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Abstract: Assistive devices controlled by human brain activity could help severely paralyzed patients to perform 
everyday tasks such as reaching and grasping objects. However, the continuous control of anthropomorphic 
prostheses requires control of a large number of degrees of freedom which is challenging with the currently 
achievable information transfer rate of noninvasive Brain-Computer Interfaces (BCI). In this work we 
present an autonomous grasping system that allows grasping of natural objects even with the very low 
information transfer rates obtained in noninvasive BCIs. The grasp of one out of several objects is initiated 
by decoded voluntary brain wave modulations. A universal online grasp planning algorithm was developed 
that grasps the object selected by the user in a virtual reality environment. Our results with subjects 
demonstrate that training effort required to control the system is very low (<10 min) and that the decoding 
accuracy increases over time. We also found that the system works most reliably when subjects freely select 
objects and receive virtual grasp feedback. 

1 INTRODUCTION 

Brain-Computer Interfaces (BCI) translate human 
brain activity to machine commands (Wolpaw, 
2013) and are in the focus of research to replace 
motor functions of severely paralyzed patients. In 
these patients, peripheral nerves do not provide any 
signal, like the electromyogram (EMG), to control 
prostheses (Kuzborskij et al., 2012). In the recent 
years, highly invasive techniques were tested to 
control prosthetic devices by voluntary modulation 
of brain activity (Hochberg et al., 2012; Velliste et 
al., 2008). In humans, the use of noninvasive 
techniques, like the electroencephalogram (EEG), is 
preferable over invasive recordings. Recently, it has 
been shown that a large number of hand movements 
can be discriminated with noninvasive EMG 
(Kuzborskij et al., 2012). However, only a small 
number of commands can be discriminated with 

noninvasively assessed motor imagery and, as a 
consequence, these systems do not allow for full 
control of complex manipulators with many degrees 
of freedom. Here we report progress in our 
development of a noninvasive BCI that enables users 
to grasp natural objects. Our approach combines the 
development of both efficient brain decoding 
techniques and autonomous actuator control to 
overcome the limited information transfer from 
noninvasive BCIs. 

Commonly, movement commands are generated 
by motor imagery tasks aiming to decode the 
µ-rhythm (Pfurtscheller et al., 2000). However, a 
considerable percentage of people are unable to 
control motor imagery BCIs (Guger et al., 2003; 
Vidaurre and Blankertz, 2010). In contrast, it was 
shown that a larger fraction of people is able to 
select items in speller paradigms using an oddball 
task (Guger et al., 2009). The matrix speller was first 
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introduced by Farwell and Donchin (1988). In the 
oddball task a P300, a positive EEG deflection, is 
evoked when a rare target stimulus appears in a 
series of irrelevant stimuli. While it is often assumed 
that the accuracy of visually stimulated P300 speller 
is independent of gaze direction, it has recently been 
shown that the performance of the matrix speller 
drops significantly if the eyes are not moved toward 
the target (Brunner et al., 2010). The reason is that 
two EEG components, the P300 and the N200, 
contribute information when the centre of regard is 
moved to the target (Frenzel et al., 2011), whereas 
only the P300 is present if the eyes don’t move. This 
could render the P300 paradigm less useful for 
patients who cannot move their eyes. 

In this work we demonstrate that the visual 
oddball paradigm can be successful applied to 
initiate targeted grasps in a visually complex virtual 
environment with multiple realistic objects. 
Importantly, we show that the paradigm developed 
here works independent of the user’s ability to direct 
gaze towards the target object. This is of high 
relevance for the targeted user group. 

The other approach in our strategy for the 
development of a brain controlled robotic 
manipulator is to implement an algorithm to provide 
intelligent autonomous manipulation of predefined 
objects. Here we propose a new analytical grasp 
planning algorithm to achieve autonomous grasping 
of arbitrary objects. In contrast to other motion 
planning algorithms, our algorithm is not based on 
Learning by Demonstration (for a review see 
Sahbani, El-Khoury and Bidaud (2012)) and 
involves, but is not limited to, the robot’s 
kinematics. 

2 MATERIALS AND METHODS 

In this study we decoded in real-time the 
magnetoencephalogram (MEG) of 17 subjects 
(9 male, 8 female, mean age 26.6) to determine their 
intention to select one of six selectable realistic 
objects for grasping. We used the decoding results to 
initiate a grasp of a robotic gripper. All subjects 
gave written informed consent. The study was 
approved by the ethics committee of the Medical 
Faculty of the Otto-von-Guericke University of 
Magdeburg. 

2.1 Virtual Environment 

We presented six objects (see Figure 1) placed at 
fixed positions in a virtual reality environment. The 

visual angle between outmost left and right objects 
was 8.5°. We defined circular regions on the table 
which were used i) to stimulate the subjects with 
visual events by lighting up the object background 
and ii) to provide cues and feedback by colouring 
the region’s shape. A photo transistor placed on the 
screen was used to synchronize the ongoing MEG 
with the events displayed on the screen. To provide 
realistic feedback, the model of a robot (Mitsubishi 
RV E2) equipped with a three finger gripper 
(Schunk SDH) was part of the scene. The virtual 
robot is designed to mimic actual movements of the 
real robot. Specifically, an autonomously calculated 
grasp to the selected object is visualized. 

 

Figure 1: VR scenario used for visual stimulation. This 
snapshot shows one flash event of an object. 

2.2 Paradigm 

The paradigm we employed is based on the P300 
potential which is evoked approximately 300 ms 
after a rare target stimulus occurs in a series of 
irrelevant stimuli (oddball paradigm). In our variant 
of the paradigm, we marked objects by flashing their 
background for 100 ms. Objects were marked in 
random order with an interstimulus interval of 
300 ms. Each object was marked five times per 
selection trial resulting in a stimulation interval 
length of 10 seconds. 

Subjects were instructed to fixate the black cross 
centred to the objects and to count how often the 
target object was marked. The counting ensured that 
attention was maintained on the stimulus stream. In 
addition, subjects were instructed to avoid eye 
movements and blinking during the stimulation 
interval. 

Each subject performed a minimum of seven 
runs with 18 selection trials per run. The runs were 
performed in three different modes that served 
different purposes. The number of runs each subject 
performed in each mode is listed in Table 1. We 
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started with the instructed selection mode. In this 
mode, the target object was cued by a light grey 
circle at the beginning of a trial and subjects were 
instructed to attend the cued object. Instructed 
selection was used in the initial training runs in 
which we collected data to train the classifier. In this 
mode true classifier labels are available which are 
required to train the classifier. We provided random 
feedback during training runs because no classifier 
was available in these initial runs. After the training 
runs, each subject performed several instructed runs 
with feedback. We denoted the second selection 
mode free selection. In this mode, subjects were free 
to choose the target object. In instructed selection 
mode and in free selection mode, a green circle was 
presented at the end of the trial on the decoded 
object as feedback. All other objects were marked by 
red circles. Free selection runs were performed after 
the instructed selection runs. In the third mode, the 
grasp selection mode, the virtual robot grasped and 
lifted the decoded target for feedback. Grasp 
selection runs were performed after free selection 
runs. In both modes, the free selection and grasp 
selection mode, the subject said “no” to signal that 
the classifier decoded the wrong object and 
remained silent otherwise. 

Table 1: Number of runs the subjects performed in 
different selection modes. 

Subject 
# 

instructed 
free grasp 

training decoder 
1 2 5 - - 
2 4 4 1 - 
3 3 4 - - 

4-6 3 4 1 1 
7 2 4 2 1 
8 3 3 2 1 
9 2 4 2 1 

10 2 4 2 - 
11 2 4 2 1 
12 2 5 2 - 

13-17 2 4 2 1 

The results reported in this paper arise from online 
experiments. We did not exclude early sessions, 
causing slight changes in the experimental protocol 
during the study (Table 1). The number of runs 
performed in the different modes depended on cross 
validated classifier performance estimation and the 
development of detection accuracy. In total, five 
subjects performed three, one subject four and the 
remaining 11 subjects two initial training runs. Two 
subjects performed only instructed selections. 
Twelve of the subjects performed one run in the 
grasp selection mode. Here, only six instead of 18 

trials were performed, due to the longer feedback 
duration. 

2.3 Data Acquisition and Processing 

The MEG was recorded with a whole-head BTi 
Magnes 248-sensors system (4D-Neuroimaging, San 
Diego, CA, USA) at a sampling rate of 678.17 Hz. 
Simultaneously, the electrooculogram (EOG) was 
recorded for subsequent inspection of eye 
movements. MEG data and event channels were 
instantaneously forwarded to a second workstation 
capable of processing the data in real-time. The data 
stream was cut into intervals including only the 
stimulation sequence. The MEG data were then 
band-pass filtered between 1 Hz and 12 Hz and 
down sampled to 32 Hz sampling rate. Then, the 
stimulation interval was cut in overlapping 1000 ms 
segments starting at each flash event. In instructed 
selection mode, the segments were labelled as target 
or nontarget segments depending on whether the 
target or a nontarget object was marked. 

We used a linear support vector machine (SVM) 
as classifier because it provided reliably high 
performance in single trial MEG discrimination 
(Quandt et al., 2012; Rieger et al., 2008). These 
previous studies showed that linear SVM is capable 
of selecting appropriate features in high dimensional 
MEG feature spaces. We performed classification in 
the time domain, meaning that we used the magnetic 
flux measured in 32 time steps as classifier input. To 
reduce the dimensionality of the feature space, we 
empirically excluded 96 sensors located farthest 
from the vertex (the midline sensor at the position 
halfway between inion and nasion) which is the 
expected site of the P300 response. We further 
reduced the number of sensors by selecting the 64 
sensors providing the highest sum of weights per 
channel in an initial SVM training on all preselected 
152 sensors of the training run data. The selected 
feature set (64 sensors × 32 samples = 2048 
features) was then used to train the classifier again 
and retrain the classifier after each run conducted in 
instructed selection mode. 

2.4 Grasping Algorithm 

In this section we describe the general procedure of 
our grasp planning algorithm, whereas we present 
the mathematical details in the Appendix. The 
algorithm was developed to physically drive a robot 
arm, but in this experiment it was used to provide 
virtual reality feedback. Importantly, in this strategy 
the robot serves as an intelligent, autonomous 
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actuator and does not drive predefined trajectories. 
The algorithm assumes that object position and 
shape coordinates relative to the manipulator are 
known to the system. In this experiment, coordinates 
of CAD-modelled objects were used. However, 
coordinates could as well be generated by a 3D 
object recognition system. 

Central to our approach is that the contact 
surfaces of the gripper’s fingers and the surfaces of 
the objects were rasterized with virtual point poles. 
We assumed an imaginary force field between the 
poles on the manipulator and the poles on the target 
object (see Appendix for details). The goal of the 
algorithm is to initially generate a manipulator 
posture that ensures a force closure grasp. The 
following grasp is organized by closing the hand in a 
real world scenario and by locking the object 
coordinates relative to the finger surface coordinates 
in the virtual scenario. 

3 RESULTS 

3.1 Decoder Accuracy 

We determined the decoding accuracy as the ratio of 
correctly decoded objects divided by the total 
number of object selections. All subjects performed 
the task reliably above guessing level which was 
16.7 %. On average, the intended object selections 
were correctly decoded from the MEG data in 
77.7 % of all trials performed. Single subject 
accuracies ranged from 55.6 % to 92.1 %. In the 
instructed selection mode the average accuracy was 
73.9 % and 85.9 % in the free selection mode. This 
performance difference is statistically significant 
(Wilcoxon rank sum test: p=0.03). When subjects 
received feedback by moving the virtual robot to the 
grasp target, the average accuracy was even higher 
and reached 91.2 %. Figure 2 depicts the evolution 
of decoding accuracies over runs. The height of the 
bars indicates the number of subjects (y-axis) who 
achieved the respective decoding performance out of 
19 possible percentage bins. Each histogram shows 
the results from one run and the performance bins 
are equally spaced from 0 % to 100 %. The 
histograms are chronologically ordered from top to 
bottom. Yellow bars indicate results from instructed 
selection runs, blue bars indicate free selection run 
results and light red bars indicate results in runs with 
grasp feedback. Vertical dashed lines indicate the 
guessing level and thick solid lines indicate the 
average decoding accuracies over subjects (standard 
error marked grey). The average decoding accuracy 

increases gradually over the course of the 
experiment. Moreover, the histograms show that the 
highest accuracy over subjects was achieved in free 
selection runs. Note that our system achieved perfect 
detection in eight of the twelve subjects who 
received virtual grasp feedback. However, only six 
selections were performed by each subject in these 
grasp selection runs. 

 

Figure 2: Performance histograms. The ordinate indicates 
the number of subjects who achieved a certain decoding 
accuracy. The histograms show data from different runs 
and code the type of run by colour. See text for details. 

An established measure for the comparison of BCIs 
is the information transfer rate (ITR) which 
combines decoding accuracy and number of 
alternatives to a unique measure. We calculated the 
ITR according to the method of Wolpaw et al. 
(2000) at 3.4 to 12.0 bit/min for single subjects and 
8.1 bit/min on average. Note that the maximum 
achievable bit rate with the applied stimulation 
scheme is 15.5 bit/min. 

For online eye movement control, we observed 
the subjects’ eyes on a video screen. In addition, we 
inspected the EOG measurements offline. Both 
methods confirmed that subjects followed the 
instruction to keep fixation. 
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3.2 Grasping Performance 

We evaluated the execution duration of the online 
grasp calculation for different setups and objects. 
We implemented our grasping algorithm with the 
ability to distribute force computations to several 
parallel threads. Here, we permitted five threads 
employing a 2.8 GHz AMD Opteron 8220 SE 
processor. We calculated grasps of the six objects 
shown in Figure 1. To assess effects of object 
position, we arranged the objects at different 
positions within the limits of our demonstrating 
robot’s work space. Each object was placed once at 
each of the positions depicted in Figure 1. The time 
needed to plan the trajectory and execute the grasp 
until reaching force closure is listed in Table 2 for 
each object/position combination. The diagonal of 
the table represents the actual object/position setup 
during our experiment. 

Table 2: Duration of grasp planning calculation for all 
object/position combinations in seconds. UL=upper left, 
LL=lower left, UR=upper right, LR=lower right. 

Object 
position 

Object # 
#1 #2 #3 #4 #5 #6 

Left 33.0 68.5 11.0 14.1 16.0 24.5 
UL 25.5 34.0 16.5 13.5 39.0 46.7 
LL 11.0 72.6 11.0 18.0 22.5 65.0 
UR 15.5 42.5 15.0 12.5 37.0 46.0 
LR 12.0 48.5 11.0 19.0 22.5 24.5 

Right 11.0 35.6 13.0 14.5 19.5 29.5 

The results indicate that the duration of grasp 
planning depends on many parameters. The most 
important determinant of execution time is the 
number of point poles (Οሺ݊ଶ)) which depends on the 
level of detail of the object surface as well as the 
physical constraints of the robot and object position. 
We observed that even minimal differences in object 
arrangement appear to have strong influence on 
force closure termination. This is also indicated by 
different execution times of identical objects at 
symmetric positions (e.g. left/right). We consider it 
likely that these differences are caused by numerical 
precision issues due to the high number of 
summations in equations (3) and (4) (see Appendix). 

4 DISCUSSION 

In the present work we demonstrated that the 
oddball paradigm is well suited for use in a BCI to 
reliably select one of several objects for grasping.  
Importantly, this was achieved independent from eye 

movements. We demonstrated that the performance 
of the system improves with training. Furthermore, 
our results suggest that performance improves even 
further when subjects obtain more control in the free 
selection and with realistic visual feedback. This 
suggests that BCI control in our P300 paradigm is 
improved with an increasing sense of agency. 
A gaze independent BCI based on directing covert 
attention is a fundamental requirement for patients 
who cannot easily orient gaze to the target object. 
Earlier reports suggested that eye movements greatly 
improve performance in a P300 speller (Brunner et 
al., 2010; Frenzel et al., 2011; Treder and Blankertz, 
2010), due to contribution from visual areas to brain 
wave classification (Bianchi et al., 2010). We extend 
these previous studies and show that the P300-
paradigm is well suited for a gaze independent 
object grasping BCI. We achieved independence 
from visual components by instructing our subjects 
to fixate and by excluding occipital sensors from the 
analysis. This approach simulates a realistic setting 
with patients who cannot move their eyes and are 
therefore dependent on covert attention shift based 
activation for control. To date, only a small number 
of studies successfully implemented such a more 
restrictive covert attention P300 approach (Aloise et 
al., 2012; Liu et al., 2011; Treder et al., 2011). 

We observed increasing decoder accuracy in the 
course of the experiment. This suggests that the 
increasing amount of training is beneficial for 
performance in our BCI paradigm. However, due to 
classifier updates performed in the course of the 
experiment, the learning process is likely bilateral 
and involves both the subjects and the classifier 
(Curran and Stokes, 2003). Importantly, when 
subjects were free to select the target object, the 
decoding success was significantly higher compared 
to the instructed selections. This suggests a strong 
role for task involvement and the sense of agency in 
our paradigm. When subjects performed runs 
receiving grasp feedback, most of them achieved 
perfect decoding accuracy. We expect the reliability 
of the system to be further increased by extending 
the stimulation interval (Aloise et al., 2012; 
Hoffmann et al., 2008). Note that system reliability 
is often more important for the user than a rapid but 
error prone detection of intention. 

The system presented here is efficient for use 
with nearly no training. Most subjects performed 
less than ten minutes of training in order to provide 
data to the decoding algorithm. This is a very small 
effort compared to motor imagery based systems 
aiming to control movement in a few degrees of 
freedom (Hochberg et al., 2012; Wolpaw and 
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McFarland, 2004). 
In online closed-loop BCI studies the decoding 

algorithm has to be fixed before the start of the 
actual experiment. We decided to use SVM 
classification because this is an established classifier 
for high dimensional feature spaces that provides 
high and robust generalization by upweighting 
informative and downweighting uninformative 
features (Cherkassky and Mulier, 1998). 
Furthermore, it was shown that linear SVM was 
equally accurate for P300 detection compared to 
Fisher’s linear discriminant and stepwise linear 
discriminant analysis (Krusienski et al., 2006). 
Several existing studies make use of extended linear 
discriminant analysis algorithms applied to EEG 
data (Liu et al., 2011; Treder et al., 2011). However, 
because MEG data are based on a much larger 
amount of sensors, these approaches are not 
applicable in a suitable time. 

In order to reduce the burden of controlling a 
complex manipulator with many degrees of freedom 
by voluntary modulation of brain activity, we 
combined a P300 BCI with a grasping system that 
autonomously executes the grasp requiring only a 
very low input bit rate, namely the command to 
grasp an object known to the system. To execute the 
grasp intended by the BCI user, we developed an 
algorithm for autonomous grasp planning that can 
place a reliable grasp on natural objects. The 
execution times we achieved were practical for the 
proposed task even though not optimal. In this work 
we did not focus on timing optimization. However, 
improvements to speed up the calculations are in our 
focus of future work. The proposed algorithm is 
universal in the sense that it is not restricted to a 
specific manipulator. Consequently, this algorithm 
should also be easily transferable to arbitrary 
prosthetic devices suitable for grasping potential 
target objects with a force closure grasp. 

As input brain signal for the BCI, we used the 
MEG. This noninvasive technique measures 
magnetic fields of cortical dipoles. While the 
dynamic signal characteristics are comparable to 
those in EEG, MEG tends to provide higher spatial 
resolution (Bradshaw et al., 2001). We are aware 
that this modality is not suitable for daily use and 
particularly not for use of a prosthetic device. In 
fact, we consider our study basic research, and to our 
knowledge, this is the first implementation of a 
MEG based P300 closed loop BCI. 

5 CONCLUSIONS 

We showed that noninvasive BCI in combination 
with an intelligent actuator can be used in real world 
settings to grasp and manipulate objects. This is an 
important step towards the development of assistive 
systems for severely impaired patients. 
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APPENDIX 

In section 2.4 we stated the rasterizing of the object 
and gripper surfaces with virtual point poles. Here 
we describe the algorithm in more detail. 

Our grasp planning algorithm is organized by 
simulating the action of forces between target object 
and manipulator in consecutive time frames. While 
the object poles ܲை are defined as positive, the 
manipulator poles ܲெ are defined as negative. In 
accordance with Khatib (1986), we assume that 
opposite poles attract each other while like poles do 
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not interact. The magnitude of the force between two 
poles ܲ

ை and ܲ
ெ we calculated as  

ฮܨԦ൫ ܲ
ை, ܲ

ெ൯ฮ ൌ ݁ିቛഢ
ೀണ

ಾሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ	ቛ (1)

where ቛ పܲ
ை

ఫܲ
ெሬሬሬሬሬሬሬሬሬሬሬԦ	ቛ is the distance between the poles, 

and the unit of ܨ is arbitrary. The exponential 
function limits ܨ to a maximum of 1 unit. This 
avoids infinite forces at collision scenarios and 
provides a suitable scaling to instantiate both 
propulsive forces between manipulator and object 
and repulsive forces to reject manipulator poles that 
penetrate the object’s boundary.  

The total propulsive force ܨԦሺ ܲ
ெሻ affecting one 

point pole ܲ
ெ on the manipulator is calculated from 

a set of object point poles ܣை where 

ைሺܣ ܲ
ெሻ ∶ൌ ൛ ܲ

ைห ܲ
ை ∈ ܲை ∧	 ሬ݊Ԧ

ை ⋅ ሬ݊Ԧ
ெ ൏ 0ൟ (2) 

which indicates that only pairwise point poles with 
an angle between the surface normal ሬ݊Ԧ

ெ and ሬ݊Ԧ
ை 

greater than ߨ 4⁄  are involved. We included this 
constraint to restrict interactions to opposing surface 
force vectors. The force ܨԦሺ ܲ

ெሻ that moves the 
manipulator is then calculated as 

Ԧሺܨ ܲ
ெሻ ൌ ∑ Ԧ൫ܨ ܲ

ை, ܲ
ெ൯ೕ

ೀ∈ೀ൫
ಾ൯ . (3)

The manipulator’s effective joint torque Ԧ߬ can be 
calculated by means of the Jacobian ܬ generated 
from the joint angles ݍԦ and the point poles ܲெ 
(Siciliano and Villani, 1999) by 

Ԧ߬ ൌ ܬሺ ܲ
ெ, Ԧሻݍ



்
ቈܨ
Ԧሺ ܲ

ெሻ

ሬሬԦܯ
 (4)

where external moments are considered ܯሬሬԦ ൌ 0ሬԦ. In 
order to simulate the manipulator movement, we 
calculated the new joint angle ݍሺݐሻ of an axis ݇ by 
solving the equation system 

ሻݐሶሺݍ ൌ ݐሶሺݍ െ ሻݐ∆  ݐ∆ ∗
߬

ܽሬሬሬሬԦ
ԦሻܽሬሬሬሬԦݍሺܫ்

 (5)

ሻݐሺݍ ൌ ݐሺݍ െ ሻݐ∆  ݐ∆ ∗ ሻ (6)ݐሶሺݍ

where ܫሺݍԦሻ is the inertia tensor of the robot’s solid 
elements and ܽሬሬሬሬԦ defines one of the manipulator 
axes. We chose a heuristically dynamic calculation 
of the time frame length ∆ݐ which is proportional to 
the mean distance between the set of point poles ܲெ 
and ܲை. 

Collision detection was performed for the new 
posture before a new time frame was assigned to be 
valid and the position update was sent to the 
manipulator. We used standard techniques (Ericson, 

2005) to detect surface intersections. If intersections 
were detected, repulsive forces were calculated for 
the affected point poles directing to their position of 
the last valid time frame and satisfying equation (1). 
If no intersections were detected, the robot moved to 
the new coordinates. This procedure was repeated 
until the force closure condition (Siciliano and 
Khatib, 2008) was detected. 
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