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Abstract: Sleep apnea (SA) is the most important and common component of sleep disorders which has several short 
term and long term side effects on health. There are several studies on automated SA detection but not too 
much works have been done on SA prediction. This paper discusses the application of artificial neural net-
works (ANNs) to predict sleep apnea. Three types of neural networks were investigated: Elman, cascade-
forward and feed-forward back propagation. We assessed the performance of the models using the Receiver 
Operating Characteristic (ROC) curve, particularly the area under the ROC curves (AUC), and statistically 
compare the cross validated estimate of the AUC of different models. Based on the obtained results, gener-
ally cascade-forward model results are better with average of AUC around 80%. 

1 INTRODUCTION 

Sleep Apnea (SA) is one of the most common types 
of sleep disorders with around 3% prevalence in 
industrialized countries (Young, Palta et al. 1993). 
SA is characterized by a repeated and temporary 
cessation or reduction of breathing during sleep 
(Guilleminault et al., 1978). Clinically, apnea is de-
fined as the total or near-total absence of airflow. 
This reduction becomes significant once the decline 
of the breathing signal amplitude is at least around 
75% with respect to the normal respiration and oc-
curs for a period of 10 seconds or longer. A hypop-
nea is an event of less intensity; it is defined as a 
reduction in baseline signal amplitude around 30–
50%, also lasting 10 seconds in adults (Flemons et 
al., 1999). Sleep apnea also can be categorized to 
three types as; obstructive, central and mixed. The 
SA has several short term and long term side effects 
(Chokroverty et al., 2009). Short-term effects lead to 
impaired attention and concentration, reduce quality 
of life, increased rates of absenteeism with reduced 
productivity, and increased the possibility of acci-
dents at work, home or on the road. Long-term con-
sequences of sleep deprivation include increased 
morbidity and mortality from increasing automobile 
accidents, coronary artery disease, heart failure, high 
blood pressure, obesity, type 2 diabetes mellitus, 
stroke and memory impairment as well as depression. 
Long-term consequences, however, remain open 
(Chokroverty, 2010). 

Unfortunately, as many patients are asymptomat-
ic, sleep apnea may go undiagnosed for years 
(Kryger et al., 1996); (Ball et al., 1997). Usually it is 
patients’ spouses, roommates, or family members 
who report the apnea periods alternating with arous-
als and accompanied by loud snoring (Stradling and 
Crosby 1990; Hoffstein 2000). Symptomatic patients 
with SA are usually assessed by sleep medicine 
Specialists and diagnosed through an overnight sleep 
study in a sleep clinic. SA is diagnosed by a manual 
analysis of a polysomnographic record, an integrated 
device comprising of the EEG, EMG, EOG, ECG, 
and oxygen saturation (SPO2) (Penzel et al., 2002). 
The polysomnography also contains records of air-
flow through the mouth and nose, along with the 
thoracic and abdominal effort signals (Kryger, 
1992), and the position of the body during sleep.  
The conventional scoring of the polysomnographic 
recording is laboured intensive and time-consuming 
(Kirby et al., 1999); (Sharma et al., 2004). There-
fore, many efforts have been done to develop sys-
tems that score the records automatically (Cabrero-
(Canosa et al., 2003); (de Chazal et al., 2003); 
(Cabrero-Canosa et al., 2004). For this reason sever-
al automated algorithms are used in this area such 
as; fuzzy rule-based system (Maali and Al-Jumaily, 
2011), genetic SVM (Maali and Al-Jumaily, 2011) 
and PSO-SVM (Yashar and Adel, 2012) which have 
been proposed in our previous works. 

As mentioned, there are several works on appli-
cations of predicting in different areas, but there are 
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few studies in sleep apnea prediction. One of the 
earliest work was published by Dagum and Galper 
in  1995 (Dagum and Galper, 1995). This paper 
developed a time series prediction by using belief 
networks models and then this algorithm used in 
sleep apnea. This paper used a multivariate data set 
contains 34000 recordings, sampled at 2 Hz, of heart 
rate (HR), chest volume (CV), blood oxygen con-
centration (SaO2), and sleep state from the time se-
ries competition of the Santa Fe Institute in 1991. 
Based on this study, prediction with the CV signal 
has more bias than HR and SaO2, because of rapid 
and erratic oscillations of the CV series. 

Another pioneer work in sleep apnea prediction, 
we can can be found in Bock and Gough paper in 
1998 . This study use 4.75 hz of heart rate, respira-
tion force, and blood oxygen saturation (SaO2) col-
lected from a chronic apnea patient. They use simple 
recurrent networks (SRN) proposed by Elman 
(Elman, 1991). Each of three time series variables 
(heart rate, breathing, and blood oxygenation) were 
used as inputs for network training and testing oper-
ations. Each variable was introduced to a unique 
network node at the input layer; this network had 18 
nodes in the hidden layer. « 

One of the newest paper in this area is the work 
of Waxaman, Graupe and Carley in 2010 (Waxman  
et al., ). They predicted apnea 30 to 120 seconds in 
advance. They use Large Memory Storage And Re-
trieval (LAMSTAR) neural network (Graupe and 
Kordylewski, 1998). LAMSTAR is a supervised 
neural network that can process large amount of data 
and also provide detailed information about its deci-
sion making process. Input signals for this algorithm 
are EEG, heart rate variability (HRV), nasal pres-
sure, oronasal temperature, submental EMG, and 
electrooculography (EOG). It must be noted that 
LAMSTAR has this ability to determine most im-
portant input (signal) in predicting process. In pre-
processing phase, data that segmented of 30, 60, 90 
and 120 seconds was normalized. They trained sepa-
rate LAMSTAR for each 30, 60, 90 and 120 seconds 
segment. Results show that best prediction belongs 
to next 30 seconds and they obtained lower perfor-
mance for longer lead time, however, most of pre-
dictions up to 60 seconds in the future is correct. 
Also, prediction of non-REM (NREM) events is 
better than REM events, generally. For example, for 
apnea prediction using 30-second segments and a 
30-second lead time during NREM sleep, the sensi-
tivity was 80.6 ± 6 5.6%, the specificity was 72.78 ± 
66.6%, the positive predictive values (PPV) was 
75.16 ± 3.6%, and the negative predictive values 
(NPV) was 79.4 ± 6 3.6%. REM apnea prediction 

demonstrated a sensitivity of 69.36 ± 10.5%, a speci-
ficity of 67.46 ± 10.9%, a PPV of 67.4 6 ± 5.6%, 
and an NPV of 68.8 ± 6 5.8%. Analyses also showed 
that the most important signal for the predicting 
apnea into the next second is submental EMG, and 
RMS value of the first wavelet level is the most 
important feature. But, for the 60 seconds prediction, 
nasal pressure is most important signal.  

This paper discusses the development of super-
vised artificial neural networks, Elman, cascade-
forward and feed-forward back propagation to pre-
dict sleep apnea. In the rest of this paper, the three 
NNs are introduced. Then the issues related to net-
work design and training, especially how to avoid 
over fitting, are addressed. The use of AUC as per-
formance measure of the models, and the statistical 
comparison of the overall performance of the models 
by means of cross-validation, are outlined. The re-
sults and conclusions are presented at the end of the 
paper. 

2 PRELIMINARIES 

2.1 Elman Neural Networks 

The Elman neural network is one kind of globally 
feed-forward locally recurrent network model pro-
posed by Elman (Li et al., 2009). It occupies a set of 
context nodes to store the internal states. Thus, it has 
certain dynamic characteristics over static neural 
networks, such as the Back-Propagation (BP) neural 
network and radial-basis function networks. The 
structure of an Elman neural network is illustrated in 
Figure 1. 

It is easy to observe that the Elman network con-
sists of four layers: input layer, hidden layer, context 
layer, and output layer. There are adjustable weights 
connecting every two adjacent layers. Generally, the 
Elman neural network can be considered as a special 
type of feed-forward neural network with additional 
memory neurons and local feedback. The distinct 
‘local connections’ of context nodes in the Elman 
neural network make its output sensitive not only to 
the current input data, but also to historical input 
data, which is useful in time series prediction. The 
training algorithm for the Elman neural network is 
similar to the back-propagation learning algorithm, as 
both based on the gradient descent principle. Howev-
er, the role that the context weights as well as initial 
context node outputs play in the error back-
propagation procedure must be taken into considera-
tion in the derivation of this learning algorithm. Due 
to its dynamical properties, the Elman neural network 
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has found numerous applications in such areas as 
time series prediction, system identification and 
adaptive control (Gao and Ovaska, 2002). 
 

 

Figure 1: Structure of an Elman neural network model. 

2.2 Cascade-forward Neural Network 
Models  

Cascade-forward models are similar to feed-forward 
networks, but include a weight connection from the 
input to each layer and from each layer to the suc-
cessive layers. While two-layer feed-forward net-
works can potentially learn virtually any input-
output relationship, feed-forward networks with 
more layers might learn complex relationships more 
quickly. For example, a three layer network has 
connections from layer 1 to layer 2, layer 2 to layer 
3, and layer 1 to layer 3. The three-layer network 
also has connections from the input to all three lay-
ers. The additional connections might improve the 
speed at which the network learns the desired rela-
tionship. Cascade-forward artificial intelligence 
model is similar to feed-forward back propagation 
neural network in using the back propagation algo-
rithm for weights updating, but the main symptom of 
this network is that each layer of neurons related to 
all previous layer of neurons. This network is a 
Feed-Forward network with more than one hidden 
layer. Multiple layers of neurons with nonlinear 
transfer functions allow the network to learn more 
complex nonlinear relationships between input and 
output vectors (Abdennour, 2006). 

3 PROPOSED APPROACH 

In this paper three input signals as; airflow, ab-
dominal and thoracic movement signals are used as 
had been found in our previous work as the most 
important signals for SA studies (Maali and Al-

Jumaily, 2012). In the present work data collected 
from 5 patients which events of them are annotated 
by an expert were collected in the concord hospital 
in Sydney. We extracted data segments of 30, 60, 
90, and 120 seconds. Also, Different lead times as 
30, 60, 90 and 120 seconds are investigated in this 
paper. Also, AUC is considered as performance 
measure in this paper. 

3.1 Feature Generation 

Each signal from each segment was normalized by 
dividing by its mean value. A discrete wavelet trans-
form was then applied. For each windows a variety 
of features were extracted from the nasal airflow, 
abdominal and thoracic movement signals. Features 
are generated from coefficients of wavelet packet 
and the original signals. Daubechies wavelet packet 
of order 4 and 7 levels is used and different statisti-
cal measures are generated from the coefficients and 
original signal. These features represent the inputs of 
the NNs algorithm. Full list of proposed features are 
included in the Table 1. 

Table 1: List of statistical features, x is coefficients of the 
wavelet. 

logሺmeanሺx^2ሻሻ kurtosisሺx^2ሻ geomeanሺabsሺxሻሻ 

stdሺx^2ሻ varሺx^2ሻ madሺxሻ 

skewnessሺx^2ሻ meanሺabsሺxሻሻ meanሺx^2ሻ 

skewnessሺxሻ kurtosisሺxሻ varሺxሻ 

geomeanሺx^2ሻ madሺx^2ሻ stdሺxሻ 

More details about these statistical measures are presented in 
the Appendix 

3.2 Early Stopping 

Usually standard neural network architectures such 
as the fully connected multi-layer perceptron almost 
always are prone to overfitting. While the network 
seems to get better and better (the error on the train-
ing set decreases), at some point during training it 
actually begins to get worse again, (the error on 
unseen examples increases).  

There are basically two ways to fight overfitting: 
reducing the number of dimensions of the parameter 
space or reducing the effective size of each dimen-
sion. The corresponding NN techniques for reducing 
the size of each parameter dimension are regulariza-
tion such as weight decay or early stopping 
(Prechelt, 1998). Early stopping is widely used be-
cause it is simple to understand and implement and 
has been reported to be superior to regularization 
methods in many cases. This method can be used 
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either interactively, i.e. based on human judgment, 
or automatically, i.e. based on some formal stopping 
criterion. In this paper automatic stopping criteria is 
used based on the increases of validation error. 

4 RESULTS 

The results for prediction of apnea in the immediate-
ly following segment as the segment duration are 
varied between 30, 60, 90 and 120 seconds are com-
putes for each of three NNs. For each experiments10 
validation is performed and average and standard 
deviation of these results are shown in table 2, 3 and 
4. ANOVA test on these data shows that the average 
of AUC of these segmentations are significantly 
different and performing pair t-test shows that per-
formances are generally better for 30-seconds seg-
ment, and as the segment duration is increased, the 
performance is decreased. Also, increase of the lead 
time results in increasing of the performances. 

Table 2: AUC of apnea prediction by Cascade-forward 
model. 

 Lead Time 
 30 60 90 120 

30 71.05 േ 2.42 75.29 േ 3.79 78.15 േ 5.75 82.22 േ 3.93
60 67.71 േ 1.93 72.55 േ 7.29 77.68 േ 5.92 79.66 േ 5.79
90 66.29 േ 4.43 71.85 േ 8.17 80.47 േ 4.54 81.05 േ 4.97
120 63.40 േ 1.54 73.44 േ 6.26 78.19 േ 7.72 77.52 േ 7.18

Table 3: AUC of apnea prediction by feed-forward model. 

 Lead Time 

 30 60 90 120 

30 68.12 േ 2.43 74.88 േ 5.77 73.61 േ 5.76 82.31 േ 7.19

60 65.56 േ 2.72 72.90 േ 7.48 71.71 േ 6.23 80.45 േ 6.50

90 65.95 േ 4.43 69.31 േ 5.20 73.08 േ 8.67 72.90 േ 7.53

120 61.12 േ 1.47 67.12 േ 7.83 76.39 േ 8.38 79.72 േ 6.52

Table 4: AUC of apnea prediction by Elman model. 

 Lead Time 

 30 60 90 120 

30 69.32 േ 2.24 74.88 േ 5.77 73.61 േ 5.76 78.31 േ 7.19 

60 67.59 േ 2.53 77.64 േ 7.34 78.49 േ 4.81 79.16 േ 6.43 

90 64.87 േ 1.68 77.02 േ 5.90 77.62 േ 6.85 79.99 േ 5.94 

120 65.57 േ 2.28 72.88 േ 7.14 76.46 േ 8.31 79.83 േ 5.19 

 

Also, ANOVA test shows that performance of 
these models are not same, and in general cascade 
model results in better prediction, but not for all of 

the experiments, this shows that each model can 
predict some type of samples better than other mod-
els. Therefore using ensemble of neural networks 
maybe helpful and should be considered (Li et al., 
2009). 

5 CONCLUSIONS 

In this study, we present the first step of an ongoing 
investigation into the prediction of individual events 
of sleep apnea with different artificial neural net-
works. Experimental results of Elman, cascade-
forward and feed-forward back propagation neural 
networks shows that, generally cascade-forward NN 
can predict the sleep apnea events better, but this 
advantage is not for all samples and investigation on 
ensemble of these NNs is subject to future works. 
Also, this study shows that increasing the lead time 
can improve the performances, in the most cases.  
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APPENDIX 

Mean, variance (VAR) and standard deviation 
(STD) are common and well known statistical tools, 
so other statistical features, in this study, are re-
viewed here. 

 

Kurtosis: The kurtosis of a distribution is a measure 
of how outlier-prone a distribution is, and defined as 
follow 
 

݇ ൌ ሺܧሺݔ െ  4^ߪ/ሻ^4ሻߤ
 

Geomean: Geomean is the geometric mean and com-
puted as follow: 

݉ ൌ ሺ∏ݔሿ^ሺ1 ⁄ ݊ሻ 
 

Skewness: Skewness is a measure of the asymmetry 
of the data around the sample mean, and defined as 
follow 

 

ݏ ൌ ሺܧሺݔ െ  	3^ߪ/ሻ^3ሻߤ
 

Mad: mad is mean absolute deviation of the sample 
as, ݉݁ܽ݊ሺ|ሺݔ െ ݉݁ܽ݊ሺݔሻሻ|ሻ. 
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