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Abstract. Often a perfectly functioning software system is misused causing 
undesirable and expensive consequences. The quest of this work is to prepare a 
priori the system for eventual extensions that – while not directly relevant to the 
system purpose – enable overcoming the consequences of its misuse. This is 
attained by means of domain knowledge to model the system misuse, beyond 
the original system model. In particular, if the behaviors of such a system have 
been modeled by statechart diagrams, these diagrams can be reengineered to 
suitably extend them, in order to correct the misbehavior consequences. 

1 Introduction 

Our software development follows M. Jackson's Problem Frame Approach (PFA) 
(Jackson, [6]). Jackson’s idea is that system development is a problem: the task is to 
devise a software behavior that produces the required effects in the physical problem 
world. The problem complexity is addressed by decomposition into sub-problems, 
and so on recursively. 

In this paper we continue our previous work (Goldin and Gallant, [3]) on 
behaviorally-rich systems. We extend it to deal with misuse of perfectly correct 
systems. Also here we identify a sort of reengineered PFA, which will be formulated 
and illustrated by a few case studies. 

1.1 Related Work 

We present here a short overview of the relevant literature. 
The best starting points to understand Jackson's approach are the books and the 

PFA overview by Jackson himself (see refs. [6],[7],[8]). 
Many works deal with misuse of software from a variety of points of view. 

Surprisingly many of them consider the advantages of misuse in house as a testing 
procedure, in particular for security issues. 

For instance, Alexander [1] refers to misuse cases with hostile intent. Sindre and 
Opdahl [12] deal with security requirements by means of misuse cases. Hope et al. 
(Hope et al., [5]) consider misuse as a positive form to learn how to defend software 
from attackers.  
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The quantity of work done about misbehavior is also significant. For example, 
Exman [2] deals with representation of misbehavior by means of statecharts, in 
particular referring to standard software components, like design patterns. 

1.2 Overview of the Paper 

Section 2 define basic terms such as misbehavior and misuse. Section 3 describes the 
reengineering PFA process. Section 4 explains the approach by means of case studies. 
Section 5 deals with misuse paradigms. Section 6 contains a discussion and 
conclusions. 

2 Misbehavior, Misuse and their Combination 

In this section we define some basic terms, such as misbehavior and misuse. 

2.1 Misbehavior  

Misbehavior of a software system means that the system behaves differently from 
what is expected from the system requirements. In other words the system design 
and/or implementation do not fit with the system requirements. 

Traffic lights examples are: a- it never reaches the green light; b- it changes 
randomly both with respect to colors and to timing. 

2.2 Misuse 

Misuse of a software system means that: 

 on the one hand, the system functions perfectly as it should – its behavior fits with 
the system requirements and so are its design and implementation;  

 on the other hand, an end-user of the system makes use of it not according to its 
purpose and/or does not comply with the usage instructions. 

Traffic lights examples are: a- a driver does not stop on red light and crosses a street 
intersection; b- a driver makes a U-turn when it is not allowed to do that. 

A combination of misbehaviour with misuse means that both kinds of problems 
occur in a certain event. A famous example is the case of the Therac-25 (Leveson, 
[10]) radiation accidents and their fatal medical consequences. 

3 The Reengineering Process 

Our approach assumes that the behavior model of a system is given by a statechart. 
It was defined above the software development problem as the need to obtain a 

software behavior that will produce the required effect in the physical problem world.  
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Therefore the decomposition of the physical problem requires the decomposition 
of all aspects of the problem (machine, problem world) in step.  

In other words, only the relevant part of the physical world is considered, and a 
submachine meeting the sub-requirement in the partial physical world is specified.  

The states and events of the machine can then be examined to identify impossible 
or undesirable events and transitions. Then the software behaviors of the sub-
problems can be modified to eliminate them. 

3.1 Behavioral Models for Problem Identification 

We repeat here the classification of software systems according to their behavioral 
model – first presented in our preceding paper (Goldin and Gallant, [3]): 
 Behaviorally-rich – are those systems whose behavioral model hints to a potential 

richness, not found yet in the current model; 

 Behaviorally-poor – are those systems whose model lacks any hints to potential 
richness. 

This classification is surely dependent on the referred hints. The latter are heuristic 
rules – to be collected based upon accumulated experience with software system 
modeling. 

We have proposed a few such rules to recognize the potential of behaviorally-rich 
software systems in their behavioral model: 
1- Number of States – the number of sub-states in any given state is greater than the 

number of siblings of the given state; 
2- Transition Chain Linearity – the transition chain of events linking a set of states is 

linear, without any bifurcation; 
3- Transition Chain Cycle – the transition chain of events linking a set of states is a 

whole cycle, without any internal bifurcation. 

We shall illustrate the use of such rules in the Case Studies section. 

3.2 Decomposition and Recomposition 

The central idea here is that multiplicity of states in simple looking hierarchies hint at 
possible model improvement. But one should try to confirm that the problem was 
actually identified, before performing model decomposition and reinvention of critical 
sub-problem interactions. Our guide is the proposed heuristic rules for recognition of 
a behaviorally-rich system. 

A most important point is the reuse of past experience and behavioral design 
patterns. This concerns two aspects: 
1- Heuristic rules – as suggested above;  
2- Behavioral Design Patterns – ready-made behavior structures to be inserted into 

states identified by the heuristic rules. 

Finally, recomposition requires the analysis of how subprograms must work together 
to accomplish the reengineered system purpose. 
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4 Case Studies 

We shortly describe two case studies to illustrate the process. 

4.1 Traffic Lights 

Our traffic lights system is as follows. One has an intersection of two perpendicular 
streets, with cars crossing the intersection according to the lights. There are also 
cameras that catch drivers that cross on red light.  

Suppose now the following event. A driver does not pay attention to the lights 
changing to red and advances a few meters into the intersection and stops too late. 
This is a misuse of the system. The standard behavior of the system is to take a photo 
of the car plate to send a fine to the driver, but otherwise the lights continue to change 
regularly. But this is dangerous, since the driver stopped quite in the middle of the 
intersection, and accidents may occur.  

We propose the following reengineering of the system: the camera identifies the 
problematic advance of the car, and modifies the timing of the green light for the 
perpendicular street to avoid a possible accident. This is based on the traffic domain 
knowledge. This kind of reengineering can be recognized in the traffic lights’ 
statechart according to the Transition Chain Cycle heuristic rule, since the traffic 
lights – red, yellow, green – is such a cycle. 

4.2 Dialysis Equipment 

A dialysis system is an artificial replacement for natural kidneys that do not execute 
anymore their function. Dialysis performs two functions: extraction of small 
molecules and excess water from blood. 

Before dialysis is started, nurses should calculate for each patient the decrease of 
weight needed and the time duration of the dialysis. From this data the machine 
executes the necessary program. If the data was miscalculated – an example of misuse 
– the machine may cause excessive water diffusion, causing high blood viscosity and 
undesirable medical consequences. 

The reengineered system in such a case has a sensor that indirectly measures the 
blood viscosity and reduces the pressure to decrease the rate of water extraction. 

This kind of reengineering can again be recognized in the dialysis system 
statechart according to the same heuristic rule as above, due to the blood and dialysate 
cycles.  

5 Misuse Paradigms: Dialysis Case Study revisited 

This case study follows the example presented by Roux, et al. [11], based on the 
dialysis operational protocol of Korabik [9], with the following adaptations: 
1. We use the UML statechart language as defined by Harel and Kugler [4]. 
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2. We supplement the statecharts in [11] with misuse events and responses according 
to the severity of the misuse.  

Fig. 1, is a statechart representing the overall dialysis treatment process, beginning 
with patient intake, and ending with post-treatment equipment maintenance.  

 
Fig. 1. Statechart for the dialysis treatment process. 

Now we expand the monitoring control state, for which we define misuse 
incidents and a corrective action for each type of incident. We focus on misuse that 
may occur within the monitoring control state, which is detailed in Fig. 2. 

Herein we define a paradigm for a specific type of misuse, preemptive entrance 
into a state out of sequence. To simplify the example, assume that the only 
preemption performed is to advance to the next state, without completing the tasks of 
the present state. We define 4 levels of misuse violation, and the corrective action for 
each level. 

active

WaitingForResources

ResourcesAss ignment ready

/allocateNurse();

allocateMachine()

/requestNurse();requestMachine()

Setup

setup(machine)

/validate(date);createTreatment();allocateNurse()

monitoring

NboU seC alculate();  access(patient)

tm(30plusminus3min)/pickup(patient)

dialysis

dia ly ze(patient)

tm(24plusminus3min)/release(nurse)

endTreatment

term inateP atient()

tm(4hr)[NbOfControl==8]/release(nurse0

preRinse

tm(25plusminus3)/request(nurse)

rinse

tm(5min)/release(nurse)

postRinse

postRinse(m achine)

tm(45min)

/release(machine)

monitoringcontrol

ev V iolationP riority 4/postWarning();

tm(30minr)[NbOfControl>0 && NbOfControl<9]/request(nurse)

abort

evViolationPriority1

/patientArrives()/patientArrives()

/requestNurse();requestMachine()

/allocateNurse();

allocateMachine()

/validate(date);createTreatment();allocateNurse()

tm(30plusminus3min)/pickup(patient)

tm(24plusminus3min)/release(nurse)

tm(4hr)[NbOfControl==8]/release(nurse0

tm(25plusminus3)/request(nurse)

tm(5min)/release(nurse)

tm(45min)

/release(machine)

tm(30minr)[NbOfControl>0 && NbOfControl<9]/request(nurse)
evViolationPriority1
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Fig. 2. Monitoring control sub-state. 

Representation of Preemptive Misuse 
The paradigm we adopted for representing preemptive misuse is as follows: 

1. Define a super-state (normalOperation) enclosing the preemptable sub-states 
(usualControl, bloodPressure, coilLeak, bathChange). (Fig. 2) 

2. Associate a preemption event with each preemptable state, and draw a transition 
from the super-state to each of the preemptable states, triggered by the associated 
event. The event naming convention is evPreemptive<state name>. (Fig 2). 

3. For each Violation Priority associate an event according to the naming convention 
evViolationPriority<n> where highest priority is n=1. (Fig 2) 

4. Divide the monitoring control state into two orthogonal components (operation, 
misUse). In the misUse orthogonal component, define reentrant transitions (these 
could have been reactions in state), to map the misuse events (triggers) to violation 
priorities (actions). (Fig. 2) 

5. The corrective action for the various violation priorities are as follows: 
a. Priority 1, aborts the treatment (Figure 1, abort state). (Fig. 1) 
b. Priority 2, allows 5 minutes for corrective action, before reverting to the 

previous state. (Fig 2) 
c. Priority 3, immediately reverts to the previous state(Fig. 2) 
d. Priority 4, allows the preemption, but posts a warning, as per the the reaction 

in state defined for monitoringcontrol state (Fig.1). 

6 Discussion 

Reengineered PFA replaces intuitive speculation with a highly focused purpose – to 
automatically correct potential misuse. As the stakeholder traverses the model, a 

monitoringcontrol

normalOperation

bloodPressure

suspend(dialy sis); correctiveBloodPressure()
resume(dialysis)

bathChange

changeBath(post)

[NbOfUse!=20 &&NbOfUse 
!=8]/release(2eNurse)

usualControl

evGoBack

coilLeak

evGoBack

evGoBack

toBathChange

toBathChange

[NbOfControl !=1 !!
NbOfUse !=4&& NbOfUse !=4 && NbofUse!=20]

/re lease(nurse)

[NbOfUse==20]

[else]/re lease(nurse)

[NbOfUse==8]/re lease(2eNurse)

tm(30min)

[NbOfControl==1&&NbOfUse==4]/request (2eNurse)

[else]

[else]

[NbOfUse != 20]/release(2eNurse);
release(nurse)

[NbOfUse==20]

evPreemptiveUsua lControl

evPreemptiveBloodPressure

evPreemptiveCoilLeak

evPreemptiveBathChange

evViolat ionPriority 3/GEN(evGoBack)correctiv eAct ion
tm(5min)/GEN(evGoBack)

evViolat ionPriority 2

operation

mischieve

evPreemptiveUsualControl/GEN(evViolationPriorit y4)

evPremptiveBloodPressure/GEN(evViolationPriority1)

evPreemptiveCoilLeak/GEN(evViolationPriority2)

evPreemptiveBathChange/GEN(evViolationPriorit y3)

misUse

evPreemptiveBloodPressure

[NbOfUse!=20 &&NbOfUse 
!=8]/release(2eNurse)

evPreemptiveBathChange

evGoBack

evPreemptiveUsua lControl

evGoBack

evGoBack

evPreemptiveCoilLeak

[NbOfControl !=1 !!
NbOfUse !=4&& NbOfUse !=4 && NbofUse!=20]

/re lease(nurse)

[NbOfUse==20]

[else]/re lease(nurse)

[NbOfUse==8]/re lease(2eNurse)

tm(30min)

[NbOfControl==1&&NbOfUse==4]/request (2eNurse)

[else]

[else]

[NbOfUse != 20]/release(2eNurse);
release(nurse)

[NbOfUse==20]

evViolat ionPriority 3/GEN(evGoBack)
tm(5min)/GEN(evGoBack)

evViolat ionPriority 2

evPreemptiveUsualControl/GEN(evViolationPriorit y4)

evPremptiveBloodPressure/GEN(evViolationPriority1)

evPreemptiveCoilLeak/GEN(evViolationPriority2)

evPreemptiveBathChange/GEN(evViolationPriorit y3)
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reverse engineering /reinvention happens. At each reversal stage, decomposition and 
afterwards recomposition occur.  

Cognitively, it is easier to contemplate interactions between two behaviors if they 
are captured in the same diagram, i.e. orthogonal components of a single statechart.  

In particular, as demonstrated in the Dialysis Case study, orthogonal components 
effectively partition paradigms for misuse and corrective action. The salient feature of 
this paradigmatic approach is decoupling of misuse incidents from corrective actions, 
allowing abstraction of both of them. Changing the mapping of misuse incidents to 
corrective actions, is easily performed by changing the association between triggering 
misuse events and the respective corrective action events. 

6.1 Future Work 

The proposals in this paper are still in a preliminary investigation stage. One needs 
extensive examination of a variety of software systems misuse to validate the 
approach. Such systems should be of realistic size and complexity. 

In order to effectively apply reengineered PFA one would need tools supporting 
both the recognition of behaviorally-rich systems and their actual improvement. 

Future work for enrichment and extension of the paradigmatic approach includes: 
 Exploration of other misuse and corrective action paradigms. In particular the 

preemptive paradigm is most relevant to sequential processes. For event driven 
behaviors preemption is less relevant.  

 Accordingly it is a desideratum, to define various behavioral paradigms, and 
suggestions for relevant misuse correction paradigms, with attention to their 
generic representations in statecharts. 

 Formulation and simulation of misuse scenarios using tools that support Live 
Sequence Charts (LSC) such as IBM Rational Rhapsody’s Test Conductor. 

6.2 Conclusions 

This work proposes a reengineered PFA approach to correct software systems misuse, 
with a state-based behavior model. Statecharts facilitate recognition of behaviorally-
rich systems, leading to decompositions supporting paradigmatic abstractions. 
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