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Abstract: We collect some results concerning electrical conduction problems in biological tissues. These problems are
set in a finely mixed periodic medium and the unknown electric potentials solve standard elliptic equations set
in different conductive regions (the intracellular and extracellular spaces), separated by an interface (the cell
membrane), which exhibits both a capacitive and a conductive behavior. As the spatial period of the medium
goes to zero, the problems approach a homogenization limit. The macroscopic models are obtained by using
the technique of asymptotic expansions, in the case where the conductive behavior of the cell membrane is
linear, and by means of two-scale convergence, in the case where, due to its biochemical structure, the cell
membrane performs a strongly nonlinear conductive behavior. The asymptotic behavior of the macroscopic
potential for large times is investigated, too.

1 INTRODUCTION

This is a review article concerning the results obtained
by the authors in several papers dealing with some
aspects of electrical conduction in biological tissues.

It is well known that electric potentials can be used
in diagnostic devices to investigate the properties of
biological tissues. Besides the well-known diagnos-
tic techniques such as magnetic resonance, X-rays
and so on, it plays an important role a more recent,
cheap and noninvasive technique known aselectric
impedance tomography(EIT). Such a technique is es-
sentially based on the possibility of determining the
physiological properties of a living body by means of
the knowledge of its electrical behavior.

This leads to an inverse problem for an elliptic
equation, usually the Laplacian, which is the equation
satisfied by the electrical potential, when the body is
assumed to display only a resistive behavior. How-
ever, it has been observed that, applying high fre-
quency potentials to the body, a capacitive behavior
appears, due to the electric polarization at the inter-
face of the cell membranes produced by the lipidic
composition of the membranes themselves, which act

as capacitors. This phenomenon (known in physics
as Maxwell-Wagner effect) is studied modeling the
biological tissue as a composite medium with a peri-
odic microscopic structure of characteristic lengthε,
where two finely mixed conductive phases (the intra-
and the extra-cellular phase) are separated by a di-
electric interface (the cellular membrane). From the
mathematical point of view, the electrical current flow
through the tissue is described by means of a system
of decoupled elliptic equations in the two conductive
phases (obtained from the Maxwell equations, under
the quasi-static assumption; i.e., we assume that the
magnetic effects are negligible). The solutions of this
system are coupled because of the interface condi-
tions at the membrane, whose physical behavior is de-
scribed by means of a dynamical boundary condition
(which takes into account both the conductive and the
capacitive behavior of the cell membrane), together
with the flux-continuity assumption. Because of the
complex geometry of the domain, these models are
not easily handled, for example from the numerical
point of view. This justifies the need of the homoge-
nization approach, with the aim of producing macro-
scopic models for the whole medium asε → 0, since
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the typical scaleε of the microstructure is very small
with respect to the tissue macroscopic scale analyzed
in the experiments.

We present in the following two different cases:
in the first one the conductive behavior of the cell
membrane is assumed to be linear and the approach
used in order to obtain the macroscopic equation is
the asymptotic expansion introduced in (Bensoussan
et al., 1978); in the second one, we assume a strongly
nonlinear conductive behavior of the cell membrane,
which actually appears in some physical situation and
which is due to the presence of ionic channels, i.e.
to the biochemical structure of the cell membrane it-
self. The technique used in this last case in order to
obtain the effective potential of the tissue is the two-
scale convergence technique introduced in (Nguet-
seng, 1989) and in (Allaire, 1992).

In the first case, the macroscopic equation ob-
tained with this approach is an elliptic equation with
memory, as it could be expected in any electrical cir-
cuit in which a capacitor is present. In the second
case, we obtain a strictly coupled system of equa-
tions for the macroscopic and microscopic potentials,
as usual when the two-scale convergence technique is
applied.

2 SETTING OF THE PROBLEM

Let Ω be an open connected bounded subset ofR N.
Let us introduce a periodic open subsetE of R N, so
that E + z= E for all z∈ ZN. For all ε > 0 define
Ωε

int = Ω∩ εE, Ωε
out = Ω \ εE. We assume thatΩ, E

have regular boundary, say of classC∞ for the sake
of simplicity. Moreover, we setΩ = Ωε

int ∪Ωε
out∪Γε,

whereΓε = ∂Ωε
int ∩Ω = ∂Ωε

out∩Ω. We also employ
the notationY = (0,1)N, and Eint = E ∩Y, Eout =
Y \ E, Γ = ∂E ∩Y. As a simplifying assumption,
we stipulate thatEint is a connected smooth subset of
Y such that dist(Eint,∂Y) > 0. Some generalizations
may be possible, but we do not dwell on this point
here. Finally, we assume that dist(Γε,∂Ω) > γε for
some constantγ > 0 independent ofε, by dropping
the inclusions contained in the cellsε(Y+ z), z∈ ZN

which intersect∂Ω (see Figure 1). Finally, letT > 0
be a given time.
We are interested in the homogenization limit asε ց
0 of the problem foruε(x, t) (here the operators div
and∇ act only with respect to the space variablex)

−div(σint∇uε) = 0, in Ωε
int; (1)

−div(σout∇uε) = 0, in Ωε
out; (2)

σint∇u(int)
ε ·ν = σout∇u(out)

ε ·ν , on Γε; (3)

i

Figure 1: An examples of admissible periodic structures in
R 2. Left: Y is the dashed square, andE∩Y is the shaded
region. Right: the domainΩ.

α
ε

∂
∂t
[uε]+ f

(
[uε]

ε

)
= σout∇u(out)

ε ·ν , onΓε; (4)

[uε](x,0) = Sε(x) , onΓε; (5)

uε(x, t) = 0, on ∂Ω. (6)

The notation in (1)–(4), (6), means that the indi-
cated equations are in force in the relevant spatial do-
main for 0< t < T.

Hereσint, σout andα are positive constants, and
ν is the normal unit vector toΓε pointing intoΩε

out.
Sinceuε is not in general continuous acrossΓε we
have set

u(int)
ε := trace ofuε|Ωε

int
on Γε;

u(out)
ε := trace ofuε|Ωε

out
on Γε.

Indeed we refer conventionally toΩε
int as to theinte-

rior domain, and toΩε
out as to theouter domain. We

also denote
[uε] := u(out)

ε −u(int)
ε .

Similar conventions are employed for other quanti-
ties; for example (3) can be rewritten as

[σ∇uε ·ν] = 0, on Γε,

where

σ = σint in Ωε
int, σ = σout in Ωε

out.

The functionf and the initial dataSε will be dis-
cussed below.

Under the assumptions above, we prove existence
and uniqueness of a weak solution to (1)–(6), in the
class

uε|Ωε
i
∈ L2(0,T;H1(Ωε

i )) , i = 1,2, (7)

and uε|∂Ω = 0 in the sense of traces (Amar et al.,
2005).

In the following, we will show that, ifγ−1ε ≤
Sε(x) ≤ γε, whereSε is the initial jump prescribed
in (5), for a fixed constantγ > 1, thenuε becomes
stable asε → 0 (i.e., it converges to a nonvanishing
bounded function). Therefore, let us stipulate that
Sε ∈ H1/2(Γε) and

Sε(x) = εS1
(
x,

x
ε
)
+ εRε(x) , (8)
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whereS1 : Ω× ∂E → R , and

‖S1‖L∞(Ω×∂E) < ∞ , ‖Rε‖L∞(Ω) → 0, asε → 0;

S1(x,y) is continuous inx, uniformly overy∈ ∂E,

and periodic iny, for eachx∈ Ω.

3 THE LINEAR CASE

In this section we assume that

f
(
ε−1t

)
=

β
ε

t , t ∈ R ,

with β ≥ 0. Firstly, we remark that, up to a change
of unknown function, we can assumeβ = 0; indeed,

settingvε(x, t) = uε(x, t) ·exp
(

β
α t
)

, it follows thatvε

satisfies

−div(σint∇vε) = 0, in Ωε
int;

−div(σout∇vε) = 0, in Ωε
out;

σint∇v(int)
ε ·ν = σout∇v(out)

ε ·ν , on Γε;

α
ε

∂
∂t
[vε] = σout∇v(out)

ε ·ν , on Γε;

[vε](x,0) = Sε(x) , on Γε;

vε(x, t) = 0, on ∂Ω.

Hence, from now on, we assumeβ = 0 in (4).

3.1 Homogenization

The weak formulation of Problem (1)–(6) is
∫ T

0

∫
Ω

σ∇uε ·∇ψdxdt

−
α
ε

∫ T

0

∫
Γε
[uε]

∂
∂t
[ψ]dσdt

−
α
ε

∫
Γε
[uε](0)[ψ](0)dσ = 0, (9)

for eachψ ∈ L2(Ω× (0,T)) such thatψ is in the class
(7), [ψ] ∈ H1(0,T;L2(Γε)), andψ vanishes on∂Ω×
(0,T), as well as att = T.

Moreover, multiplying (1), (2) byuε, integrating
by parts and using (3)–(6), for all 0< t < T, we obtain
the energy estimate

∫ t

0

∫
Ω

σ|∇uε|
2dxdτ+

α
2ε

∫
Γε
[uε]

2(x, t)dσ

=
α
2ε

∫
Γε

S2
ε(x)dσ ≤C<+∞ , (10)

whereC does not depend onε and the last inequality
is due to (8), taking into account that|Γε|N−1 ∼ 1/ε.

Inequality (10) together with a suitable Poincaré
type lemma assures that, up to a subsequence,uε → u

weakly in L2
(
Ω× (0,T)

)
. It remains to identify the

limit function u, and this will be done in the following
theorem.

Theorem 3.1. Under the assumptions listed in Sec-
tion 2, as ε → 0, we have that uε → u, weakly
in L2(Ω× (0,T)), and strongly in L1loc(0,T;L1(Ω)),
where the limit u∈ L2(0,T;H1

0(Ω)) solves inΩ

−div

(
σ0∇xu+A0∇xu+

∫ t

0
B(t − τ)∇xu(x,τ)dτ

)
=F

with u= 0 on ∂Ω. Here F is a source depending
on the initial condition S1 in (8) and the two matri-
ces A0,B are symmetric and A:= σ0I +A0 is positive
definite.

The proof of this theorem can be found in (Amar
et al., 2003) and (Amar et al., 2004b) whereF ,A0,B
are explicitly defined.
Remark 3.2. In this regard, different models are ob-
tained corresponding to different scaling with respect
to ε (whereε denotes the length of the periodicity cell)
of the relevant physical quantityα, entering in the dy-
namical interface condition given by

α
εk

∂
∂t
[uε] = σ∇uout

ε ·ν , on Γε , (11)

with k ∈ Z. As we state in the previous theorem, the
casek= 1 leads to an elliptic equation with memory,
while the casek=−1 leads to a degenerate parabolic
system, the well known bidomain model for the car-
diac syncithial tissue (Krassowska and Neu, 1993),
(Pennacchio et al., 2005). In turn, the casek= 0 leads
to a standard elliptic equation (Lipton, 1998),(Amar
et al., 2006).

In (Amar et al., 2006) we analyze in details the
whole familyk ∈ Z, proving that, fork ≥ 2, the cor-
responding homogenized model reduces to a standard
diffraction problem, while fork≤−2, in the limit we
obtain two independent standard Neumann problems.

We would like to observe that only the cases cor-
responding tok = 1 and k = −1 in (11), preserve
memory, in the limit, of the membrane properties (i.e.,
of the constantα). This is not true for all the other
choices ofk.

It is not yet clear which one of these two mod-
els is more appropriate to describe the physical situ-
ation. Indeed, it seems that both of them are valid in
their respective frequency ranges. However, the one
presented here (i.e., model (1)–(6)) seems to be more
suitable to describe the response of a biological tissue
when high frequencies of alternating currents (of the
order of Megahertz) are applied, since in this case the
relevance of the capacitive properties of the dielectric
membrane increases. In the case of frequencies of
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the order of hundreds of Megahertz an improved ver-
sion of this model has been developed in (Amar et al.,
2009b) and (Amar et al., 2010). On the contrary, the
casek = −1 has been applied to low frequencies in
the context of activation of cardiac muscle.

The applicability of this model to real physical sit-
uations is connected to the study of an inverse prob-
lem, which for the elliptic equation is tipically related
to the study of the Neumann-Dirichlet map. This
problem has been widely studied. On the contrary
(apart from some geometrically simple cases), the in-
verse problem for the homogenized equation in The-
orem 3.1 is still open; in this case, the usual Dirichlet-
Neumann map should be replaced with a map in
which we assign the Dirichlet boundary condition to-
gether with the condition:

σ0
∂u
∂n

+A0
i j

∂u
∂xi

n j +

∫ t

0
Bi j (t−τ)

∂u
∂xi

(x,τ)n j dτ= h(x, t) ,

wheren is the outward normal to∂Ω andh is a given
function.

3.2 Concentration of the Physical
Problem

We point out that in the physical setting, the cell mem-
brane has a nonzero thickness, even if it is very small
with respect to the characteristic length of the cell.
Hence, we denote byη the ratio between these two
quantities and remark thatη << 1. Moreover, we
write Ω asΩ = Ωε,η ∪Γε,η ∪ ∂Γε,η, whereΩε,η and
Γε,η are two disjoint open subsets ofΩ, Γε,η is the
tubular neighborhood ofΓε with thicknessεη, and
∂Γε,η is its boundary. In addition, we assume also that
Ωε,η = Ωε,η

int ∪Ωε,η
out and∂Γε,η = (∂Ωε,η

int ∪ ∂Ωε,η
out)∩Ω.

Again, Ωε,η
out, Ωε,η

int correspond to the conductive re-
gions, andΓε,η to the dielectric shell. We assume
that, for η → 0 andε > 0 fixed, |Γε,η| ∼ εη|Γε|N−1,
Ωε,η → Ωε

out∪Ωε
int and∂Γε,η → Γε. We employ also

the notationY = Eη ∪ Γη ∪ ∂Γη, whereEη and Γη

are two disjoint open subsets ofY, Γη is the tubu-
lar neighborhood ofΓ with thicknessη, and∂Γη is
its boundary. Moreover,Eη = Eη

int ∪ Eη
out (see Fig-

ure 2). Forη → 0, Eη → Eint ∪Eout, |Γη| ∼ η|Γ|N−1
and∂Γη → Γ.

The classical governing equation is derived from
the Maxwell system in the quasi-static approximation,
which gives

−div(Aη∇uη
ε ) = 0, in Ωε,η; (12)

−div(Bη∇uη
ε t) = 0, in Γε,η; (13)

Aη∇uη
ε ·νη = Bη∇uη

ε t ·ν
η , on ∂Γε,η; (14)

E
η

out

E
η

int

∂Γ η

Γη

νη

νη

ν

Eout

Eint

i

Figure 2: The periodic cellY. Left : before concentration;
Γη is the shaded region, andEη = Eη

int ∪Eη
out is the white

region. Right: after concentration;Γη shrinks toΓ asη →
0.

∇uη
ε (x,0) = S

η
ε (x) , in Γε,η; (15)

uη
ε (x, t) = 0, on ∂Ω. (16)

We assume that the conductivityAη > 0 is such
thatAη = σint in Ωε,η

int , Aη = σout in Ωε,η
out; the perme-

ability Bη > 0 is such thatBη = αη; andS
η
ε = ∇S̃η

ε ,
for someS̃η

ε ∈ H1(Γε,η) with |S
η
ε | ∼ 1/η.

Remark 3.3. We are interested in preserving, in the
limit η → 0, the conductionacrossthe membraneΓε

instead of thetangentialconduction onΓε. To this
purpose, we need to preserve the fluxBη∇uη

εt · ν and
the jump[uη

εt ] across the dielectric shells to be con-
centrated. This is the reason for which we rescale
Bη =αη, instead of scalingBη =α/η in Γε,η, as more
usual in concentrated-capacity literature.

We are next interested in passing to the limit for
η → 0+, keepingε > 0 fixed. In (Amar et al., 2006)
we proved the following result.

Theorem 3.4.Under the previous assumptions, when
η → 0+, it follows that the concentration of Problem
(12)–(16) is given by(1)–(6) (with f ≡ 0). More pre-
cisely, asη → 0+ it follows that uηε → uε, weakly in
L2

loc(Ω× (0,T)), where uε|Ωε
int
∈ L2

loc(0,T;H1(Ωε
int)),

uε|Ωε
out

∈ L2
loc(0,T;H1(Ωε

out)) and uε is the unique so-
lution of (1)–(6) (with f ≡ 0). Moreover, asη →
0+, ∇uη

ε → ∇uε, weakly in L2loc(Ω
ε
int × (0,T)) and in

L2
loc(Ω

ε
out× (0,T)).

3.3 Well-posedness Results

The first result of this section is connected with the
existence and uniqueness of the solution of the mi-
croscopic problem; henceε is assumed to be fixed and
equal to 1.

Theorem 3.5. Let Ω be an open connected bounded
subset ofR N such thatΩ = Ω1 ∪ Ω2 ∪ Γ, where
Ω1 and Ω2 are two disjoint open subset ofΩ, Γ =
∂Ω1∩Ω = ∂Ω2∩Ω is a compact regular set, and
Γ∩ ∂Ω = /0. Assume also thatΩ, Ω1 and Ω2 have
Lipschitz boundaries. Letα > 0 and β ≥ 0. Let
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f ∈ L2(Ω × (0,T)), q,h ∈ L2(0,T;L2(Γ)), and S∈
H1/2(Γ). Therefore, problem

−σ∆v= f (t) , in Ω1, Ω2; (17)

[σ∇v ·ν] = q(t) , on Γ; (18)

α
∂
∂t
[v] = σout∇v(out) ·ν+h(t) , on Γ; (19)

[v](x,0) = S, on Γ; (20)

v(x, t) = 0, on ∂Ω; (21)

admits a unique solution v∈ L2(0,T;H 1
o (Ω)) with

[v] ∈ C(0,T;L2(Γ)), whereH 1
o (Ω) = {u= (u1,u2) |

u1 := u|Ωint
, u2 := u|Ωout with u1,u2 ∈ H1

o(Ω)}.

The technique employed to prove this theorem re-
lies on a result of existence and uniqueness for ab-
stract parabolic equations, to which Problem (17)–
(21) can be reduced by means of a suitable identifi-
cation of the function spaces there involved (Zeidler,
1990, Chapter 23). For the details see (Amar et al.,
2005).
Remark 3.6. Note that the same result as in Theorem
3.5 holds if we assume thatΩ = Y = (0,1)N, g(·, t)
is Y-periodic for a.e.t ∈ (0,T), f andq satisfy the
compatibility condition∫

Y
f (y, t)dy=

∫
Γ

q(y, t)dy for a.e.t ∈ (0,T) ,

and we replace (21) with the requirement thatv(·, t) is
Y-periodic.

For the homogenized problem an existence and
uniqueness theorem, both for weak and classical so-
lutions, is available.

Theorem 3.7. Let A∈ L∞(Ω;R N2
) be a symmet-

ric matrix such thatλ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2, for
suitable0 < λ < Λ < +∞, for almost every x∈ Ω
and everyξ ∈ R N; let B ∈ L2(0,T;L∞(Ω;R N2

)),
and let g∈ L2(0,T;H1(Ω)). Assume that f: Ω ×
(0,T) → R is a Carath́eodory function such that
f ∈ L2(0,T;H−1(Ω)) and g∈ L2(0,T;H1(Ω)).

Then, there exists a unique function u∈
L2(0,T;H1(Ω)) satisfying in the sense of distribu-
tions

−div

(
A(x)∇xu+

∫ t

0
B(x, t − τ)∇xu(x,τ) dτ

)
= f (x, t)

in Ω× (0,T) with u= g on∂Ω× (0,T).

Theorem 3.8. Let m≥ 0 be any fixed integer and let
also0< γ < 1. Let A∈C1+γ(Ω;R N2

) satisfy the as-
sumption of Theorem 3.7 and

B∈C0([0,T];C1+γ(Ω;R N2
))

be such that

B′ ∈ L2(0,T;W1,∞(Ω;R N2
)) .

Assume that f ∈ C0([0,T];Cm+γ(Ω)), and
that ∇x f (x, t) and ft(x, t) exist and are
bounded. Let g∈ C0([0,T];Cm+2+γ(Ω)), with
gt ∈ L∞(0,T;Cm+2+γ(Ω)).

Then the solution u given in Theorem 3.8 be-
longs to C0([0,T];C1+γ(Ω)) ∩ L∞(0,T;Cm+2+γ(Ω))
and solves the problem in the classical sense.

Both the proofs can be obtained, for example, with
a standard delay argument or a fixed point theorem,
together with an a-priori estimate in the correspond-
ing function spaces. The a-priori estimates are ob-
tained as in standard elliptic equations, using also the
Gronwall’s Theorem to deal with the memory term
(Amar et al., 2004a).

3.4 Stability

In this section we will give a brief description of the
asymptotic behavior ofuε(x, t) and u(x, t) for large
times. The interest in studying the asymptotics of this
model is due to the fact that the diagnostic measure-
ments are in general performed at times significantly
longer than the typical relaxation time of the system.

In the case where a homogeneous Dirichlet
boundary condition is satisfied, the following results
were proven in (Amar et al., 2009a).

Theorem 3.9. LetΩε
int,Ω

ε
out,Γε, σint,σout,α be as be-

fore. Assume that the initial datum Sε satisfies(8). Let
uε be the solution of(1)–(6) (with f ≡ 0). Then

‖uε(·, t)‖L2(Ω) ≤C(ε+e−λt) a.e. in(1,+∞), (22)

where C andλ are independent ofε. Moreover, if Sε
has null mean average over each connected compo-
nent ofΓε, it follows that

‖uε(·, t)‖L2(Ω) ≤Ce−λt a.e. in(1,+∞). (23)

This theorem easily yields the following exponen-
tial time-decay estimate foru under homogeneous
Dirichlet boundary data.

Corollary 3.10. Under the assumptions of Theorem
3.9, if uε → u weakly in L2(Ω× (0,T)) for everyT >
0, then

‖u(·, t)‖L2(Ω) ≤Ce−λt a.e. in(1,+∞). (24)

Next we are interested in the case of a nonhomo-
geneous but time-periodic Dirichlet boundary data for
uε andu. Then we assume

uε(x, t) = Ψ(x)Φ(t) and u(x, t) = Ψ(x)Φ(t) ,
(25)

on ∂Ω× (0,+∞), where

Φ(t) ∈ H1
#(R ) , Ψ(x) ∈ H1(R N) , ∆Ψ = 0

(26)
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in Ω. Here and in the following a subscript # denotes
a space ofT-periodic functions, for some fixedT > 0.

In order to deal with this case, for everyε > 0
we introduce an auxiliary functionu#

ε which solves a
time-periodic version of the microscopic differential
scheme introduced in Section 2

−div(σ∇u#
ε) = 0, in (Ωε

int ∪Ωε
out)×R ; (27)

[σ∇u#
ε ·ν] = 0, on Γε ×R ; (28)

α
ε

∂
∂t
[u#

ε ] = σ∇u#,out
ε ·ν , on Γε ×R ; (29)

u#
ε(x, t) = Ψ(x)Φ(t) , on∂Ω×R ; (30)

u#
ε(x, ·) is T periodic, ∀x∈ Ω ; (31)

[u#
ε(·, t)]−Sε(·) has null average over each

connected component ofΓε . (32)

Indeed, this problem is derived from (1)–(6) (with
f ≡ 0), replacing equation (5) with (31). Equation
(32) has been added in order to guarantee the unique-
ness of the solution, and is suggested by the observa-
tion that [uε(·, t)]−Sε(·) has null average over each
connected component ofΓε, as a consequence of (1)–
(4), (5).

In (Amar et al., 2009a, Theorem 7) it has been
proved that asε → 0, the functionu#

ε(x, t) approaches
a time-periodic functionu# ∈ H1

#(R ;H1(Ω)) solving

−div
(

A∇u#+

∫ +∞

0
B(τ)∇u#(x, t−τ)dτ

)
=0, (33)

in Ω×R , with u# = Ψ(x)Φ(t) on ∂Ω×R . HereA
andB the same matrices defined in Theorem 3.1.

Moreover, the following result holds.

Theorem 3.11. Let Ωε
int,Ω

ε
out,Γε, σint,σout,α be as

before. Assume that the initial datum Sε satisfies(8)
and the boundary datum satisfies(26). Let {uε} and
{u#

ε} be the sequences of the solutions of(1)–(5) (with
f ≡ 0), (25)and(27)–(32), respectively. Then

‖uε(·, t)−u#
ε(·, t)‖L2(Ω) ≤Ce−λt a.e. in(1,+∞),

where C andλ are positive constants, independent of
ε.

This theorem easily yields the following exponen-
tial time-decay estimate foru−u#.

Corollary 3.12. Under the assumption of Theorem
3.11, if uε → u and u#ε → u# weakly in L2(Ω× (0,T)),
for everyT > 0, then the following estimate holds:

‖u(·, t)−u#(·, t)‖L2(Ω) ≤Ce−λt a.e. in(1,+∞),

where C andλ are positive constants, independent of
ε.

Finally, expressing the functionΦ by means of its
Fourier series; i.e.,

Φ(t) =
+∞

∑
k=−∞

cke
iωkt (34)

whereωk = 2kπ/T is thek-th circular frequency, and
representing the solutionu#

ε(x, t) as follows:

u#
ε(x, t) =

+∞

∑
k=−∞

vεk(x)e
iωkt , (35)

we obtain that the complex-valued functionsvεk(x) ∈
L2(Ω) are such thatvεk|Ωε

i
∈ H1(Ωε

i ), i = 1,2, and for
k 6= 0 satisfy the problem

−div(σ∇vεk) = 0, in Ωε
int ∪Ωε

out; (36)

[σ∇vεk ·ν] = 0, on Γε; (37)
iωkα

ε
[vεk] = (σ∇vεk ·ν)out, on Γε; (38)

vεk = ckΨ , on ∂Ω, (39)

whereas fork= 0 they satisfy the problem

−div(σ∇vε0) = 0, in Ωε
int ∪Ωε

out; (40)

[σ∇vε0 ·ν] = 0, onΓε; (41)

(σ∇vε0 ·ν)out = 0, onΓε; (42)

vε0 = c0Ψ , on∂Ω; (43)

[vε0]−Sε(·) has null average

over each connected component ofΓε . (44)

Note that any solutionvεk of Problem (36)–(39) is
such that[vεk] has null average over each connected
component ofΓε.

Finally, in (Amar et al., 2009a) the following ho-
mogenization result is proven:

Theorem 3.13. Let Ωε
int,Ω

ε
out,Γε, σint,σout,α be as

before. Assume that the boundary datum satisfies
(26). Then, for k∈ Z \ {0} [respectively, k= 0,
under the further assumptions(8), the solution vεk
of Problem (36)–(39) [respectively, Problem(40)–
(44)] strongly converges in L2(Ω) to a function v0k ∈
H1(Ω) which is the unique solution of the problem

−div(Aωk ∇v0k) = 0, in Ω; (45)

v0k = ckΨ , on∂Ω; (46)

where

Aωk = A+

∫ +∞

0
B(t)e−iωkt dt , (47)

with A and B the same matrices defined in Theorem
3.1.
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Remark 3.14. Experimental measurements in clini-
cal applications are currently performed by assigning
time-harmonic boundary data and assuming that the
resulting electric potential is time-harmonic, too. This
assumption, which is often referred to as the limiting
amplitude principle, leads to the commonly accepted
mathematical model based on the complex elliptic
Problem (45)–(46) for the electric potential (Borcea,
2003), (Dehghani and Soni, 2005). In (Amar et al.,
2009a), in view of the preceding theorem, this phe-
nomenological equations have been mathematically
justified and, moreover, in (47) a quasi-explicit rela-
tion between the circular frequencyωk and the coeffi-
cientAωk has been found.

4 THE NONLINEAR CASE

In this section the functionf appearing in equation
(4) is assumed to be continuous and strictly mono-
tone increasing; moreover, we require thatf (0) = 0
and| f (s)| ≤ Λ|s| ∀s∈ R , whereΛ > 0 is a suitable
constant. For later use, let us set

X 1
# (Y) := {(u(1),u(2)) | u(1) := u|Eint

,u(2) := u|Eout,

with u(1)∈H1(E1) , u(2) ∈H1(E2) , anduY−periodic} ,

and recall the definition of two-scale convergence.

Definition 4.1. Given a sequence {uε} ∈
L2
(
0,T;L2(Ω)

)
and a functionu ∈ L2

(
0,T;L2(Ω×

Y)
)
, we say that uε two-scale converges tou

in L2
(
0,T;L2(Ω × Y)

)
for ε → 0 (and we write

uε
2−sc
→ u) if

lim
ε→0

∫ T

0

∫
Ω

uε(x, t)ϕ
(

x,
x
ε
, t
)

dxdt =

∫ T

0

∫
Ω×Y

u(x,y, t)ϕ(x,y, t)dxdydt

for any test functionϕ ∈ L2
#

(
Y;C (Ω× [0,T])

)
.

Following (Allaire et al., 1995) (see also (Hum-
mel, 2000)), we recall also the notion of two-
scale convergence for sequences of functions defined
on periodic surfaces, suitably adapted to the time-
dependent case.

Definition 4.2. Given a sequence {vε} ∈
L2
(
0,T;L2(Γε)

)
and a function v ∈ L2

(
Ω ×

(0,T);L2(Γ)
)
, we say thatvε two-scale converges to

v in L2
(
Ω× (0,T);L2(Γ)

)
for ε → 0 (and we write

vε
2−sc
→ v) if

lim
ε→0

ε
∫ T

0

∫
Γε

vε(x, t)ψ
(

x,
x
ε
, t
)

dσdt =

∫ T

0

∫
Ω

∫
Γ

v(x,y, t)ψ(x,y, t)dxdσ(y)dt

for any test functionψ ∈ C
(
Ω× [0,T];C#(Y)

)
.

A weak formulation and an energy estimate anal-
ogous to the ones in (9) and (10) can be written down
also in this case, so that we can assert again that, up
to a subsequence,uε → u weakly in L2

(
Ω× (0,T)

)
,

whereu is identified in the next theorem (see (Amar
et al., 2013a)).

Theorem 4.3. Let the assumptions listed in Sec-
tion 2 be satisfied and let f be as stated above.
Assume, in addition, that Sε/ε two-scale converges
in L2

(
Ω;L2(Γ)

)
to a function S1 which satisfies

S1(x, ·) = S|Γ(x, ·) for some S∈ C
(
Ω;C 1

# (Y)
)
, and

lim
ε→0

ε
∫

Γε

(
Sε

ε

)2

(x)dσ =

∫
Ω

∫
Γ

S2
1(x,y)dxdσ(y) .

Then there exists u∈ L2
(
0,T;H1

o(Ω)
)

and there exists
u1 ∈ L2

(
Ω× (0,T);X 1

# (Y)
)

such that, asε → 0, we
have

uε → u strongly in L2loc

(
0,T;L2(Ω)

)
,

1Ω\Γε∇uε
2−sc
→ ∇u+∇yu1 in L2

(
0,T;L2(Ω×Y)

)
,

ε−1[uε]
2−sc
→ [u1] in L2

(
Ω× (0,T);L2(Γ)

)
.

Moreover, the pair(u,u1) solves

−div

(
σ0∇u+

∫
Y

σ∇yu1dy

)
= 0, in Ω; (48)

−divy(σ∇u+σ∇yu1)=0, in Ω×(Eint ∪Eout); (49)

[σ(∇u+∇yu1) ·ν] = 0, on Ω×Γ; (50)

α
∂
∂t
[u1]+ f ([u1]) = σ(∇u+∇yu1) ·ν , onΩ×Γ;

(51)
[u1](x,y,0) = S1(x,y) , on Ω×Γ; (52)

u(x, t) = 0, on ∂Ω. (53)

As in Subsection 3.4, also in this nonlinear case
we are interested in studying the asymptotic behavior
of the macroscopic potentialu for large times. In the
case where a homogeneous Dirichlet boundary con-
dition is satisfied, the following result is proven in
(Amar et al., 2013b, in preparation), which is anal-
ogous to the one stated in Corollary 3.10.

Theorem 4.4. Let u,u1 be the solution of the homog-
enized Problem(48)–(53). Then,

‖u(·, t)‖L2(Ω) ≤Ce−λt a.e. in(1,+∞)

SIMULTECH�2013�-�3rd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

702



5 CONCLUSIONS AND FUTURE
PERSPECTIVES

As already pointed out in Remark 3.14 our research
gives, at least in the linear case, a mathematical jus-
tification of the phenomenological model (45)–(46)
commonly accepted in clinical applications, when
time-harmonic boundary data are assigned (Borcea,
2003), (Dehghani and Soni, 2005). At the same time,
in (47) a quasi-explicit relation between the circular
frequencyωk and the coefficientAωk has been found.
Moreover, we provide also a model for the case of
general periodic boundary data (see (33)). These re-
sults could be useful in clinical applications for the
reduction of the noise problems still affecting the di-
agnostic image reconstruction.

Our future research will be mainly aimed at ob-
taining similar results also in the nonlinear case
where, at present, the asymptotic behavior of the elec-
tric potential, when time-harmonic or periodic bound-
ary data are assigned, has not completely been ex-
ploited.
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