
An ADM-based Method for Migrating CMS-based Web
Applications: Extracting ASTM Models from PHP Code

Feliu Trias, Valeria de Castro, Marcos López-Sanz and Esperanza Marcos

Grupo de Investación Kybele, Universidad Rey Juan Carlos,
C/Tulipan, s/n. 28933 Móstoles, Madrid, Spain

Abstract. In recent years, Architecture-Driven Modernization (ADM) is gain-
ing increasing acceptance in software reengineering processes of existing sys-
tems. It can help reduce reengineering costs by automating the activities, such
as extracting models from the source code. This is specially crucial in the reen-
gineering of CMS-based Web applications. At time of writing there are no
methods that could be used in that context. Hence, we define an ADM-based
method for migrating CMS-based Web applications. In the context of this
method, we present in this paper the implementation of the text-to-model
(M2T) transformations to extract models from PHP code. These models con-
form to Abstract Syntax Tree Metamodel (ASTM) a standard metamodel pro-
posed by ADM. To implement these transformations we performed three activi-
ties: 1) definition of a PHP grammar, 2) mapping PHP grammar elements to el-
ements of ASTM and 3) implementation of a model extractor. To show the fea-
sibility of our approach we use a real example of PHP code from a CMS-based
Web application implemented in Drupal.

1 Introduction

In recent years, the necessity for migration of existing systems to other technological
platforms has become one of the major problems faced by organizations since these
migration activities are carried out following ad-hoc software reengineering process-
es, thus entailing expensive costs and high risks for organizations [1].

To solve this, the Object Management Group (OMG) proposes the Architecture-
Driven Modernization (ADM) an initiative which advocates for the application of
MDA (Model-Driven Architecture) [2] principles to formalize the software reengi-
neering process. ADM provides several benefits such as reducing development and
maintenance costs and extending the life cycle of the legacy systems [3]. ADM de-
velops seven standard metamodels to represent the information involved in a software
reengineering process, but only three of them are available: Abstract Syntax Tree
Metamodel (ASTM) [4], Knowledge Discovery Metamodel (KDM) [5] and Struc-
tured Metrics Metamodel (SMM) [6]. These metamodels allow developers to manage
software reengineering processes in an integrated and standardized manner as well as
saving them time and effort creating their own metamodels [7]. In this paper we focus
on the ASTM. This metamodel allow to represent the syntax of the source code.

Trias F., de Castro V., López-Sanz M. and Marcos E..
An ADM-based Method for Migrating CMS-based Web Applications: Extracting ASTM Models from PHP Code.
DOI: 10.5220/0004602900850092
In Proceedings of the 1st International Workshop in Software Evolution and Modernization (SEM-2013), pages 85-92
ISBN: 978-989-8565-66-2
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Models conform to ASTM allows to capture most of the knowledge from the source
code and reduce the complexity to generate models at higher abstract level, such as
KDM models.

In the last years, the volume of digital content managed by organizations has in-
creased dramatically. To solve it, organizations have based their Web applications on
Content Management Systems (CMS) since they are platforms which allow users to
collect, manage and publish content in a robust and reliable manner [8].

The CMS market is constantly evolving and organizations experiment the necessi-
ty of migrating their CMS-based Web applications to another CMS or to a new ver-
sion of the same CMS because their current one has become obsolete and it does not
meet their needs. Therefore, they find it necessary to start a process of reengineering.
In previous works [9] we have conducted a systematic literature review to assess the
state of the art on CMS-based Web applications in the context of MDA. One of the
main conclusions derived from such review was that there are no methods that could
be used for migrating CMS-based Web applications. Accordingly, we defined an
ADM-based method for migrating this kind of Web applications. Up to now, our
method is focused on open-source CMS such as Drupal [10], Joomla! [11] or Word-
press [12] because of their features and their spread use and relevant acceptance in
the market [13]. Most of these CMSs are implemented in PHP.

The work presented is framed in the first phase of our method where we extract
models from the source code by means of text-to-model (T2M) transformations. In
this paper we present the implementation of these transformations which extract mod-
els from PHP code. The models obtained conform to ASTM (ASTM models). To the
best of our knowledge, there are no ADM tools for the extraction of models from
PHP code. As such, there is any proposal for the generation of ASTM models.

To implement the T2M transformations we have carried out three activities: 1)
definition of the PHP grammar, 2) mapping of PHP grammar elements to elements of
ASTM, and 3) implementation of a model extractor. We use a real example of PHP
code from a CMS-based Web application implemented in Drupal to show the feasibil-
ity of our approach.

The rest of this paper is organized as follows: Section 2 explains the related
works. Section 3 presents our ADM-based method for migrating CMS-based Web
applications. Section 4 explains the activities performed to implement the model
extractor and we illustrate the explanation with a real example of PHP code and,
finally, Section 5 presents the conclusions and future works.

2 Related Works

In this section we present some of the ADM-based approaches found in the literature
and we compare them with our method for migrating CMS-based Web applications.
Due to space limitations only we present the most representative ones.

Krause et al. present in [14] DynaMod, a method which addresses model-driven
modernization of software systems. It considers static and dynamic analysis for ex-
tracting models conform to KDM from Java code. Sadovykh et al. present in [15] a
method to extract an UML (Unified Modeling Language) model containing the most

86

persistent part of a system from C++ code. Perez-Castillo et al present in [16] a reen-
gineering process called PRECISO to recover and implement Web Services in auto-
matic manner from relational databases. They extract a model conform to a SQL-92
metamodel from SQL-92 code. Bruneliere et al present in [17] MoDisco an extensible
approach for model-driven reverse engineering which allows extracting platform
models from Java, XML and JSP. They define a metamodel for each code. Reus et al
present in [18] a reverse engineering process for recovering UML models from
PL/SQL code. Vasilecas et al presents in [19] a process which derives business rules
from a legacy system. They extract ASTM models from Visual Basic code. Table 1
we compare the ADM-based approaches presented with our method.

Table 1. Related works.

Approach Source code Metamodel Context
Krause et al present (DynaMod) Java KDM Legacy systems
Sadovykh et al C++ UML Legacy systems
Perez-Castillo et al (Preciso) SQL-92 SQL-92 Data base / Web services
Bruneliere et al (Modisco) Java, XML and JSP Java, XML and JSP Legacy systems
Reus et al PL/SQL UML Data base
Vasilecas et al Visual Basic ASTM Legacy systems

Our ADM-based method PHP ASTM
CMS-based Web
applications

The second column in Table 1 refers to the source code from which the approach
extracts these models. As we can observe none of them addresses the extraction of
models from PHP code. The third column refers to the metamodel which the extract-
ed models conform to. On the one hand, two of the approaches bet for defining their
own metamodels such as Perez-Castillo et al with the SQL-92 metamodel and Bru-
neliere et al with Java, XML and JSP metamodels. On the other, hand two approaches
use the UML metamodel. Although UML is a standard, it is not proposed by ADM.
Finally, two of the approaches use the ADM standard metamodels. Krause et al use
KDM and Vasilecas et al extracts models conform to ASTM. The third column speci-
fies the context of the approach. If the approach is framed in a generic reengineering
context we categorize it as a legacy systems context. Two of the approaches are focus
on data base context and one of them also in web services context. None of them is
framed in the context of CMS-based Web applications.

3 Research Context: an ADM-based Method for Migrating
CMS-based Web Applications

As we said in the introduction our work is focused in the implementation of the T2M
transformations framed in an ADM-based method for migrating CMS-based Web
applications. This method is composed of three phases: a) reverse engineering phase,
b) restructuring phase and c) forward engineering phase. In this section we present
those phases and their tasks. Fig. 1 outlines the whole ADM-based migration method.
In it we have highlighted with dashed lines the scope of the work presented in this
paper.

87

Fig. 1. ADM-based method.

A. Reverse Engineering Phase, this phase is composed of three tasks: i) knowledge
extraction, the extraction of ASTM models from PHP code (the work presented).
ASTM allows us to represent the code in a proper and non-ambiguous way and re-
duce the complexity to generate the KDM models which are at higher abstract level;
ii) the generation of the KDM models, from ASTM models we automatically generate
KDM models. The two KDM models we generate are: Code Model and Inventory
Model. It is worth noting that we obtain the Inventory Model from the legacy code by
using MoDisco tool [17], iii) the generation of the CMS Model, using M2M transfor-
mations we generate automatically the CMS Model from the information captured in
KDM models. This CMS Model conforms to the CMS Common Metamodel present-
ed in [20].

B. Restructuring Phase, the CMS Model are manually restructured by the developer
taking into account the specific features of the target CMS platform.

C. Forward Engineering Phase, this phase defines the top-down development pro-
cess comprised of the next three tasks: i) generation of the target KDM models, from
the restructured CMS Model we generate the target Code Model and the target Inven-
tory Model that represent the implementation of the target CMS-based Web applica-
tion; ii) generation of the target ASTM model, we generate the target ASTM model
from the target Code Model and the target Inventory Model and iii) code generation,
we generate the software artifacts that compose the architecture of the target CMS-
based Web application (folders and file skeletons) and the code that implements
them.

4 Implementation of the T2M Transformations

In this section we explain the activities for the implementation of the T2M transfor-
mations to extract ASTM models from PHP code which is the focus of the work that
we present in this paper.

88

We use a real example of PHP code from a CMS-based Web application imple-
mented in Drupal to illustrate the different activities performed in this implementation
and to show the feasibility of our approach.

4.1 Definition of the PHP Grammar

The first activity is to define the PHP grammar using EBNF language [21]. It was one
of the most tedious and time-consuming activities because we had to resolve the left-
recursivity conflicts among the elements defined in the grammar. These elements are
classified into two groups: 1) expressions (such as logicalOr or function call) and 2)
statements (such as assignment or conditional).

Expressions are the cornerstone of the PHP language since they represent those
elements which evaluate to a certain value, e.g. arithmetic expressions such as
$var+5+3 which evaluates to a number or logical expressions such as $var or $tar
which evaluates to a logical value. Fig. 2 shows the correspondence of a function
definition implemented in PHP with its specification in the defined EBNF-based PHP
grammar.

Fig. 2. Correspondence of PHP code with EBNF-based PHP grammar.

From the PHP grammar and using the Xtext framework we obtain automatically
three artifacts: 1) a metamodel, 2) a textual editor and 3) a parser implemented in Java
that allow us to recognize the elements of the PHP grammar from code written in
PHP. We decided to use Xtext framework because this parser facilitates us the im-
plementation of the model extractor (third activity) since we use the methods imple-
mented in this parser to recognize the PHP elements that will be mapped to the
ASTM model.

4.2 Mapping PHP Grammar Elements to Elements of ASTM

In the second activity we define the mappings between the elements of the PHP
grammar and the elements of ASTM. The definition of these mappings are necessary
to implement the model extractor in the third activity. As we can see in Table 2 a
VariableDefStatement of the PHP grammar ($var=3;) is mapped to a VariableDefini-
tion of the ASTM or a Addition expression in the PHP grammar (9+3) is mapped to a
BinaryExpression.

At the time of defining these mappings we realized that some elements from the
PHP grammar cannot be mapped to elements of ASTM. For that reason, we extended
the ASTM with the specific elements of the PHP code. Some of these elements are:
xor operator (xor), not identical operator (!==), supressWarning operator (@) or

89

instance of operator (instanceof).

Table 2. Mapping PHP grammar elements to ASTM elements.

Group PHP Grammar element ASTM element

Statements
VariableDefStatement VariableDefinition
FuncDefStatement FunctionDefinition

Expressions
Addition BinaryExpression
FunctionCall FunctionCallExpression

Otherwise, we needed to redefine existing elements of ASTM to make the map-
ping possible. For example, we had to redefine the attribute condition of the For-
Statement element. This attribute is defined as a required and specifies the condition
of a for statement. We had to redefine it as optional to allow map the for statements
without condition permitted in PHP to the ForStatement element in ASTM.

Other redefined elements are: swithStatement, compilationUnit and arrayAccess.
Due to space limitations we do not explain each of them.

4.3 Implementation of a Model Extractor

Finally, in the third activity we implement the model extractor to obtain ASTM mod-
els from PHP code. This model extractor is implemented in Java. For its implementa-
tion we use: 1) on the one hand, the parser obtained by Xtext in the first activity to
recognize the syntax elements from code written in PHP, 2) on the other hand, the
API in Java obtained automatically from ASTM by using the Eclipse Modeling
Framework (EMF) [22], to generate the elements of the ASTM models.

Fig. 3 shows how our model extractor identifies a function definition written in
PHP and extracts a FunctionDefinition element in the ASTM model. As we can see in
Fig. 3 the fragment of PHP code conforms to the PHP grammar defined in EBNF and
the model generated conform to ASTM.

Fig. 3. Extracting a function definition in PHP to ASTM model.

5 Conclusions and Future Works

Regarding the advantages that ADM provides to software reengineering processes

90

and after concluding that there are no ADM-based methods focused on the migration
of CMS-based Web applications, we consider interesting to define an ADM-based
method for migrating this kind of Web applications. The method that we define is
focused on Web applications based on open-source CMS such as Drupal, Joomla! or
Wordpress which are implemented in PHP.

The work presented is framed on the first phase of this ADM-based method where
we extract models from the source code by means of text-to-model (T2M) transfor-
mations. In this paper we presented the implementation of these T2M transformations
which extract ASTM models from PHP code.

To implement these transformations we performed three activities: 1) definition of
the PHP grammar, 2) mapping PHP grammar elements to elements of ASTM, and 3)
implementation of a model extractor.

We consider the first activity as one of the most tedious and time-consuming be-
cause of the necessity of resolving the left-recursivity conflicts among the elements of
the PHP grammar. From the PHP grammar and by using Xtext framework we ob-
tained automatically: 1) a metamodel, 2) a textual editor and 3) a parser implemented
in Java that allow us to recognize the elements of the PHP grammar from code written
in PHP. During the second activity we needed to extend the ASTM with specific
elements of the PHP code such as xor or not identical operators. Otherwise, we rede-
fined some of the existing elements of ASTM such as ForStatement, since their
standard definition hindered the mapping. For the implementation of the model ex-
tractor in the third activity, we used the parser of the PHP grammar obtained in the
first activity and the API in Java of ASTM generated by executing EMF. Both, the
parser and the API facilitated us the task of implementation.

According to the related works we can conclude that there is no any ADM ap-
proach to extract models from PHP code as well as there are a few approaches for the
generation of ASTM models. We think that the low use of ASTM is because the last
and unique version (1.0) was submitted rather recently, in January 2011.

After our experience with ASTM we can state that this metamodel has saved us
time and effort creating our own metamodel and has met satisfactory our necessities.

As future works we consider the refining of the model extractor and the imple-
mentation of the remaining phases of our ADM-based method for migrating CMS-
based Web applications.

Acknowledgements

This research has been partially funded by the Project MASAI (TIN-2011-22617)
from the Spanish Ministry of Science and Innovation.

References

1. Chikofsky, E. J., Cross, J. H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software. 7, 13-17.

2. Mellor, S. J., Scott, K., Uhl, A., Weise, D.: Model-Driven Architecture. In: (Eds.), J.-M.B.

91

and Z. B. (ed.) Advances in Object-Oriented Information Systems. pp. 233-239. Springer-
Verlag Berlin Heidelberg 2002 (2002).

3. Pérez-castillo, R., García, I., Guzmán, R. D., Caivano, D., Piattini, M.: Database Schema
Elicitation to Modernize Relational Databases. 14th International Conference on Enterprise
Information Systems. pp. 126-132. Springer Berlin, Wrocław, Poland (2012).

4. Abstract Syntax Tree Metamodel, http://www.omg.org/spec/ASTM/1.0.
5. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Knowledge Discovery Metamodel-

ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards & Interfac-
es. 33, 519-532 (2011).

6. Structured Metrics Metamodel, http://www.omg.org/spec/SMM/.
7. Cánovas Izquierdo, J. L., García Molina, J.: Extracting models from source code in soft-

ware modernization. Software & Systems Modeling. 1-22 (2012).
8. Boiko, B.: Understanding Content Management. Bulletin of the American Society for

Information Science and Technology. 28, 8-13 (2001).
9. Trias, F., De Castro, V., López-Sanz, M., Marcos, E.: A Systematic Literature Review on

CMS-based Web Applications. ICSOFT (2013).
10. Drupal CMS, http://drupal.org/.
11. Joomla! CMS, http://www.joomla.org/.
12. Wordpress CMS, http://wordpress.org/.
13. Shreves, R.: Open Source CMS Market Share. , Bali, Indonesia (2011).
14. Krause, H., Porembski, M., Stahl, T., Steinkamp, M., Wittm, N., Straße, A.: DynaMod

Project: Dynamic Analysis for Model-Driven Software Modernization. Engineering. pp. 1-
2.

15. Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E., Estekhin,
O.: Architecture Driven Modernization in Practice: Study Results. 2009 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems. pp. 50-57. Ieee (2009).

16. Perez-Castillo, R., de Guzman, I.G.-R., Caballero, I., Polo, M., Piattini, M.: PRECISO: A
Reverse Engineering Tool to Discover Web Services from Relational Databases. 16th
Working Conference on Reverse Engineering. pp. 309-310. Ieee (2009).

17. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: A Generic And Extensible
Framework For Model Driven Reverse Engineering. International conference on Automat-
ed software engineering - ASE ’10. pp. 173-174 (2010).

18. Reus, T., Geers, H., Deursen, A.V.: Harvesting Software Systems for MDA-Based Reengi-
neering. Second European Conference, ECMDA-FA. pp. 213-225 (2006).

19. Vasilecas, O., Normantas, K.: Deriving Business Rules from the Models of Existing Infor-
mation Systems. 95-100 (2011).

20. Trias, F.: Building CMS-based Web Applications Using a Model-driven Approach. Sixth
International Conference on Research Challenges in Information Science (RCIS). pp. 1 - 6
(2012).

21. ISO/IEC 14977:1996 - EBNF, http://www.iso.org/iso/catalogue_detail.htm?
csnumber=26153.

22. Budinsky, F.: Eclipse Modeling Framework, (2008).

92

