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Abstract: The use of a small number of Electromyography (EMG) channels for classifying the finger movement is a 
challenging task. This paper proposes the recognition system for decoding the individual and combined 
finger movements using two channels surface EMG. The proposed system utilizes Spectral Regression 
Discriminant Analysis (SRDA) for dimensionality reduction, Extreme Learning Machine (ELM) for 
classification and the majority vote for the classification smoothness. The experimental results show that the 
proposed system was able to classify ten classes of individual and combined finger movements, offline and 
online with accuracy 97.96 % and 97.07% respectively. 

1 INTRODUCTION 

The electromyography signal has been used widely 
to control the upper-limb prosthetic robot to recover 
the quality of life of the amputee. Many attempts 
have been made to decode the hand movements as 
the control sources of the hand robot (Oskoei and 
Huosheng, 2008): (Sang Wook et al., 2011); (Micera 
et al., 2010). The dexterous control system should 
involve not only the hand movements but also the 
finger movements (Tenore et al., 2009); (Khushaba 
et al., 2012). Some efforts have been done to 
recognize the finger movements. Tenore et al 
decoded ten classes of the individual finger 
movements by using up to 32 sEMG channels with 
accuracy ~ 90% (Tenore et al., 2009). In addition, 
Al-Timemy et al (Al-Timemy et al., 2013) classified 
15 individual finger movements and achieved 98 % 
accuracy by using 6 sEMG channels. 

The use of few numbers of electrodes in a finger 
recognition system without compromising the 
decoding accuracy is a challenging task. Tsenov et al 
used two sEMG channels for 4 class finger 
movements i.e. the thumb, index, middle finger and 
hand closure with the best accuracy was nearly 93 % 
in offline classification (Tsenov et al., 2006). 
Moreover, Khusaba et al classified 10 classes of 
individual and combined finger movements which 
consisted of five individual finger movements by 
using two sEMG channels (Khushaba et al., 2012). 

This work could achive 92% and 90 % of accuracy 
for the offline and online classification respectively. 

To achieve good classification results, it 
demands the proper and right decoding methods. 
Tsenov employed time domain feature extractions 
and Artificial Neural Networks (ANNs) to process 
the sEMG signals from two channels (Tsenov et al., 
2006). This recognition system gave a good 
accuracy in offline classification but no evidence in 
online classification. In addition, this system only 
decoded for finger movements which were only 
three individual finger movements and one hand 
close. More finger movements are needed in real-
time application. 

The best improvement was proposed in 
(Khushaba et al., 2012). The sEMG signals from two 
channels were extracted by using time domain 
features and reduced by Linear Discriminant 
Analysis (LDA) and then classified by using Support 
Vector Machine. The final results were refined by 
using a Bayesian fusion vote. Ten classes of 
individuated and combined finger movements were 
able to recognize with 92 % offline classification 
accuracy and 90% online classification accuracy.  

The achievement attained by previous system is 
good but not good enough for the implementation in 
real-time application. Many attempts should be 
made to achieve more accurate system recognition. 
For that goal, this paper proposes the novel 
recognition system which uses two sEMG channels 
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in recognizing the individual and combined finger 
movements. A number of features are extracted by 
using time domain feature extraction and then 
reduced by using Spectral Regression Discriminant 
Analysis (SRDA) (Cai et al., 2008). SRDA is an 
extension of Linear Discriminant Analysis which is 
fast and able to work on a large dataset.  

Extreme Learning Machine (ELM)(Huang et al., 
2012) is used for classification. ELM is generalized” 
single-hidden-layer feedforward networks (SLFNs) 
whose hidden layer does not need to be tuned. It 
needs fewer optimization constraint, has better 
generalization functioning and faster learning time 
than SVM (Huang et al., 2012). This combination, 
SRDA and ELM along with the majority vote (Chan 
and Green, 2007), provide a fast and an accurate 
classification system for individuated and combined 
finger movements. 

2 METHOD 

2.1 Experiment Procedures 

The data in this work were acquired from six 
subjects, one female and five males. All subjects 
were normally limbed with no muscle disorder. To 
avoid the effect of position movement on EMG 
signals, subject’s arm was supported and fixed at 
certain position as decribed in fig. 2.(Khushaba et 
al., 2012). 

The FlexComp Infiniti™ System from Thought 
Technology was used to process the signals from 
two EMG MyoScan™ T9503M Sensors which were 
put on the subject’s forearm as seen in the figure 1. 
The acquired EMG signals were amplified to a total 
gain of 1000 and sampled at 2000 Hz. 

The collected EMG signals were processed in the 
Matlab 2012b installed in the Intel Core i5 3.1 GHz 
desktop computer with 4 GB RAM running on 
Windows 7 operating system. The signals were 
filtered by a band pass filter between 20 and 500 Hz 
with a notch filter to remove the 50 Hz line 
interference. Finally, the EMG signals were down 
sampled to 1000 Hz. 

Fig. 2 shows ten classes of the individual and 
combined finger movements consisting of the 
flexion of individuated fingers, i.e., Thumb (T), 
Index (I), Middle (M), Ring (R), Little (L) and the 
pinching of combined Thumb–Index (T–I), Thumb–
Middle (T–M), Thumb–Ring (T–R), Thumb–Little 
(T–L), and the hand close (HC).  

The offline classification was performed based 
on data from the data acquisition. In this stage, the 

subjects asked to perform a certain posture of a 
finger movement for a period 5 s and then take a rest 
for 5 s. Each movement was repeated six times. 
Therefore 30 minutes of data are collected for each 
trials and 180 minutes for all repetitions. The data 
collected were divided into training data and testing 
data. Four of six trials were training data and the rest 
were testing data. 

 

 

Figure 1: Ten different finger movements. 

In the online stage, the subject performed similar 
activities. The difference is the repetition which is 
only four times instead of six and all are for testing 
only. Another difference is the recognition system is 
performed each 100 ms and then the result is 
displayed on the screen. 

2.2 Proposed Method 

The proposed recognition system consisted of two 
stages, an offline and online classification stages. In 
the offline stage, the EMG signals were acquired by 
a data acquisition device from 6 subjects. The 
filtering and windowing was applied to the collected 
data before being extracted by using a time domain 
feature set. To reduce the dimension of the features, 
SRDA was employed. Then, the reduced data were 
classified using ELM and refined by using the 
majority vote. The trained ELM which is produced 
by the offline classification is stored and used in the 
online classification stage. 

 

Figure 2: The electrodes placement. 

In the online stage, the trained ELM is restored 
and used to classify the sEMG signals which are 
captured every 100 ms. The acquired signals are 
extracted by using time domain feature extractions 
and reduced their dimensionality by using SRDA. 
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Then, the reduced features are recognized by the 
trained ELM and the output classification is refined 
by using majority vote. 

2.3 Feature Extraction 

The features were extracted from a time domain 
feature set which consists of Waveform Length 
(WL), Slope Sign Changes (SSC), Number of Zero 
Crossings (ZCC), and Sample Skewness (SS). In 
addition, some parameters from Hjorth Time 
Domain Parameters (HTD) and Auto Regressive 
(AR) Model Parameters were included as used in 
(Khushaba et al., 2012). All features were extracted 
by using myolectric toolbox (Chan and Green, 2007) 
and Biosig toolbox (Schlogl and Brunner, 2008). 

The AR model parameters have been proven to 
be stable and robust to the electrode location shift 
and the change of signal level (Tkach et al., 2010). 
Moreover, aforementioned time domain features 
were windowed by using disjoint window instead of 
sliding window to keep computational cost low. A 
100 ms window and a 100 increments were used to 
form a system which is suitable for real time 
application. 

2.4 SRDA 

SRDA is an improvement of LDA which is better 
than LDA in the computational aspect and the ability 
to cope with a large dataset (Cai et al., 2008). Let 
eigen problem of LDA is 

T TXWX a XX a  (1)

where X (1 x c) is centered data matrix, W is 
eigenvector matrix (m x m),  = eigenvalue, a = 
transformation vector, c = the number of classes, and 
m = the number of total training data points. 
Modification of the equation (1) gives: 

Wy y  (2)

where 

TX ya   (3)
 

The solution of LDA problem by SRDA is to get y 
by solving eq (2) and then use the y obtained to find 
a. To solve a, the least square sense could be 
employed by using: 

 2

1

arg min
m

T
i i

a i

a a x y


   (4)

 

Regularize least square problem of SRDA, we get: 

    
1

arg min
TT T T

m

a i

X a y X a y a aa 


    (5)

 

Derivative of equation (5) gives: 

 TXX XyI   

  1
TXX Xya I


    

(6)

2.5 Extreme Learning Machine 

ELM is a learning scheme for single layer 
feedforward networks (SLFNs). While the network 
parameters are tuned in classical SLFNs learning 
algorithms, most of these parameters are analytically 
determined in ELM. The hidden parameters can be 
independently determined from the training data, 
and the output parameters can be determined by 
pseudo-inverse method using the training data. As a 
result, the learning of ELM can be carried out 
extremely fast compared to the other learning 
algorithms (Huang et al., 2012).  

The output function of ELM for generalized 
SLFNs (for one output node case) is: 

 

1

( ) ( )
L

L i i

i

f x h x


  h(x)  (7)

 

where  1
, ...,

T

L
  is the vector of the output 

weight between hidden layer of L nodes and the 

output node,  1
( ), ..., ( )

L
h x h xh(x) is the output 

vector of hidden layer. 
The objective of ELM is to minimize the error 

and the norm of weight: 

2
Minimize : andH T   (8)

 

where T is the target. For classification purpose, the 
output function of ELM in equation (7) could be 
modified to be: 

-1
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C
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 
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 (10)

 

as well as C is a user-specified parameter and N is 
the number of the training data. In the equation (10), 
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h(x) is a feature mapping (hidden layer output 
vector) which can be: 
 

 
1 1

h(x) ( , , x), ..., ( , , x)
L L

G a b G a b  (11)
 

where G is a non-linear piecewise continuous 
function such as sigmoid, hard limit, Gaussian, and 
multi quadratic function. 

If the feature mapping h(x) is unknown to the 
user, a kernel function can be used to represent h(x). 
Then, the equation (9) would be: 

-1

T T

1 -1

N

ELM

1
f(x) = + T

C

(x,x )
1

= + T
C

(x,x )

K

K



 
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 

 
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 (12)

 

where 

T

ELM ELM ,
: (x ). (x ) (x , x )

i j i j i j
h h K    HH  

and K is a kernel function such that : 

 2
( ) expK   ,u v u v  (13)

2.6 Majority Vote 

The majority vote was used to refine the 
classification results. It utilizes the results from the 
present state and n previous states and makes a new 
classification result based on the class which appears 
most frequent. This procedure produces the finger 
movement class that removes specious 
misclassification. Besides majority vote, the 
transition states in the classification results are 
removed too. This method gives the recognition 
system that works in steady state only regardless the 
transition state. 

3 RESULT AND DISCUSSION 

The two experiments have been performed, the 
offline and online classification. In the offline stage, 
the possibility of adding new channel which was 
extracted from summing up of two original channels 
is verified. Next, the best result of the offline stage 
was utilized in the online classification stage. In the 
both offline and online stage, the signals were 
extracted from six subjects with 100 ms windows 
length and100 increment as recommended in 

(Khushaba et al., 2012). In addition, the Gaussian 
kernel based ELM is used as the classifier. It has two 
importance parameters, C and  as showed in 
equation 9 and 12. This paper used the optimized 
ELM presented in the (Anam et al., 2013) with the 
=2-5 and C=20. The majority vote method with 9 
decision voting was employed to refine the 
classification result. 

The first experiment was the offline 
classification. In this stage, the performance of the 
classification system using only two original signals 
(ch1, ch2) was compared to the two signals plus the 
new additional channel from summing up of the 
both channels (ch1, ch2, ch1+ch2). From six trials 
across each subject, four trials were used to train the 
ELM and the rest were the testing data. The 
classification result is shown in the table 1.  

Table 1: The classification results averaged for six 
subjects. 

Subject Ch1 & Ch2 (%) Ch1, Ch2, Ch1+Ch2 (%) 
1 98.48 ± 2.87 97.10 ± 4.13 
2 100.00 ± 0 100.00 ± 0 
3 94.95 ± 11.38 96.42 ± 8.26 
4 98.61 ± 3.93 98.34 ± 4.02 
5 98.89 ± 2.43 98.89 ± 3.51 
6 93.81 ± 8.39 96.99 ± 5.49 

Average 97.46 ± 2.35 97.96 ± 1.47 
 
Table 1 shows that both configurations achieved good 

accuracies across six subjects. However, the additional 
signal of the summation of two channels gave better 
average accuracy than two channels only even though the 
difference is not so significant. The significance of the 
second configuration is depicted in figure 3. Even though 
both configurations achieve similar accuracy in 
recognizing the ten finger movements, the standard 
deviation of second one is better than first one. 

 

Figure 3: The Average class-wise accuracy in the offline 
classification. 
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Figure 4: The online classification accuracy. 

The online classification is the second 
experiments performed. The individual and 
combined finger movements were recognized in 
real-time based on the matrix projection of SRDA 
and the trained ELM kernel from offline stage. In 
this experiments, the configuration of (ch1, ch2) 
achieve 93.36 % accuracy while the (ch1,ch2, 
ch1+ch2) configuration attained better accuracy 
which is 97.07 %. The performance of finger 
recognition is depicted in the fig.4 and the table 2. 

Table 2: The confusion matrix of the classification results 
averaged for SIX subjects. 

 
Intended task (%) 

T I M R L T-I T-M T-R T-L HC

C
la

ss
if

ie
d 

ta
sk

 (
%

) 

T 98.7 0.1 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3
I 0.0 99.3 0.0 0.0 0.0 0.3 0.0 0.0 0.4 0.0

M 0.0 0.0 98.0 0.2 0.0 0.0 1.3 0.0 0.0 0.5
R 0.0 0.0 0.0 99.9 0.0 0.0 0.0 0.1 0.0 0.0
L 1.1 0.0 0.0 0.0 97.2 0.6 0.0 0.0 0.1 1.0

T-I 0.5 0.0 0.0 0.0 1.5 95.1 1.0 0.0 1.9 0.0
T-M 0.0 0.0 0.9 0.0 0.7 1.3 96.1 0.0 0.1 1.0
T-R 0.0 0.0 0.0 0.0 0.0 0.3 0.5 99.1 0.0 0.0
T-L 0.0 0.1 0.0 0.0 6.0 0.3 0.7 0.5 92.3 0.0
HC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 99.8

 
Figure 4 shows that the T-L movement is the most 

difficult one to recognize. It was misclassified to the L 
movements as seen in the confusion matrix table 2. It was 
probably caused by the facts that the T-L was composed of 
Thumb(T) and Little(L) finger movement therefore there 
is possibility each movement affects the combined 
movements. 

Besides the classification performance, the 
processing time of the real-time application has been 
also tested which the result is presented in table 3. 
The acquisition, filtering, feature extraction and 
reduction, ELM and majority vote processing time 
were record during the experiment. This recognition 
system took 112.13 ms in average. It is verified that 
processing time of this system is in between the 
optimal processing time for real-time myoelectric 
control, 100-125 ms, as suggested in (Farrell and 
Weir, 2007). 

Table 3: The processing time of the online experiment. 

Processing time (ms) 

Class Acquiring Filter 
Extraction 
/reduction 

ELM Vote Total 

T 100 3.9 7.6 0.5 0.1 112.1 
I 100 3.5 7.2 0.5 0.1 111.3 

M 100 3.5 7.3 0.5 0.1 111.4 
R 100 3.6 7.4 0.5 0.1 111.6 
L 100 3.7 7.6 0.6 0.1 111.9 

T-I 100 3.5 7.3 0.5 0.1 111.4 
T-M 100 3.6 7.5 0.5 0.1 111.7 
T-R 100 3.6 7.6 0.6 0.1 111.8 
T-L 100 3.5 7.3 0.5 0.1 111.4 
HC 100 3.5 7.3 0.5 0.1 111.4 
Avg 100 3.6 7.4 0.5 0.1 112.1 

 

This promising result could be implemented to 
the hand exoskeleton to recover the motor function 
of the patients post stroke. It could move all 
individual fingers and some combined movements. 
However, it is aimed for finger extension only. In 
addition, it would not work properly if the EMG 
signal of the subject is very weak. Therefore, it 
could be only applied to the partially paralyzed 
subject. 

Furthermore the proposed system could be 
implemented to the prosthetic hand device. It is 
promising because it used few electrodes which 
enhance the user's comfort. However, it needs more 
validation for amputee subjects.  

4 CONCLUSIONS 

The two channel sEMG signals were used in this 
paper to recognize the ten individual and combined 
finger movements. The extracting more feature from 
summation of the signals from the two channels 
improves the classification accuracy in both offline 
and online classification system. By using this 
combination, the recognition system was able to 
achieve in average 97.96 % in offline and 97.07% in 
online one. These results show the feasibility of the 
proposed system in classifying ten different finger 
movements.  
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