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Abstract. This paper aims at investigating empirically the applicability of 
Lehman’s laws of software evolution using software metrics. We used a syn-
thetic metric (Quality Assurance Indicator - Qi), which captures in an integrat-
ed way different object-oriented software attributes. We wanted to investigate if 
the Qi metric can be used to support the applicability of Lehman’s laws of 
software evolution. We focused on the laws related with continuing change, in-
creasing complexity, continuing growth and declining quality. We performed an 
empirical analysis using historical data on two open source (Java) software sys-
tems. The collected data cover a period of more than four years (fifty-two ver-
sions) for the first system and more than seven years (thirty-one versions) for 
the second one. Empirical results provide evidence that the considered Leh-
man’s laws are supported by the collected data and the Qi metric. 

1 Introduction 

Software systems need to continually evolve during their life cycle for various rea-
sons: adding new features to satisfy user requirements, changing business needs, in-
troducing novel technologies, correcting faults, improving quality, etc. [1, 2]. The 
accumulation of changes, along the evolution of a software system, can lead to a deg-
radation of its quality [3-7]. It is, therefore, important to monitor how software quality 
evolves so that quality assurance (QA) activities can be properly planned [7]. Soft-
ware evolution is, in fact, the dynamic behavior of programming systems as they are 
maintained and enhanced over their lifetimes [8]. Lehman’s laws of software evolu-
tion [4, 5] state that for keeping software systems long-lived continuous change is 
required. The laws also suggest that due to changes and growth over time, software 
systems become more complex and it becomes more and more difficult to extend 
them by adding new functionalities. 

Software metrics can be used to analyze the evolution of software systems [9]. 
Metrics have, in fact, a number of interesting characteristics for providing evolution 
support [10]. A large number of metrics have been proposed for measuring various 
properties of object-oriented (OO) software systems [11]. Empirical evidence exists 
showing that there exists a relationship between (many of) these metrics and software 
quality attributes [9, 12-21]. However, with the growing complexity and size of OO 
software systems, the ability to reason about such a major issue using synthetic me-
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trics would be more appropriate in practice. 
We proposed in [22] a new metric, called Quality Assurance Indicator (Qi), cap-

turing in an integrated way the interactions between classes and the distribution of the 
control flow in a software system. The Quality Assurance Indicator of a class is based 
on intrinsic characteristics of the class, as well as on the Quality Assurance Indicator 
of its collaborating classes. It is important to notice, however, that the metric has no 
ambition to capture the overall quality of OO software systems. Furthermore, the 
objective is not to evaluate a design by giving absolute values, but more relative val-
ues that may be used for identifying critical classes on which more QA effort is need-
ed to ensure software quality. In [22], we performed an empirical analysis using data 
collected from several open source (Java) software systems. In all, more than 4,000 
classes were analyzed (400 000 lines of code). We compared the Qi metric, using the 
Principal Components Analysis (PCA) method, to various well known OO metrics. 
The selected metrics were grouped in five categories: coupling, cohesion, inheritance, 
complexity and size. Empirical results provide evidence that the Qi metric captures, in 
a large part, the information provided by the studied OO metrics. Moreover, we ex-
plored in [12] the relationship between the Qi metric and testability of classes and 
investigated in [23] the capacity of the Qi metric in predicting the unit testing effort of 
classes using regression analysis. Results provide evidence that the Qi metric is able 
to accurately predict the unit testing effort of classes. More recently, we explored in 
[24] if the Qi metric can be used to observe how quality, measured in terms of de-
fects, evolves in the presence of changes and in [25] if the Qi metric captures the 
evolution of two important OO metrics (related to coupling and complexity). 

In this paper, we wanted to investigate thoroughly if the Qi metric, as a synthetic 
metric, can be used to support the applicability of Lehman’s laws of software evolu-
tion [4, 5]. We focused on the Lehman’s laws related with continuing change, in-
creasing complexity, continuing growth and declining quality. We addressed software 
evolution from both software internal and external perspectives. We performed an 
empirical analysis using historical data on two open source (Java) software systems. 
The collected data cover a period of more than four years (fifty-two versions) for the 
first system and more than seven years (thirty-one versions) for the second one. Em-
pirical results provide evidence that the considered Lehman’s laws are supported by 
the collected data and the Qi metric. 

The rest of this paper is organized as follows: Section 2 gives a survey on related 
work. The Qi metric is introduced in Section 3. Section 4 presents the empirical study 
we performed. Finally, Section 5 concludes the paper. 

2 Related Work 

Mens et al. [10] provide an overview of the ways software metrics have been (and can 
be) used to analyze software evolution. A distinction is made between using software 
metrics before the evolution has occurred (predictive) and after the evolution has 
occurred (retrospective). To support retrospective analysis, metrics can be used to 
understand the quality evolution of a software system by considering its successive 
releases. In particular, metrics can be used to measure whether the quality of a soft-
ware has improved or degraded between two releases. Dagpinar et al. [15] investigate 
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the significance of different OO metrics for the purpose of predicting maintainability 
of software. Nagappan et al. [26] focus on mining metrics to predict component fail-
ures. The authors noted that there is not a single set of complexity metrics that could 
be used as a universally best defect predictor. Ambu et al. [27] address the evolution 
of quality metrics in an agile/distributed project and investigate how the distribution 
of the development team has impacted the code quality. 

Lee et al. [9] provide an overview of open source software evolution with software 
metrics. The authors explored the evolution of an open source software system in 
terms of size, coupling and cohesion, and discussed its quality change based on the 
Lehman’s laws of evolution [4, 5, 28]. Jermakovics et al. [29] propose an approach to 
visually identify software evolution patterns related to requirements. Mens et al. [30] 
present a metrics-based study of the evolution of Eclipse. The authors consider seven 
major releases and investigate whether three of the laws of software evolution (con-
tinuing change, increasing complexity and continuing growth) were supported by the 
data collected. Xie et al. [1] conduct an empirical analysis on the evolution of seven 
open source programs and investigate also on Lehman’s laws of software evolution. 

Murgia et al. [18] address software quality evolution in open source projects using 
agile practices. The authors used a set of OO metrics to study software evolution and 
its relationship with bug distribution. According to the achieved results, Murgia et al. 
concluded also that there is not a single metric that is able to explain the bug distribu-
tion during the evolution of the analyzed systems. Zhang et al. [7] use c-charts and 
patterns to monitor quality evolution over a long period of time. The number of de-
fects was used as a quality indicator. Eski et al. [16] present an empirical study on the 
relationship between OO metrics and changes in software. The authors analyze modi-
fications in software across the historical sequence of open source projects and pro-
pose a metrics-based approach to predict change-prone classes. Yu et al. [31] study 
the possibility of using the number of bug reports as a software quality measure. Us-
ing statistical methods, the authors analyze the correlation between the number of bug 
reports and software changes. 

3 Quality Assurance Indicator 

We give, in this section, a summary (for space limitation reasons) of the definition of 
the Quality Assurance Indicator (Qi) metric. For more details see [22, 23]. The Qi 
metric is based on the concept of Control Call Graphs (CCG), which are a reduced 
form of traditional Control Flow Graphs (CFG). A CCG is a CFG from which the 
nodes representing instructions (or basic blocks of sequential instructions) not con-
taining a call to a method are removed. The Qi metric is normalized and gives values 
in the interval [0, 1]. A low value of the Qi of a class means that the class is a high-
risk class and a high value of the Qi of a class indicates that the class is a low-risk 
class. 

3.1 Quality Assurance Indicator 

The Qi of a method Mi is defined as a kind of estimation of the probability that the 
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control flow will go through the method without any failure. The Qi of a method Mi is 
based on its intrinsic characteristics (cyclomatic complexity, unit testing coverage), as 
well as on the Qi of the methods invoked by the method Mi. In OO software systems, 
objects collaborate to achieve their respective responsibilities. A method of poor qual-
ity can have (directly or indirectly) a negative impact on the methods that use it. The 
Qi of a method Mi is given by: 

 

Qi୑౟
ൌ Qi୑౟

∗ ∙෍ ቈP൫C୨
୧൯ ∙ෑ Qi୑

୑∈஢ౠ
቉

୬౟

୨ୀଵ
 (1) 

 

with : 
Qi୑୧: QA indicator of method Mi, 
Qi୑౟

∗ : intrinsic QA indicator of method Mi, 

C୨
୧: jth path of method Mi, 

P൫C୨
୧൯: probability of execution of path Cj

i of method Mi, 

Qi୑: QA indicator of method M included in the path ܥ௝
௜, 

n୧: number of linear paths of the CCG of method Mi,  
and σ୨: set of the methods invoked in the path C୨

୧. 
 

By applying the previous formula (1) to each method we obtain a system of N (num-
ber of methods in the program) equations. The obtained system is not linear and is 
composed of several multivariate polynomials. We use an iterative method (method 
of successive approximations) to solve it. The system is, in fact, reduced to a fixed 
point problem. Furthermore, we define the Qi of a class C (noted	Qiେ) as the product 
of the Qi of its methods: 

ܳ݅஼ ൌෑ ܳ݅ெ
ெ∈ఋ

 (2) 
 

where δ is the set of methods of the class C. The calculation of the Qi metric is entire-
ly automated by a tool (prototype) that we developed for Java software systems. 

3.2 Assigning Probabilities 

The CCG of a method can be seen as a set of paths that the control flow can pass 
through (depending on the states of the conditions in the control structures). To cap-
ture this probabilistic characteristic of the control flow, we assign a probability to 
each path C of a control call graph as follows: 

ܲሺܥሻ ൌෑ ܲሺܣሻ
஺∈ఏ

 (3) 
 

where θ is the set of directed arcs composing the path C and P(A) the probability of 
an arc to be crossed when exiting a control structure. 

To facilitate our experiments, we assigned probabilities to the different control 
structures of a (Java) program according to the rules given in Table 1. These values 
are assigned automatically during the static analysis of the source code of a program 
when generating the Qi models. These values can be adapted according to the nature 
of the applications (for example). As an alternative way, the probability values may 
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also be assigned (adapted) by programmers during the development (in an iterative 
way, knowing the code) or obtained by dynamic analysis. Dynamic analysis is out of 
the scope of this paper. 

Table 1. Assignment rules of the probabilities. 

Nodes Probability Assignment Rule 

(if, else) 
0.5 for the exiting arc « condition = true » 
0.5 for the exiting arc « condition=false » 

while 
0.75 for the exiting arc « condition = true » 
0.25 for the exiting arc « condition = false » 

(do, while) 
1 for the arc: (the internal instructions are execut-
ed at least once) 

(switch,case) 1/n for each arc of the n cases. 

(?, :) 
0.5 for the exiting arc « condition = true » 
0.5 for the exiting arc « condition = false » 

for 
0.75 for entering the loop 
0.25 for skipping the loop 

(try, catch) 
0.75 for the arc of the « try » bloc 
0.25 for the arc of the « catch » bloc 

Polymorphism 1/n for each of the eventual n calls. 

3.3 Intrinsic Quality Assurance Indicator 

The Intrinsic Quality Assurance Indicator of a method Mi, noted Qi*
Mi, is given by: 

 

ܳ݅ெ೔
∗ ൌ ሺ1 െ  ௜ሻ (4)ܨ

 

with: ܨ௜ ൌ
ሺଵି௧௖೔ሻ௖௖೔
௖௖೘ೌೣ

 

where: 
CC୧ : cyclomatic complexity of method Mi, 
ܿܿ௠௔௫ ൌ maxଵஸ௜ஸேሺܿܿ௜ሻ, 
tc୧: unit testing coverage of the method Mi, ܿݐ௜ ∈ ሾ0,1ሿ. 
 

Many studies provided empirical evidence that there is a significant relationship be-
tween cyclomatic complexity and fault proneness (e.g., [13, 21, 32]). Testing (as one 
of the most important QA) activities will reduce the risk of a complex program and 
achieve its quality. Moreover, testing coverage provide objective measures on the 
effectiveness of a testing process. The testing coverage measures are (currently in our 
approach) affected by programmers based on the test suites they developed to test the 
classes of the program. The testing coverage measures can also be obtained automati-
cally (using tools such as Together (www.borland.com) or CodePro (develop-
ers.google.com)) by analyzing the code of the test suites (JUnit suites for example) to 
determine which parts of the classes that are covered by the test suites and those that 
are not. This issue is out of the scope of this paper and will be considered in our future 
work. 
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4 Empirical Study 

We present, in this section, the empirical study we conducted in order to investigate if 
the Qi metric can be used to support the Lehman’s laws along the evolution of a soft-
ware system. We focus on the following laws: continuous change, increasing com-
plexity, continuing growth and declining quality. We used historical data collected 
from successive released versions of two open source Java software (Table 2). 

Table 2. Some statistics on the used systems. 

 
Systems 

Time 
frame 
(years) 

Releases 
/Captures 

First release computed Last release computed 

Version   Date   Size  
(SLOC) 

Version  Date   Size 
(SLOC) 

Eclipse 
PDE.UI 

 
  4.25 

     52 
(monthly) 

    
     - 

2002-
08-29 

 
 9 519 

 
    - 

2006-
11-28 

 
79 548 

Apache 
Tomcat 

 
  7.2 

     31 
(official) 

 
  5.5.0 

 
    - 

 
126 927 

 
5.5.35 

 
    - 

 
170 998 

4.1 The Case Studies 

The first system we selected is an Eclipse component (PDE.UI). We used captures 
taken at regular intervals (monthly, more than four years). The second system we 
selected is a relatively large system (Tomcat). This system is an open source web 
server developed by the Apache Software Foundation. We analysed its 5.5 branch, 
launched in August 2004. The version 5.5.35, the latest to date, was launched on No-
vember 2011. For this system, we used the official releases as time captures. The first 
version of PDE.UI includes 121 classes (more than 9 500 lines of code) and the last 
one includes 670 classes (more than 79 000 lines of code). The first version of 
Tomcat includes 837 classes (more than 120 000 lines of code) and the last one in-
cludes 1 108 classes (more than 170 000 lines of code). 

4.1.1 Data Gathering 

We collected two types of data from the subject systems for all the steps of our empir-
ical study: source code historical data and Qi data. In addition to these data, we also 
collected other (specific) data related to each law. These data will be presented in the 
corresponding sections. 

System History Data: We used CVS (Concurrent Versions System) to collect histor-
ical data about PDE.UI. CVS is a client-server software that allows keeping track of a 
software system evolution. We connected to the CVS repertory of Eclipse. We based 
our analysis on the latest available version on the first day of each month. A period of 
more than four years (fifty two versions) is covered. For Apache Tomcat, we retrieved 
the official releases on the 5.5.x branch from the official website (archive.apache.org). 
A period of more than seven years (thirty one versions) is covered for this system. 

Qi Data: We used the tool we developed to collect the Qi data. We computed the Qi 
value for each class of each released version of a subject system. We computed the Qi 
values at the micro level (classes) as well as at the macro level (system). Moreover, 

35



for our experiments, since we did not have any data on the test suites used for testing 
the subject systems and knowing that the main purpose of this study is to investigate 
if the Qi metric can be used to support Lehman’s laws of evolution, the testing cover-
age (tci, Section 3.3) is set to 0.75 for all methods. 

4.2 Lehman’s Laws of Software Evolution 

We consider in our study four of the eight Lehman’s laws of software evolution: con-
tinuing change, increasing complexity, continuing growth and declining quality. For 
each of these laws, we investigate its applicability on our test applications. In addi-
tion, we describe the procedure we used, the specific data we collected (using differ-
ent metrics to capture some attributes of the systems analyzed) in addition to the data 
described previously and the observations on whether the law is confirmed or in-
firmed. Our objective is to investigate if the Qi metric, as a synthetic metric, can be 
used to support the applicability of Lehman’s laws of software evolution. 

4.2.1 Continuing Change 

An evolving system undergoes many changes over time. The Lehman's first law (con-
tinuing change) states that a software system must continually adapt to its environ-
ment, otherwise it becomes progressively less useful. Many studies on software evo-
lution have addressed and validated this law for the open-source software systems 
studied [1, 9, 10, 33]. In our study, we consider change from the perspective of the 
cumulative number of added/removed classes. Figure 1 shows the curves of the cumu-
lative number of changes for the two systems. The figure clearly shows that the two 
systems continue to change over time. Using linear regression, we calculated the 
slopes associated with these data sets. A similar approach has been used by Xie et al. 
[1]. From Figure 1, it can be seen that the slopes of the curves are positive for both 
systems (obviously since it is a sum of positive elements). Our focus is therefore on 
the strength of the slope of these curves. Results show that the changes take place 
periodically over time. However, changes in smaller amounts are held on a continu-
ous basis and this throughout the period of evolution of the two systems. With these 
observations we can conclude that continuing change is confirmed for our two soft-
ware systems. 

 

Fig. 1. Evolution of cumulative changes for PDE.UI and Tomcat. 
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Fig. 2. Evolution of size metrics variations for PDE.UI. 

 

Fig. 3. Evolution of size metrics variations for Tomcat. 

We extended our analysis by focusing on variations in the values of some size 
metrics. We used several size indicators. We used the number of lines of code in a 
system (SLOC), the total number of classes in a system (SNOC) and the average 
number of lines of code in a class (LOC). We used the Borland Together tool 
(www.borland.com) to collect data on these metrics on the two subject systems. Fig-
ures 2 and 3 show, respectively for PDE.UI and Tomcat, variations in the used size 
related metrics. We can observe that the variations are quite dispersed for both sys-
tems over time. Therefore, changes in the case of the two systems are continuous. 
This confirms once again that continuous change is observable for the systems ana-
lyzed. Moreover, Figure 4 shows the variations in the Qi metric along the evolution of 
the two systems. The analysis of these curves clearly reveals continuing presence of 
changes in the case of both systems. Variations in the values of Qi are, in fact, contin-
uous. With these observations, we can conclude that the Qi metric confirms also the 
first law for the systems analyzed. 

 

Fig. 4. Evolution of Qi variations for PDE.UI and Tomcat. 
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lyzed [1, 9]. In our study, we used three well-known software metrics (RFC, WMC 
and CBO) [34] to capture complexity and coupling along the evolution of the systems 
studied. The CBO (Coupling Between Objects) metric counts for a class the number 
of other classes to which it is coupled (and vice versa). The RFC (Response For 
Class) metric for a class is defined as the set of methods that can be executed in re-
sponse to a message received by an object of the class. The WMC (Weighted Methods 
per Class) metric gives the sum of complexities of the methods of a given class, 
where each method is weighted by its cyclomatic complexity. Here also, we used the 
Borland Together tool to collect data on these metrics on the two subject systems. We 
calculated the values of these metrics for all versions of the considered systems. Fig-
ures 5 and 6 show, respectively for PDE.UI and Tomcat, the curves of the metrics and 
the slope of the linear regression followed by each of these curves.  

Overall, from the two figures, we can clearly observe that all the curves show an 
increasing trend. The three metrics have increased over time. With these observations, 
we can conclude that the second law is confirmed for the two systems. Moreover, 
Figure 7 shows the evolution of the Qi metric for both systems. From this figure, we 
can observe a decreasing trend of the Qi metric, which is opposite to the trend of the 
curves corresponding to the coupling and complexity metrics. The decreasing in the 
values of the Qi metric confirms also the second law for the two systems. We also 
calculated the correlation coefficients between the Qi metric and the coupling and 
complexity metrics. We used the Spearman’s correlation coefficient in our study. This 
technique is widely used for measuring the degree of relationship between two varia-
bles. Correlation coefficients will take a value between -1 and +1. We applied the 
typical significance threshold (α = 0.05) to decide whether the correlations were sig-
nificant. We analyzed the correlations between the Qi metric and the coupling and 
complexity metrics at both micro and macro levels. 

 

Fig. 5. Evolution of coupling and complexity metrics for PDE.UI. 

 

Fig. 6. Evolution of coupling and complexity metrics for Tomcat. 
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Fig. 7. Evolution of the Qi metric for PDE.UI and Tomcat. 

For the macro level, we used the average values of the metrics for each version of 
the subject systems. We give in what follows (Table 3), for space constraints, only the 
correlation values at the macro level. From Table 3, it can be seen that all correlations 
are significant (in boldface). The correlation values are moderate for PDE.UI but 
relatively high (especially between the Qi metric and RFC and CBO metrics) for 
Tomcat, the larger of the two systems. Moreover, the correlations are negative. This 
confirms the trends observed from the different previous curves. Therefore, we can 
conclude that the increasing complexity of the two systems is once again confirmed 
and supported by the Qi metric. 

Table 3. Correlations between Qi and complexity metrics for PDE.UI and Tomcat. 
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additions/deletions of classes presented previously in section 4.2.1 (Figure 1), in 
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With these observations we can confirm the law of continuing growth for both sys-
tems. 
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Fig. 8. Evolution of the number of classes of PDE.UI and Tomcat. 

Let us now analyze the evolution of the Qi metric. From Figure 7, we can observe 
that the Qi metric follows an opposite trend compared to the size indicators, which is 
not a surprising finding. In fact, a significant increase in the size of a software system 
is generally followed by an increase in its complexity, which leads to a decrease in the 
Qi values over time, as explained in section 4.2.2. In order to validate these observa-
tions, we analyzed the correlation values between the Qi metric and the size indica-
tors. We used here also the Spearman’s correlation coefficient under the same condi-
tions as in section 4.2.2. Table 4 gives the obtained results. As it can be seen, the 
correlations are all significant (in boldface) and negatives. This confirms that the Qi 
metric supports also the law of continuing growth for both systems. 

Table 4. Correlations between Qi and size metrics for PDE.UI and Tomcat. 

 SNOC vs. Qi SLOC vs. Qi LOC vs. Qi NOO vs. Qi 

PDE.UI        -0.433        -0.442      -0.891      -0.561 

Tomcat        -0.736        -0.790      -0.397      -0.697 

4.2.4 Declining Quality 

This law states that the quality of a software system decreases over time, unless work 
is done to improve it. Among the studies that have investigated this law [1, 9], none 
was able to confirm it for the test systems they used. The study conducted by Lee [9], 
in particular, has observed an overall improvement of software quality. In our study, 
we address this law from different perspectives. In a first step, we considered software 
quality from an external perspective. In order to analyze how software quality chang-
es as software evolves, we used the number of reported defects as a quality indicator. 
We also investigated for patterns of evolution (according to Zhang et al. [7]). A high-
er occurrence of faults is considered as a sign of poor quality. We used, in the case of 
the two systems, Bugzilla (defect tracking system) reports on resolved/closed faults to 
withdraw information about faults. Figure 9 shows the evolution of the number of 
faults identified at each iteration of the two systems. Zhang et al. [7] studied the evo-
lution of faults of PDE.UI based on recurring patterns. The authors found that PDE.UI 
follows a roller coaster pattern, which means that its quality is not under control. 
Amplitudes are, in fact, at their strongest in the center of the evolution period studied 
(iterations 21 and 33). With the exception of these two periods, the quality seems to 
be much more under control. The results we obtained for PDE.UI confirm the conclu-
sions of Zhang et al. [7]. Tomcat has not been studied by Zhang et al. However, based 
on the patterns they identified, we can say that this system also follows a roller coast-
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er pattern due to the many peaks visible in the curve. The quality of Tomcat, however, 
seems to be much more under control towards the end of the analyzed period with a 
stabilization of the number of faults. Such observations therefore lead us to conclude 
in a deterioration of the quality for the two systems under study. In addition, we con-
sidered in a second step software quality from an internal point of view. From the 
curves given in Figure 5 and Figure 6 (increasing complexity), we can clearly observe 
that the complexity of the two systems increases, according to the three metrics (RFC, 
WMC and CBO). These observations confirm therefore that the quality of the ana-
lyzed systems from an internal point of view decreases. In fact, an increasing com-
plexity of a software system often symbolizes a decrease in its quality. So, when con-
sidering both internal and external quality metrics, we can conclude that the law of 
declining quality is confirmed for the two systems.  

 

Fig. 9. Evolution of the number of faults superimposed with Qi for the two systems. 

Let us now analyze the evolution of the Qi metric. Figure 9 shows the curve of the 
Qi metric, superimposed with the number of faults reported along the evolution of the 
two systems. The linear regression of the Qi curve is also given in the figure. The 
values on the y-axis are normalized between 0 and 1 (min-max). From Figure 9 and 
previous results, we can make several observations. PDE.UI shows a negative trend 
for the Qi metric, mainly because of the steep decrease between iterations 15 and 17. 
To this period corresponds, in fact, a significant increase in complexity (see Figure 5) 
and a significant growth of the system (see Figure 8). Immediately after, we can ob-
serve a long plateau where the Qi values are at their lowest, ranging between itera-
tions 17 and 38. Throughout this period, the number of faults is relatively high and the 
complexity metrics remain relatively stable. Two large peaks appear in the curve of 
faults around iterations 20 and 32. After this long period, the Qi values rebounded. 
Overall, for PDE.UI, we can conclude that the Qi metric thus indicates the variations 
(especially for the steep drop) of quality over time. Tomcat presents for the Qi metric 
a regular decreasing trend, during which faults appear as peaks in regular intervals. In 
addition, we already know from previous results that there is an increasing complexity 
for this system, according to the evolution of the complexity metrics (CBO, RFC and 
WMC). From these observations, we can conclude that the Qi metric captures the 
declining quality of the two systems. We can therefore say that the Qi metric supports 
the declining quality law for the studied systems. 

4.2.5 Threats to Validity 

The study presented in this paper should be replicated using many other software 
systems in order to draw more general conclusions about the ability of the Qi metric 
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to support the Lehman’s laws of software evolution. In fact, there are a number of 
limitations that may affect the results of the study or limit their interpretation and 
generalization. The achieved results are based on the data set we collected from only 
two open source software systems written in Java. Even if the collected data cover a 
period of several years: 4 years for the first system (fifty-two versions) and 7 years for 
the second one (thirty-one versions), we do not claim that our results can be general-
ized to all systems, or software systems written in other languages. The findings in 
this paper should be viewed as exploratory and indicative rather than conclusive. 
Moreover, the study has been performed on open source software systems. It would 
be interesting to replicate the study on industrial systems. It is also possible that facts 
such as the development style used by the developers for developing (and maintain-
ing) the code of the subject systems (or other related factors) may affect the results or 
produce different results for specific applications. In addition, the study is based im-
plicitly on the assumption that the used software metrics (LOC, RFC, WMC, CBO, 
etc.) actually capture the intended characteristics. We deliberately used multiple met-
rics for each law to reduce this threat. Also, the study is based on the data we collect-
ed on the evolution of the studied systems, in particular the defect information, that 
we suppose reliable. 

5 Conclusions 

In this paper, we analyzed the evolution of two open-source Java software systems. 
We wanted to investigate if the Qi (Quality Assurance Indicator) metric, a metric that 
we proposed in a previous work, can be used to support the applicability of Lehman’s 
laws of software evolution. We focused in this study on the Lehman’s laws related 
with continuing change, increasing complexity, continuing growth and declining 
quality. We addressed software evolution from both internal and external perspec-
tives. We performed an empirical analysis using historical data collected from the 
successive released versions of the two systems. The collected data cover a period of 
more than four years for the first system (fifty-two versions in total) and a period of 
more than seven years for the second one (thirty-one versions in total). Empirical 
results provide evidence that the considered Lehman’s laws are supported by the 
collected data and the Qi metric. 

The advantage that brings, in our opinion, the use of the Qi metric (as a synthetic 
metric) in the case of evolutionary systems, is that it can be used to guide quality 
assurance actions through evolution. Indeed, the Qi metric can be used for identifying, 
in a relative way as software evolves, critical parts that require more quality assurance 
(as testing) effort to ensure software quality. The achieved results are, however, based 
on the data set we collected from only two open source software systems. The find-
ings in this paper should be viewed as exploratory and indicative rather than conclu-
sive. They show, at least, that the Qi metric, as a synthetic metric, offers a promising 
potential for capturing (reflecting) various aspects related to software evolution. Fur-
ther investigations are, however, needed to draw more general conclusions. 

42



Acknowledgements 

This project was financially supported by NSERC (National Sciences and Engineer-
ing Research Council of Canada) and FRQNT (Fonds de Recherche du Québec – 
Nature et Technologies) grants. 

References 

1. Xie, G., Chen, J., Neamtiu, I.: Towards a better understanding of software evolution: An 
empirical study on open source software. In: ICSM ’09 (2009) 51–60 

2. Sommerville, I.: Software engineering. 9th Edition, Addison Wesley (2010) 
3. Parnas, P.L.: Software aging. In: Proceedings of the 16th ICSE (1994) 279–287 
4. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and laws of 

software evolution – The nineties view. In: Proceedings of the Fourth International Soft-
ware Metrics Symposium (1997) 20–32 

5. Lehman, M.M.: Laws of software evolution revisited. In: Lecture notes in computer sci-
ence, Vol. 1149/1996 (1997) 108–124 

6. van Gurp, J., Bosch, J.: Design erosion: Problems & causes. In: Journal of Systems and 
Software, Vol. 61, No. 2 (2002) 105–119 

7. Zhang, H., Kim, S.: Monitoring software quality evolution for defects. In: IEEE Software, 
Vol. 27, No. 4 (2010) 58–64 

8. Lehman, M.M., Belady, L.A.: Program evolution: Processes of software change. Academic 
Press (1985) 

9. Lee, Y., Yang, J., Chang, K.H.: Metrics and evolution in open source software. In: Proceed-
ings of the 7th QSIC (2007) 

10. Mens, T., and Demeyer, S.: Future trends in software evolution metrics. In: Proceedings of 
the 4th IWPSE (2001) 83–86 

11. Henderson-Sellers, B.: Object-oriented metrics – Measures of complexity. In: Prentice Hall, 
New Jersey (1996) 

12. Badri, M., Touré, F.: Empirical analysis for investigating the effect of control flow depend-
encies on testability of classes. In: 23rd International Conference on Software Engineering 
and Knowledge Engineering (2011) 

13. Basili, V., Briand, L., Melo, W.L.: A validation of object oriented design metrics as quality 
indicators. In: IEEE Transactions on Software Engineering, Vol. 22, No. 10 (1996) 

14. Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.: Exploring the relationships between design 
measures and software quality in object-oriented systems. In: Journal of Systems and Soft-
ware (2000) 245–273 

15. Dagpinar, M., Jahnke, J.H.: Predicting maintainability with object-oriented metrics - An 
empirical comparison. In: Proceedings of the 10th Working Conference on Reverse Engi-
neering (2003) 155–164 

16. Eski, S., Buzluca, F.: An empirical study on object-oriented metrics and software evolution 
in order to reduce testing costs by predicting change-prone classes. In: 2011 IEEE 4th Int. 
Conference on Software Testing, V&V Workshops (2011) 566–571 

17. Fenton, N.E., Pfleeger, S.L.: Software metrics: A rigorous & practical approach. 2nd Ed., 
PWS Publishing Company (1997) 

18. Murgia, A., Concas, G., Pinna, S., Tonelli, R., Turnu, I.: Empirical study of software quali-
ty evolution in open source projects using agile practices. In: CoRR, Vol. abs/0905.3287 
(2009) 

19. Singh, Y., Kaur, A., Malhotra, R.: Empirical validation of object-oriented metrics for pre-
dicting fault proneness models. In: Software Quality Journal, Vol. 18, No. 1 (2010) 3–35 

43



20. Subramanyan, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-oriented 
design complexity: Implications for software defects. In: IEEE Transactions on Software 
Engineering, Vol. 29, No. 4 (2003) 297–310 

21. Zhou, Y., Leung, H.: Empirical analysis of object-oriented design metrics for predicting 
high and low severity faults. In: IEEE Transactions on Software Engineering, Vol. 32, No. 
10 (2006) 771–789 

22. Badri, B., Badri, L., Touré, F.: Empirical analysis of object-oriented design metrics: To-
wards a new metric using control flow paths and probabilities. In: Journal of Object Tech-
nology, Vol. 8, No. 6 (2009) 123–142 

23. Badri, M., Touré, F.: Evaluating the effect of control flow on the unit testing effort of clas-
ses: An empirical analysis. In: Advances in Software Engineering Journal (2012) 

24. Badri, M., Drouin, N. Touré, F.: On Understanding Software Quality Evolution from a 
Defect Perspective: A Case Study on an Open Source Software System. In: Proceedings of 
the IEEE International Conference on Computer Systems and Industrial Informatics, Shar-
jah, UAE, December 18–20 (2012) 

25. Drouin, N., Badri, M, Touré, F.: Metrics and Software Quality Evolution: A Case Study on 
Open Source Software. In: Proceedings of the 5th International Conference on Computer 
Science and Information Technology, Hong Kong, December 29-30 (2012) 

26. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE '06), ACM 
(2006) 452–461 

27. Ambu, W., Concas, G., Marchesi, M., Pinna, S.: Studying the evolution of quality metrics 
in an agile/distributed project. In: Extreme Programming and Agile Processes in Software 
Engineering (2006) 85–93 

28. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program 
life cycle. In: Journal of Systems and Software, Vol. 1, No. 3 (1980) 213–221 

29. Jermakovics, A., Scotto, M., Succi, G.: Visual identification of software evolution patterns. 
In: 9th International Workshop on Principles of Software Evolution (IWPSE ’07): in Con-
junction with the 6th ESEC/FSE Joint Meeting (2007) 27–30 

30. Mens, T., Fernandez-Ramil, J., Degrandsart, S.: The Evolution of Eclipse. In: IEEE ICSM 
(2008) 386–395 

31. Yu, L., Ramaswamy, S., Nail, A.: Using bug reports as a software quality measure. In: 
Proceedings of the 16th ICIQ (2011) 

32. Aggarwal, K.K., Singh, Y., Kaur, A., Lalhotra, R.: Empirical analysis for investigating the 
effect of object-oriented metrics on fault proneness: A replicated case study. In: Software 
Process: Improvement and Practice, Vol. 16, No. 1 (2009) 

33. Fernandez-Ramil, J., Lozano, A., Wermelinger, M., Capiluppi, A.: Empirical studies of 
Open-Source Evolution. In: Mens Tom and Demeyer, Serge eds. Software Evolution. Ber-
lin:Springer (2008) 263–288 

34. Chidamber, S.R., Kemerer, C.F.: A metric suite for object-oriented design. In: IEEE Trans-
actions on Software Engineering, Vol. 20, No. 6 (1994) 476–493 

 

44


