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Abstract: This paper describes the assessment of basic walker-assisted human interaction based on a laser range finder 
(LRF) sensor and two inertial wearable sensors. Thirteen osteoarthritis patients and thirteen healthy subjects 
were selected to be part of this pilot experiment, which intends to acquire and calculate spatiotemporal and 
human-interaction parameters from walker-assisted ambulation. A comparison is made between the 
spatiotemporal parameters of healthy subjects and the ones of patients with osteoarthritis. Moreover, it is 
made an analysis of the effect that change of direction in walker-assisted ambulation can have on 
spatiotemporal parameters. Results have shown that 1) velocity, step length and distance to the walker are 
significantly affected by the change of direction, and 2) distance to the walker and step length can 
distinguish between healthy subjects and patients with osteoarthritis.  In terms of human-interaction 
parameters, results show that a LRF sensor can correctly describe the trajectory and velocity of the user in 
relation to the walker. However, just the wearable sensors can characterize changes in direction. These 
results will be further used in the development of a robotic control that intends to detect the user's intention 
through LRF and inertial sensors, and respond accordingly. 

1 INTRODUCTION 

The increase of human average lifespan demands the 
need for patient-care technologies. Patient-care 
facilities and nursing homes provide a supporting 
environment for those elderly and other patients with 
motor disability but are labour intensive and hence 
expensive and limited.  

Currently, canes and wheelchairs are the most 
used assistive devices. However, canes do not 
provide enough support for the muscles and the use 
of the wheelchairs may lead to lower limb muscle 
atrophy (Martins et al., 2011). Therefore, research 
started to focus on walkers, which are devices that 
improve mobility and independent performance of 
mobility-related tasks. 

Individuals requiring walkers have a reduced 
ability to provide the supporting, stabilizing, 
propulsion or restraining forces necessary for 
forward progression. By decreasing the weight 
bearing on one or both lower limbs, walkers may 
help these individuals, alleviating pain from injury 
or clinical pathology such as osteoarthritis 

(Martins et al., 2011). 
However, some problems have been reported in 

the literature (Bateni and Maki, 2005) regarding 
such devices, related to the lack of security and the 
cognitive demands. Users must take overly cautious 
steps not to push it out too far forward and they are 
unsafe to use on uneven/slope terrain. 

Thus, researchers on the robotics field started to 
investigate how to promote safe mobility, and tried 
to standardize and create an effective way to assess 
and evaluate human-robot interaction in assisted-
walker gait. In this context, the Smart walkers 
emerged (Martins et al., 2011), conventional walkers 
adequately instrumented for control purposes, such 
as the inference of the walker’s user intent in order 
to control its speed, direction and distance 
accordingly.  

Research often addresses the study of interfaces 
that try to recognize the user’s movement and/or 
intent without requiring exhaustive manual 
operations. Examples include recognition using 
cameras (Martins et al., 2011), detection of human 
gait using force sensors (Frizera et al., 2010) and 
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ultrasonic sensors (Kuan et al., 2010). 
JaRoW (Lee et al., 2011) was developed to 

provide potential users with sufficient ambulatory 
capability in all directions and easy-to-use features. 
This walker was integrated with laser range finder 
(LRF) sensors to detect the location of user’s lower 
limbs in real time (Lee et al., 2011). A Kalman and 
particle filters were applied to estimate and predict 
the locations of the user’s lower limbs and body, in 
real time. A PID controller was used that, despite the 
good results, it is not certain to be effective when 
tested with elderly people, whose behavior has 
unpredictable changes, affecting the Jarow 
dynamics. In addition, the rotation detection 
algorithm, that detects when the user wants to curve, 
is based on pre-defined limits that could not be 
respected when dealing with elder people, thus 
generating false decisions. 

In (Ochi et al., 2011), it is proposed a walking 
assist system for a body weight support walker 
NILTWAMOR to track the walking trajectory of the 
user. By using the LRF range sensor, the body center 
point (BCP) of the user is estimated and used to 
control both the gait velocity and the direction of the 
user. The relationships between the facing direction 
of the body and the inclination angles of both legs 
are taken into account to control the walker’s 
direction. However, the manuscript does not discuss 
in detail the obtained results. Besides that, tests were 
performed with normal healthy subjects. 

Despite these studies, no attention has been given 
to a quantitative evaluation of human-robot 
interaction, i.e. to infer which signals related with 
posture orientation and gait pattern can detect user’s 
intentions while guiding the walker. Moreover, this 
evaluation should be made with target users, like the 
elder and other patients with motor disabilities. 

So, the challenge to find a more reliable manner 
to control the walker remains. As a first step, it is 
necessary to access and analyse in detail the signals 
of user-walker interaction to infer which ones are 
better suited to indicate velocity and orientation 
intentions of the user. Afterwards, it is possible to 
develop a natural user interface between the walker 
and patients and to employ a simple closed-loop 
control without requiring any demanding cognitive-
effort from the patient. 

In this context, this paper intends to access, study 
and analyse basic walker-assisted human interaction 
parameters of a walker model with forearm support 
with knee osteoarthritis (OA) patients. For this, it 
was used a LRF sensor placed on the walker-lower 
base and two wearable inertial sensors: one mounted 
on the walker and the other placed on the patient’s 

body. Specifically, this paper aims to specify and 
justify which interaction parameters are better to 
interpret user’s velocity and orientation intention, to 
then advance, in the next studies, for the 
development of a robotic control. The human-walker 
interaction measurements consist on the acquisition 
of the: Distance between the user body center point 
(BCP) and the walker; Angle of BCP orientation 
relatively to the walker; Angle between linear 
velocity vector and human-walker interaction line; 
Angular velocity of the user and Linear velocity of 
the user. 

It will also be presented a gait evaluation based 
on spatiotemporal parameters extracted from the 
built-in LRF sensor. This evaluation intends to 
detect the effect that a change in direction (making a 
curve) has on spatiotemporal parameters. The 
calculated spatiotemporal parameters were the gait 
cycle, identification of stance and swing phases, 
cadence and step length. These parameters were 
chosen with base on previous studies (Debi et al., 
2009; Debi et al., 2011; Elbaz et al., 2011) that 
compared knee OA subjects with healthy ones 
walking without assistance. In those studies it was 
suggested that an objective measurement tool such 
as spatiotemporal parameters can help in evaluating 
knee OA severity, effectiveness of treatment and 
might help in disease management. Thus, the 
calculation of these parameters with LRF sensor can 
be a useful tool in the future to diagnose this type of 
patients in assistance gait. 

Results were derived from thirteen knee OA 
subjects and thirteen normal subjects (control 
samples). It is noteworthy that this study was done 
with the motors shut down, to enable the evaluation 
of the real interaction between the user and the 
walker without the interference of any control 
strategy. 

This paper is organized as follows. Section 2 
describes the methodology of this work, where it is 
presented the walker and sensors system, the 
experimental procedure and the human-walker 
interaction parameters. Section 3 presents the 
acquired results patients and normal subjects, and 
provides for a discussion. Finally, conclusions are 
presented in Section 4. 

2 METHODS 

2.1 Participants 

For this study, 40 patients were chosen for inclusion 
of individuals of both sexes over 55 years of age, 
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able to walk unaided for at least 25 meters, not 
having done any rehabilitation treatment for at least 
2 months and not be making use of painkillers in the 
last 7 days. Diagnosis of Osteoarthritis (OA) was 
based on clinical and radiographic criteria of the 
American College of Rheumatology, which confer 
91% sensitivity and 86% specificity for the 
diagnosis (Altman et al., 1986)performed by an 
orthopedic surgeon with over 30 years' of experience 
in evaluating patients with osteoarthritis and surgery 
Total Knee Arthroplasty (TKA), aided by a physical 
therapist with 10 years of experience in manual 
therapy and functional assessment. 

Exclusion criteria of subjects during the selection 
process were: recent traumas; history of previous 
surgery of the lower limbs, pelvis or lumbar spine; 
neuromuscular diseases, other pathological forms of 
arthritis, presence of neurologic sequel; and 
cardiovascular diseases that contraindicate the 
performance of experiments.  

At the end of recruitment, 13 participants met all 
inclusion criteria (Figure 1). 

The control group consisted on 13 healthy 
volunteers without any dysfunction on the lower 
limbs. 

Subjects read and signed an information and 
consent form, which was approved by the Federal 
University of Espirito Santo’s Health Science Center 
Ethics Board. 

 

Figure 1: Diagram of selection and exclusion of study 
knee OA patients. 

2.2 Protocol 

2.2.1 Walker and Data Acquisition Systems 

The Smart Walker is presented in Figure 2. This new 
robotic walker consists basically of a mechanical 
structure with an adaptable height to support the user 
in the forearms.  

The developed acquisition system consists of a 
ZigBee Health Care (ZHC) network that has two 
types of devices: three ZigBee End Devices (ZED) 
and one ZigBee Coordinator, which is connected to 
the PC and receives patient´s signal data from ZEDs 
(Cifuentes,2010). The sensors are shown in Figure 2.  

One ZED (C) is used to acquire and transmit 
signals from the LRF sensor (scanning sensor 

Hokuyo URG-04lx) (A) that is connected to a 
system microcontroller (B) that performs legs’ path 
detection (position and orientation). Specification of 
LRF performance and the leg’s path detection 
algorithm can be found in (Lee et al., 2011).  

The other two ZEDs are integrated with IMU 
sensors (ZIMUED) developed in previous research 
(Cifuentes et al., 2010). One ZIMUED is located in 
the trunk of the patient (D) and the other one is over 
the walker (E). These sensors record orientation and 
angular velocity of the user and walker. 

The IMU signals are obtained every 50 Hz and 
the LRF signals every 10 Hz.  

 

Figure 2: Smart Walker hardware architecture. 

2.2.2 Experimental Procedure 

First, it was established that the walker should have 
the motors shut down and the user should walk with 
a self-selected speed, during assisted-ambulation. 
This was important to obtain the preferred gait speed 
of the subject while using the walker without 
inducing any artificial motion patterns that could 
bias the final results. 

Height of the forearm-support is the other 
parameter that has been established. It should be 
equal to height measured between the elbow of the 
user and the ground, trying to force an upright 
posture.  

All subjects (thirteen osteoarthritis patients and 
thirteen normal subjects) were barefoot and asked to 
walk three times along a pre-defined 8.9 meters path 
(see Figure 3). 

 

Figure 3: Trajectory that user’s performed with the walker. 
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2.2.3  Human-Walker Interaction 
and Temporal Distance Parameters 
Calculation 

The parameters described in this section are 
presented in Figure 4 and surveyed in Table 1.  

The human-walker interaction parameters consist 
on: Distance between the user body center point 
(BCP) and the walker (d), Angle of BCP orientation 
relatively to the walker (), Angle between linear 
velocity vector and human-walker interaction line 
(), Angular velocity of the user (wh), Linear 
velocity of the user (vh) (Table 1). 

Spatiotemporal parameters of gait were also 
determined, which reflect the dynamic activity 
during human walking: gait cycle (G), identification 
of stance (ST) and swing phases (SW), steps length 
(SL) and cadence (CAD). The selection of these 
parameters was based on previous studies (Debi, 
2009;Debi,2011;Elbaz,2011)that compared knee OA 
subjects with healthy ones walking without 
assistance. In those studies it was suggested that 
spatiotemporal parameters are sufficient to evaluate 
and manage the knee OA disease. Results of these 
studies state that patients with knee OA walk slower; 
have a shorter step length; shorter swing phase and 
consequent longer stance phase. 

Table 1: Human-walker interaction and spatiotemporal 
parameters. 

 Variable Sensor 

Human-Walker 
Interaction 
Parameters 

Distance between 
the BCP and the 

walker 
d LRF 

Angle of BCP 
orientation in 
relation to the 

walker 

θ LRF 

Angle between 
linear velocity 

vector and human-
walker interaction 

line 

Φ 
LRF + 
IMU 

Angular velocity 
of the user 

wh IMU 

Linear velocity of 
the user* 

Vh LRF 

Spatiotemporal 
Parameter 

Gait cycle G LRF 
Stance Phase ST LRF 
Swing Phase SW LRF 
Step Length SL LRF 

Cadence CAD LRF 

* Linear velocity of the user will be also considered as 
Spatiotemporal parameter. 

The detection and calculation methods of these 
parameters are described in the next subsections. 

i. Distance between the user’s BCP and the 
walker (d) and Angle of BCP orientation in relation 
to the walker (θ): The applied detection method of 
the legs to calculate the position of the BCP, is based 
on the work developed in (Lee et al., 2011). The 
detection algorithm is divided into four basic tasks: 
pre-processing of data, detection of transitions, 
pattern’s extraction and estimation of the 
coordinates of the legs. In the pre-processing phase 
it is performed the delimitation of the region of 
interaction. Then, in the detection of transitions 
phase it is analyzed the performed laser scanning 
and seeks to identify transitions that exceed a certain 
threshold. In Figure 5a it is presented a situation 
where four transitions are found (indicated by 
arrows). These transitions are then stored. Finally, 
the coordinates of each leg are estimated and the 
algorithm starts to estimate the BCP. This, in turn, is 
accomplished by taking the midpoint of the segment 
that joins the coordinates of the legs, as illustrated in 
In Figure 5b by the cross. 

Thus, this algorithm detects the two legs, and the 
midpoint of the segment that joins the coordinates of  

 
Figure 4: Scheme of the interaction parameters. Variables 
are defined in Table I. Black circle represents user’s BCP 
and the yellow box represents the LRF sensor. 

a)         b)  

Figure 5: a) Detection of transitions: 4 transitions; b) 
Illustration of the CoM estimation (its location (x,y), 
distance between user-walker (d) and orientation (θ)). 
the legs is calculated as the BCP position. With this 
information, one can know the  coordinates  (x,y)  of 
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the BCP, and consequently the distance (d) 
orientation (θ) that the user is from the walker. 
 
ii. Angle between linear velocity vector and human-
walker interaction line (ϕ), Angular velocity of the 
user (wh): The IMU placed on the user’s CoM 
provides for the user’s orientation (ψ). The IMU 
placed on the walker provides for the walker’s 
orientation (ψ’). From these two angles and θ one 
determines (ϕ). Finally, the angular velocity (wh) is 
obtained from the gyroscope located in the user’s 
IMU.   

iii. Linear velocity of the user (vh): This 
parameter is the rate of change of the position of a 
leg detected by the LRF and is given by:  

vh = (ds1+ds2)/dt, (1)

where ds1 and ds2 are the peak-to-peak 
amplitudes between two legs of the acquired LRF 
sensor signal and dt is gait cycle time. Figure 6 
illustrates these variables. 

iv. Spatiotemporal parameters: Stance phase 
(ST) (swing phase (SW)) begins (ends) when the 
foot contacts with the ground and ends (begins) 
when the same foot leaves the ground. Gait cycle 
consists on the sum of stance and swing phases time. 

In order to estimate these two parameters, it is 
necessary to detect the foot strike moments during 
each cycle. For the LRF signals, these correspond to 
the minimum values (dots in Figure 6). In a step 
cycle, the stance phase corresponds to the signal 
going from the minima to the maxima. The swing 
phase is the rest of the cycle.  

The step length is the distance (in meters) 
between a specific point of one foot and the same 
point of the other foot. For the LRF signal, this is 
calculated as the difference between the maximum 
of one leg and the minimum of the other leg in the 
same instant of time, i.e, it corresponds to ‘ds1’, for 
example, in Figure 6. 

The cadence is defined as the rhythm of a 
person’s walk and is expressed in steps per minute 
(step/min). 

2.2.4 Statistical Methods 

The spatiotemporal parameters were considered for 
repeated measures ANOVA to test for significance. 
A mixed design was used, with within-subjects of 
direction (Forward/Curve) and a between-subjects 
factor of type of subject (Healthy/Patient). The level 
of significance was set at 5%. 
 
 
 

3 RESULTS AND DISCUSSION 

The values summarized in Table 2 represent the 
average value of the calculated Spatiotemporal 
parameters of each individual, as well as the distance 
(d) human-walker interaction parameter. For the 
patients (PTs), the values were calculated based on 
the signal of the leg that suffers the most with 
osteoarthritis. In the case of healthy individuals 
(HIs), the right leg was the one analyzed (no criteria 
of choice was used, since they are considered 
symmetrical). 

In both groups (PTs and HIs) the parameters 
were separated by direction. This separation gives 
the information of how they can be affected when 
the user is changing his direction, by performing a 
curve after going forward. 

 

Figure 6: LRF sensor signal of the user’s distance to the 
walker. The dots indicate the minimum points that 
correspond to foot strike events. 

Figure 7 shows the acquired LRF and IMU signals, 
while one of the PTs (PT #3) walks with the walker 
following the pre-defined path. ‘ψ Angle’ and 
‘Angular Velocity’ represent the signals read by 
IMUs placed both on the walker and PT. ‘Legs 
Distance’ graph illustrates the distance of both PT 
legs from the walker and ‘Legs Orientation’ shows 
the orientation of each leg relatively to the walker.  

‘Human linear velocity (vh)’, ‘Human and 
Walker Orientation’ and ‘θ and ϕ’ graphs depict data 
calculated from the previous graphs only when the 
legs of the PT crossed (this event is represented by 
circles in the previous graphs) and they are 
represented in strides and steps to better analyze 
them. It is noteworthy that these graphs present 
discontinuities since they are calculated in the 
specific event of crossing legs. 

In the following subsections it will be presented 
and discussed these results in detail. 

3.1 Spatiotemporal Parameters 

In the ‘Legs Distance’ graph in Figure 7, the 
diamonds and crosses identify the beginning and end 
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of stance, respectively. These instants allowed 
calculating spatiotemporal parameters, as shown in 
Figure 6 and explained in section 2.2.3. 

By analysing Table 2, it is possible to verify that 
PTs present longer duration of stance, slower 
velocity and shorter step length than HIs. This is in 
accordance with the results presented in (Debi et al., 
2009; Debi et al., 2011; Elbaz et al., 2011), where a 
complete evaluation and comparison of 
spatiotemporal parameters was made between knee 
OA patients and healthy subjects without assistance.  

In addition, PTs tend to be closer to the walker 
than HIs. This happens since PTs tend to be more 
supported on the walker, in order to feel more 
comfortable, safe and to alleviate knee pain. HIs 
tend to be more deviated from the walker since they 
do not need an extra support to walk.  

Since this study intends to compare the 
spatiotemporal parameters between the two types of 
subjects, PTs and HIs, and between two types of 
direction, forward and curve, it was made a repeated 
measures ANOVA to test for significance. 

Gait cycle (G) does not present main changes 
due to direction (p=0.252) and type of subject 
(p=0.655) and no significant interactions between 
direction and type of subject (p=0.222). However, it 
tends to increase in HIs and decrease in PTs. This 
happens because, when HIs perform a curve they 
prolong their step; and PTs tend to reduce their time 
with the feet on the ground, increasing the number 
of steps. 

Stance (ST) and Swing (SW) also do not present 
main changes due to direction (p=0.644/p=0.640) 
and type of subject (p=0.935/p=0.931) and no 
significant interactions between direction and type 
of subject (p=0.316/p=0.317).  

Despite the lack of statistical significance, one 
can observe that PTs present lower ST duration and 
higher SW duration when compared with HIs. This 
was expected since in (Debi et al., 2009; Debi et al., 
2011; Elbaz et al., 2011)the SW was highlighted as 
an objective parameter in the comprehensive 
evaluation of a PT. They referred that SW may serve 
as a simple follow-up measurement in patients with 
OA. This importance is given because a knee OA 
patient attempts	 to	 avoid	 pain	 while	 walking	 by	
decreasing	loads	from	the	affected	joint.	However, 
SW parameter has no statistical significance in the 
current study with assisted gait. This means that as 
PT is better supported with the walker, he feels less 
pain when loading the affected joint, achieving to 
spend more time with the feet on the ground. This 
explains the little difference of SW that exists 
between PTs and HIs. 

One can also observe that PTs tend to have lower 
ST and higher SW when performing a curve in 
comparison with the forward direction. These events 

are opposite to what happens with HIs and can be 
related to the confidence and sense of security HIs 
have when manoeuvring the walker. So, this 
decrease of ST (and consequent increase of SW) in 
PTs can be related to the difficulty that PTs have 
when performing a curve. Some of them complained 
to feel more pain on the knee and some confusion. 
Thus, they tend to support less time the foot on the 
ground, becoming more suspended on the walker 
(this was also observed in the gait cycle parameter). 

Cadence (CAD) is a parameter that also presents 
no main changes due to direction (p=0.415) and type 
of subject (p=0.519) and no significant interactions 
between direction and type of subject (p=0.174). 
However, this parameter tends to decrease in HIs 
cases, and increase, in PTs cases, when performing a 
curve. As it was already discussed, when performing 
a curve, PTs tend to increase the number of steps 
and decrease their length. 

The velocity parameter (vh) shows to be affected 
by direction (p=0.010), but not to type of subject 
(p=0.264). It also does not present significant 
interactions between direction and type of subject 
(p=0.140). So, this means that all subjects reduced 
their vh when performing a curve. Since it is a 
change in the path and more difficult to perform than 
to walk in straight line, it is understandable that 
subjects tend to reduce their velocity. 

Step length (SL) is affected by within-subjects 
factor (p=0.014) and between-subjects factor 
(p=0.000), as well as their interaction (p=0.016). 
The distance to the walker (d) is affected by the type 
of subject (p=0.017) and by the interaction between 
direction and type of subject (p=0.036). However, it 
does not present main changes due to direction 
(p=0.477). 

PTs tend to observe before walk when a curve 
appears, i.e. first they turn the walker and then they 
follow it. This causes an increased deviation from 
the walker (increases d) and a consequent increase 
of SL.  

So, these spatiotemporal parameters, vh, SL and 
d, are important to be analyzed in these two 
situations. They can objectively inform about the 
level of difficulty and sense of security that PTs with 
osteoarthritis sense when maneuvering the walker, 
and this will depend on: comfort to guide the walker; 
pain on the knee, which influences the type of curve 
(close or open curve); and security and confidence 
on the device.   

It can also be possible to differentiate between 
PTs and HIs by analyzing d and SL.   

This is not in accordance with previous studies 
(Debi et al., 2009; Debi et al., 2011; Elbaz et al., 
2011)where SW was recommended as an objective 
parameter to evaluate the degree of knee pain. Since 
the current study evaluated OA patients walking 
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with assistance, the conditions changed as the 
patient has now an extra support that helps in 
alleviating pain. By this SW values do not differ 
significantly from the healthy subjects. 

Table 2: Spatiotemporal parameters of walker-assisted 
gait. Average±Standard Deviation values. 

Subj. PT HI 

Direction Forward Curve Forward Curve 

G (s) 1,52±0,160 1,51±0,256 1,51±0,028 1,63±0,057 

ST (%) 58,06±6,535 56,72±7,395 55,33±2,350 58,89±1,922

SW (%) 41,92±6,531 43,24±7,388 44,67±2,354 41,11±1,922

SL (m) 0,22±0,046 0,21±0,032 0,37±0,062 0,31±0,0455

vh (m/s) 0,32±0,158 0,3±0,147 0,44±0,061 0,39±0,047 
CAD 
(step/min) 

79,54±7,895 81,01±13,146 79,13±0,01 73,15±2,547

d (m) 0,44±0,052 0,46±0,053 0,55±0,067 0,53±0,051 

3.2 Human-walker Interaction 
Parameters 

In the ‘ψ Angle’ graph of Figure 7, one can see that 
the IMU’s signals provide information about the PT 
movement. He is going in straight line and then at 
t=1s, he begins to make a curve. Then, at t=3s, he 
goes again straight and makes a curve, at t=5s, for 
the other side until t=8s. From t=8s to t=10s, he 
continues to walk forward and straight. 

The ‘Angular Velocity’ graph (Figure 7) 
indicates that he increases (in absolute) its angular 
velocity (wh) when he starts to curve, by analyzing 
the same instants of time as previously.  

Therefore, these two parameters can be used to 
correctly detect the path that the user is following. In 
‘Legs Distance’ graph (Figure 7), one can see that is 
hard to distinguish between going forward and 
making a curve. However, it can be noticed that 
maximum values of right leg are reduced when PT 
makes the first curve (t=1s to t=3s). However, this 
change is not perceptible or significant in the second 
curve.  

After observing ‘Legs Distance’ signals from all 
the patients, it was concluded that there is a great 
variability on this signal. Which means that PTs can 
perform a curve in different manners: some hide one 
leg; others fend off the legs, or bring them together. 

‘Legs Orientation’ (Figure 7) also presents small 
changes during the time PT is performing a curve 
(t=[3 4]s and t=[5 8] s). Once again, this signal 
presents a great variability through PTs. 

A possible solution to increase the effects of 
making a curve on the LRF signal would be to put 
the LRF up to the foot’s height, to detect their 
direction. However, this is not possible to detect 

with LRF sensor, because the signal becomes 
distorted and poor of information. So, the utilization 
of a camera, for example, could be a good solution 
to detect the feet’s direction. 

Thus, LRF sensor is good to detect 
spatiotemporal parameters, as it was analyzed 
before, but not too good to detect intention of 
changing direction. 

Moreover, LRF sensor is essential to detect when 
legs are crossing with each other (identified by 
circles on the graphs). This is an important event to 
detect BCP position, since in these instants it is the 
midpoint between the legs.  

So, Human-Walker Interaction parameters can be 
calculated every time the legs cross and are 
represented in Figure 7.Distance between the user 
and the walker (d) is acquired by the ‘Legs 
Distance’ signal and it is marked with circles. Angle 
of BCP orientation in relation to the walker (θ) is 
acquired by the ‘Legs Orientation’ signal, being the 
midpoint between each leg orientation, and is 
represented in ‘θ and ϕ’ graph. Angle between linear 
velocity vector and human-walker interaction line 
(ϕ) is calculated by the sum of ϕ angle of walker and 
ψ angle of human, both represented in ‘ψ Angle’ 
graph and θ. This angle is represented in ‘θ and ϕ’ 
graph by the designated signal ‘ϕ’. Angular velocity 
of the user (wh) are the points marked with a circle 
in the ‘Angular Velocity’ graph . Linear velocity of 
the user (vh) depends on the time that the user takes 
to complete a stride (two steps) and is shown in 
‘Human Linear Velocity’ graph. 

Looking at ‘Human Linear Velocity’ graph 
(Figure 7), one can see that vh decreases when 
making a curve, which is in accordance with 
previous discussion.  

Through ‘Human and Walker Orientation (ψ)’ 
(Figure 7), one can see that the walker turns first 
than the human. This could indicate that the 
intention of command is transmitted by the upper 
limbs. This needs to be further studied by placing a 
rotating handlebar with integrated IMU or force 
sensors. 

In ‘θ and ϕ’ graph (Figure 7), one can see that ϕ 
is better to identify, with significant variability, the 
orientation of the subject when compared with θ.  

In conclusion, the Human-Walker Interaction 
parameters, in the overall are correctly detected and 
can describe the interaction between the PT and the 
walker. 
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Figure 7: Human-Walker Interaction measurements with 
data acquisition systems. 

4 CONCLUSIONS 

In the literature there are few studies of walker-
assisted biomechanics, especially regarding walkers 
with forearm supports, and there are none describing 

human-walker interaction nor gait evaluation 
regarding type of direction In relation to 
spatiotemporal parameters, the analysis has shown 
that 1) velocity, step length and distance to the 
walker are significantly affected by the change of 
direction, and 2) distance to the walker nd step 
length can distinguish between healthy subjects and 
patients with osteoarthritis. The Human-Walker 
Interaction parameters were correctly detected. LRF 
signals can detect the necessary event (when legs are 
crossing) to calculate them.  However, is necessary, 
in further studies, to develop an algorithm, like the 
one in (Lee et al., 2011), to track the PT’s legs.  
Afterwards, it is intended to advance for the 
development of a control strategy with these 
parameters and based on the cinematic of the walker 
illustrated in Figure 4. 

The difficulty in human commands acquisition 
for the development of a control strategy is to find a 
parameter that can give the information of user’s 
orientation, to then detect the orientation commands 
(go to the left/right).  

Hence, this control should be based on the 
minimization of ϕ (should tend to zero), since it was 
concluded that this parameter can detect PT’s 
orientation. However the authors are not sure if it is 
the correct parameter to estimate a change of 
direction, since PTs demonstrate to first use the 
upper limbs to transmit that command. This problem 
will be analysed in further studies. 
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