
tion at execution time and dumps it out into a log
file. Then, this instrumented interpreter was used to

A�Comparison�of�Maintainability�Metrics�of�Two�A+�Interpreters

293



Table 1: Modules of the A+ reference interpreter, the size ofeach module (given as NF – number of functions, LOC – lines
of code, and NOS – number of statements), and the size and ratio of those code parts that are exercised by the test suite. (The
granularity of the code coverage information is functions).

Module Size Coverage
NF LOC NOS NF LOC NOS

a 819 7716 12578 576 (70.33%) 5083 (65.88%) 8546 (67.94%)
cxb 26 480 484 1 (3.85%) 18 (3.75%) 15 (3.10%)
cxc 66 1073 877 2 (3.03%) 38 (3.54%) 32 (3.65%)
cxs 1 13 8 0 (0.00%) 0 (0.00%) 0 (0.00%)
cxsys 82 1802 1501 5 (6.10%) 123 (6.83%) 108 (7.20%)
dap 227 4094 2466 18 (7.93%) 344 (8.40%) 208 (8.43%)
esf 201 3690 3494 16 (7.96%) 155 (4.20%) 132 (3.78%)
main 17 425 322 15 (88.24%) 272 (64.00%) 209 (64.91%)
AplusGUI 3328 23761 17041 72 (2.16%) 1768 (7.44%) 1576 (9.25%)
IPC 303 2680 2358 12 (3.96%) 52 (1.94%) 47 (1.99%)
MSGUI 8938 78268 44858 16 (0.18%) 110 (0.14%) 53 (0.12%)
MSIPC 399 2298 1344 28 (7.02%) 261 (11.36%) 156 (11.61%)
MSTypes 4574 27690 15593 100 (2.19%) 431 (1.56%) 179 (1.15%)
TOTAL 18981 153990 102924 861 (4.54%) 8655 (5.62%) 11261 (10.94%)

Table 2: Modules of A+.NET, the size of each module (given as NF – number of functions, LOC – lines of code, and NOS –
number of statements), and the size and ratio of those code parts that are exercised by the test suite. (The granularity ofthe
code coverage information is functions. The table does not include data on those parts of the lexers and the parser that are
generated).

Module Size Coverage
NF LOC NOS NF LOC NOS

Code Generator 385 5008 1706 217 (56.36%) 4003 (79.93%) 1231 (72.16%)
Execution Engine 87 639 284 55 (63.22%) 355 (54.56%) 176 (61.97%)
Helpers 1213 11396 5020 909 (74.94%) 9171 (80.48%) 4183 (83.33%)
Lexers 5 68 41 3 (60.00%) 48 (70.59%) 29 (70.73%)
Parser 34 255 104 22 (64.71%) 227 (89.02%) 98 (94.23%)
TOTAL 1724 17366 7155 1206 (69.95%) 13804 (79.49%) 5717 (79.90%)

execute the A+ test scripts and by analyzing the log
files, we were able to determine which functions were
called. For the .NET version, we used the built-in
functionality of Visual Studio to gather these code
coverage results.

Tables 1 and 2 show the modularization of both
systems and data about the size and the test cover-
age ratio of each module. The reference interpreter
(version 4.22) has quite a large code base of C and
C++ files. It consists of 153,990 lines of code and
102,924 statements in 18,981 functions (class meth-
ods and global functions included). This means that
its code is 8.87-14.38x larger than the code base of
A+.NET (revision 232), depending on which code
size metrics we compare. It is also visible from the
tables that a big portion of the reference interpreter is
not covered by the tests. This is not a surprise, since
the scripts were written as tests for the A+.NET sys-
tem to cover its functionality. However, if we consider
that the major part of the functionality of all the mod-
ules of A+.NET correspond to module ‘a’ of the refer-
ence interpreter and only parts of the ‘Helpers’ mod-
ule contain code that match other modules of the ref-

erence implementation, the coverage results become
much closer to each other: the function-level cover-
age ratio is cca. 70% for both the whole A+.NET
system and module ‘a’ of the reference interpreter.
Moreover, the size metrics of the covered code do not
differ as much as they do in the case of the whole code
bases: in the reference implementation, 8,655 lines of
code and 11,261 statements were covered by the tests
in 861 functions, while the same data for A+.NET
is 13,804 lines, 5,717 statements in 1,206 functions.
This means that we managed to identify two function
sets, one in each system, of comparable size and of
equivalent functionality, which can form the basis of
our further investigations.

4 MAINTAINABILITY METRICS

Once we identified the functionally equivalent parts
of the two A+ execution environments, their compar-
ison became possible. We used the Columbus tool
chain (Ferenc et al., 2002) to analyze the sources of
the two systems and to compute such maintainability-

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

294



Table 3: Maintainability-related metrics measured for the
A+ reference interpreter and A+.NET.

Metric Reference Interpreter A+.NET
min / avg / max min / avg / max

LOC 1 / 10.07 / 375 1 / 11.46 / 275
NOS 0 / 13.08 / 372 0 / 4.73 / 71
McCC 1 / 4.45 / 123 1 / 2.38 / 71
NLE 0 / 1.04 / 6 0 / 0.59 / 5

related metrics for the covered functions, which were
defined for both implementation languages. As a re-
sult, we got two size metrics – (executable) lines of
code (LOC) and number of statements (NOS), those
that were already presented in Tables 1 and 2 – and
two complexity metrics – McCabe’s cyclomatic com-
plexity (McCC) and nesting level (NLE) – for each
function.

Two out of the four metrics above are traditional
and well-known: LOC is one of the easiest met-
ric to compute (but often still very informative) and
McCC (McCabe, 1976) is also often used. For the
sake of completeness however, NOS and NLE is ex-
plained below. NOS counts the number of control
structures (e.g., if, for, while), unconditional control
transfer instructions (e.g., break, goto, return), and top
level expressions in a function. This definition makes
NOS capture a more syntax-oriented concept of size
than LOC (at least for languages where the concepts
of line and statement are not related). The NLE met-
ric determines the maximum number of the control

structure depth in a function.
Table 3 presents the aggregated metrics for both

systems. The averages of NOS, McCC, and NLE, and
the maximums of all metrics show that the size and
the complexity of the functions in the reference imple-
mentation are higher (sometimes significantly higher,
see NOS) than in A+.NET, which is usually an ac-
cepted mark of lower maintainability. The only out-
lier is avg(LOC), where the reference implementation
produces a lower (i.e., better) metric. However, the
difference in the case of this metric is much smaller
(a factor of 1.14 only) than for the others.

In addition to the aggregated results, Figure 2
shows the histograms of the computed metrics. (For
the size metrics, the histograms use exponentially
growing intervals with numbers on the horizontal axis
denoting the upper bound of the interval. For the
complexity metrics, the intervals are of equal size.
The vertical axis denotes the percentage of functions
falling in a given interval.) The histogram of LOC
explains why the aggregations of the metric do not
give a conclusive result. Whether the relative number
of functions falling into a size category (interval) is
larger in the reference implementation or in A+.NET
is almost alternating. However, the histograms of
the other three metrics, especially NOS and McCC,
strengthen the hypothesis that the reference inter-
preter is larger and more complex. For A+.NET, a
larger portion of functions fall into the small metric
ranges than for the reference implementation, while in

0

10%

20%

30%

40%

1 2 4 8 16 32 64 128 256 256+

A+.NET
A+ Ref. Impl.

0

20%

40%

60%

0 1 2 4 8 16 32 64 128 256 256+

A+.NET
A+ Ref. Impl.

(a) LOC (b) NOS

0

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9 10 10+

A+.NET
A+ Ref. Impl.

0

20%

40%

60%

80%

0 1 2 3 4 5 5+

A+.NET
A+ Ref. Impl.

(c) McCC (d) NLE

Figure 2: Histograms of the computed maintainability-related metrics.

A�Comparison�of�Maintainability�Metrics�of�Two�A+�Interpreters

295



Table 4: Derived metrics computed for the A+ reference interpreter and A+.NET.

Metric Reference Interpreter A+.NET
min / avg / max min / avg / max

NOS/LOC 0 / 2.94 / 37 0 / 0.50 / 1.40
McCC+ ln(1+NOS) 1 / 6.42 / 128.36 1 / 3.72 / 75.28

0

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2+

A+.NET
A+ Ref. Impl.

0

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 11+

A+.NET
A+ Ref. Impl.

(a) NOS/LOC (b) McCC+ ln(1+NOS)

Figure 3: Histograms of the derived metrics.

the large ranges the reference implementation domi-
nates. We can observe that in A+.NET, cca. 60%
of the functions have 2 statements at the maximum,
while in the reference interpreter, on the contrary, cca.
60% of the functions have more than 4 statements.
For the McCabe complexity, we can see that while in
A+.NET only 2% of the functions have a metric value
higher than 10, in the reference interpreter 8% of the
functions is so complex.

Additionally to the metrics that are directly com-
puted by the Columbus tool chain from the sources,
we experimented with derived metrics as well. Our
original plan was to compute the Maintainability In-
dex (MI) (Oman and Hagemeister, 1992) for both sys-
tems but unfortunately, the current version of the tool
chain does not compute the Halstead Volume met-
ric that is a component of MI. Thus, the analysis of
MI is left for future work. In this paper, we compute
two simpler formulae that grasp some key differences
between the reference implementation and A+.NET.
The first formula is NOS/LOC: this derived metric
tells the average number of statements written in a sin-
gle line. Guidelines normally suggest one statement
per line to keep the code readable and comprehen-
sible. The second formula is McCC+ ln(1+NOS):
combining the complexity and the size of a function
into a single number. This metric is motivated by
the Maintainability Index but the currently unavail-
able Halstead Volume component is left out and the
scale is inverted: now higher values represent larger
code size and/or higher complexity, thus – presum-
ably – lower maintainability.

The above discussed derived metrics were also
computed for each investigated function, and their ag-
gregated data is shown in Table 4. For all averages

and maximums, A+.NET scores considerably lower
than the reference interpreter. Moreover, the state-
ments per line metric of the reference interpreter is
stunning: the average number of statements in ev-
ery executable line of source code is about 3, and the
most ‘crowded’ function contains 37 top-level state-
ments in a line on average! Manual investigation re-
vealed that this extreme function consisted of a single
line only. However, multi-line functions with a high
NOS/LOC ratio are not uncommon either. Actually,
cca. 30% of the investigated functions of the refer-
ence interpreter have more than two statements on a
line on average, as depicted in Figure 3.

5 RELATED WORK

The porting and reengineering of legacy systems have
long been the focus of research. However, most au-
thors concentrate on estimating the cost of the reengi-
neering work (Sneed, 2005) or on using automated
tools to transform the legacy system from the source
language to another target language (Sneed, 2010).
These papers focus mainly on the tools developed for
the transformation explaining that a great amount of
time and effort is required to create such software. In
the case of A+.NET, such an automatic transforma-
tion was not viable since a completely different ar-
chitecture – the use of the DLR – was envisioned to
allow interoperability with other .NET routines and
applications.

As a script language, A+ was not the first to be
integrated into the .NET framework. Another suc-
cessful work was the porting of the Python language,

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

296



which resulted in the IronPython project (Hugunin,
2004). The project is still under active development
and it is regularly compared to the reference imple-
mentation (Fugate, 2010). Most importantly, the DLR
also grew out from this project (Hugunin, 2007).

6 SUMMARY AND FUTURE
WORK

In this paper, we argued that technical difficulties and
performance are not the only important aspects of
porting legacy code to modern platforms, but main-
tainability is (at least) of equal importance. Thus,
we took two implementations of the A+ runtime, one
that had been developed for 20 years in C/C++ and
a clean-room implementation in C#, and investigated
them. We described how we managed to identify
the functionally equivalent parts of the two systems
and then we presented the analysis of maintainability-
related source code metrics, as well as some simple
derived metrics. The results indicate that the reimple-
mented version is less complex and thus – presumably
– more maintainable.

For the future, we have several plans for improve-
ments. First of all, we would like to increase the func-
tionality of the A+.NET runtime to support more fea-
tures of the reference implementation. This would re-
sult in larger functionally equivalent code bases that
can be compared. (And this would also help mov-
ing more A+ applications to the .NET-based environ-
ment.) Then, we would like to compute and analyze
more maintainability-related metrics for the two im-
plementations. Most importantly, we would like to
compute the Maintainability Index for C/C++ and C#
as well. Furthermore, we would like to build a broad
benchmark set that allows the evaluation of the per-
formance of A+ environments. This would allow the
evaluation of performance and maintainability side-
by-side. Unfortunately, such an A+ benchmark does
not exist yet, or it is not publicly available at least.

Although we plan more analysis and comparison
for the future, we hope that our current findings can
already give guidance in assessing the costs and the
gains of porting legacy systems.

ACKNOWLEDGEMENTS

The authors would like to thank Péter Siket and Péter
Hegedűs for their help with the Columbus tool chain.

REFERENCES

Chiles, B. and Turner, A. (2009).Dynamic Language Run-
time. http://dlr.codeplex.com/.

Clayton, L., Eklof, M. D., and McDonnell, E. (2000).
ISO/IEC 13751:2000(E): Programming Language
APL, Extended. Internation Standards Organization.

Ferenc, R., Beszédes,Á., Tarkiainen, M., and Gyimóthy,
T. (2002). Columbus – reverse engineering tool and
schema for C++. InProceedings of the 18th Inter-
national Conference on Software Maintenance (ICSM
2002), pages 172–181, Montréal, Canada. IEEE.

Fugate, D. (2010). IronPython performance comparisons.
http://ironpython.codeplex.com/wikipage?title=Iron
Python%20Performance.

Gál, P. and Kiss,́A. (2012). Implementation of an A+ in-
terpreter for .NET. InProceedings of the 7th Interna-
tional Conference on Software Paradigm Trends (IC-
SOFT 2012), pages 297–302, Rome, Italy. SciTePress.

Hugunin, J. (2004). IronPython: A fast Python implemen-
tation for .NET and Mono. InPyCON 2004, Wash-
ington, DC, USA.

Hugunin, J. (2007). A dynamic language runtime (DLR).
http://blogs.msdn.com/b/hugunin/archive/2007/04/30/
a-dynamic-language-runtime-dlr.aspx.

McCabe, T. J. (1976). A complexity measure.IEEE Trans-
actions on Software Engineering, (4):308–320.

Morgan Stanley (1995–2008).A+ Language Reference.
http://www.aplusdev.org/Documentation/.

Mosberger, D. (2002–2013). The libunwind project.
http://www.nongnu.org/libunwind/index.html.

Oman, P. and Hagemeister, J. (1992). Metrics for assessing
a software system’s maintainability. InProceedings of
the 1992 IEEE Conference on Software Maintenance,
pages 337–344, Orlando, FL, USA. IEEE.

Sneed, H. M. (2005). Estimating the costs of a reengineer-
ing project. InProceedings of the 12th Working Con-
ference on Reverse Engineering (WCRE 2005), pages
111–119, Pittsburgh, PA, USA. IEEE.

Sneed, H. M. (2010). Migrating from COBOL to Java. In
Proceedings of the 26th IEEE International Confer-
ence on Software Maintenance (ICSM 2010), pages
1–7, Timisoara, Romania. IEEE.

Wang, X., Sun, J., Yang, X., Huang, C., He, Z., and Maddi-
neni, S. R. (2006). Reengineering standalone C++
legacy systems into the J2EE partition distributed en-
vironment. InProceedings of the 28th International
Conference on Software Engineering, pages 525–533.
ACM.

A�Comparison�of�Maintainability�Metrics�of�Two�A+�Interpreters

297


